1
|
Gharacheh H, Guvendiren M. Cell-Laden Composite Hydrogel Bioinks with Human Bone Allograft Particles to Enhance Stem Cell Osteogenesis. Polymers (Basel) 2022; 14:polym14183788. [PMID: 36145933 PMCID: PMC9503810 DOI: 10.3390/polym14183788] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 11/16/2022] Open
Abstract
There is a growing demand for bone graft substitutes that mimic the extracellular matrix properties of the native bone tissue to enhance stem cell osteogenesis. Composite hydrogels containing human bone allograft particles are particularly interesting due to inherent bioactivity of the allograft tissue. Here, we report a novel photocurable composite hydrogel bioink for bone tissue engineering. Our composite bioink is formulated by incorporating human allograft bone particles in a methacrylated alginate formulation to enhance adult human mesenchymal stem cell (hMSC) osteogenesis. Detailed rheology and printability studies confirm suitability of our composite bioinks for extrusion-based 3D bioprinting technology. In vitro studies reveal high cell viability (~90%) for hMSCs up to 28 days of culture within 3D bioprinted composite scaffolds. When cultured within bioprinted composite scaffolds, hMSCs show significantly enhanced osteogenic differentiation as compared to neat scaffolds based on alkaline phosphatase activity, calcium deposition, and osteocalcin expression.
Collapse
Affiliation(s)
- Hadis Gharacheh
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Murat Guvendiren
- Otto H. York Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Correspondence:
| |
Collapse
|
2
|
Design Strategies and Biomimetic Approaches for Calcium Phosphate Scaffolds in Bone Tissue Regeneration. Biomimetics (Basel) 2022; 7:biomimetics7030112. [PMID: 35997432 PMCID: PMC9397031 DOI: 10.3390/biomimetics7030112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
Bone is a complex biologic tissue, which is extremely relevant for various physiological functions, in addition to movement, organ protection, and weight bearing. The repair of critical size bone defects is a still unmet clinical need, and over the past decades, material scientists have been expending efforts to find effective technological solutions, based on the use of scaffolds. In this context, biomimetics which is intended as the ability of a scaffold to reproduce compositional and structural features of the host tissues, is increasingly considered as a guide for this purpose. However, the achievement of implants that mimic the very complex bone composition, multi-scale structure, and mechanics is still an open challenge. Indeed, despite the fact that calcium phosphates are widely recognized as elective biomaterials to fabricate regenerative bone scaffolds, their processing into 3D devices with suitable cell-instructing features is still prevented by insurmountable drawbacks. With respect to biomaterials science, new approaches maybe conceived to gain ground and promise for a substantial leap forward in this field. The present review provides an overview of physicochemical and structural features of bone tissue that are responsible for its biologic behavior. Moreover, relevant and recent technological approaches, also inspired by natural processes and structures, are described, which can be considered as a leverage for future development of next generation bioactive medical devices.
Collapse
|
3
|
Pańtak P, Cichoń E, Czechowska J, Zima A. Influence of Natural Polysaccharides on Properties of the Biomicroconcrete-Type Bioceramics. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7496. [PMID: 34947091 PMCID: PMC8708244 DOI: 10.3390/ma14247496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/23/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022]
Abstract
In this paper, novel hybrid biomicroconcrete-type composites were developed and investigated. The solid phase of materials consisted of a highly reactive α -tricalcium phosphate (α-TCP) powder, hybrid hydroxyapatite-chitosan (HAp-CTS) material in the form of powder and granules (as aggregates), and the polysaccharides sodium alginate (SA) or hydroxypropyl methylcellulose (HPMC). The liquid/gel phase in the studied materials constituted a citrus pectin gel. The influence of SA or HPMC on the setting reaction, microstructure, mechanical as well as biological properties of biomicroconcretes was investigated. Studies revealed that manufactured cement pastes were characterized by high plasticity and cohesion. The dual setting system of developed biomicroconcretes, achieved through α-TCP setting reaction and polymer crosslinking, resulted in a higher compressive strength. Material with the highest content of sodium alginate possessed the highest mechanical strength (~17 MPa), whereas the addition of hydroxypropyl methylcellulose led to a subtle compressive strength decrease. The obtained biomicroconcretes were chemically stable and characterized by a high bioactive potential. The novel biomaterials with favorable physicochemical and biological properties can be prosperous materials for filling bone tissue defects of any shape and size.
Collapse
Affiliation(s)
| | | | | | - Aneta Zima
- Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza Av. 30, 30-058 Kraków, Poland; (P.P.); (E.C.); (J.C.)
| |
Collapse
|
4
|
Sikkema R, Keohan B, Zhitomirsky I. Alginic Acid Polymer-Hydroxyapatite Composites for Bone Tissue Engineering. Polymers (Basel) 2021; 13:polym13183070. [PMID: 34577971 PMCID: PMC8471633 DOI: 10.3390/polym13183070] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 12/28/2022] Open
Abstract
Natural bone is a composite organic-inorganic material, containing hydroxyapatite (HAP) as an inorganic phase. In this review, applications of natural alginic acid (ALGH) polymer for the fabrication of composites containing HAP are described. ALGH is used as a biocompatible structure directing, capping and dispersing agent for the synthesis of HAP. Many advanced techniques for the fabrication of ALGH-HAP composites are attributed to the ability of ALGH to promote biomineralization. Gel-forming and film-forming properties of ALGH are key factors for the development of colloidal manufacturing techniques. Electrochemical fabrication techniques are based on strong ALGH adsorption on HAP, pH-dependent charge and solubility of ALGH. Functional properties of advanced composite ALGH-HAP films and coatings, scaffolds, biocements, gels and beads are described. The composites are loaded with other functional materials, such as antimicrobial agents, drugs, proteins and enzymes. Moreover, the composites provided a platform for their loading with cells for the fabrication of composites with enhanced properties for various biomedical applications. This review summarizes manufacturing strategies, mechanisms and outlines future trends in the development of functional biocomposites.
Collapse
|
5
|
Tripathi G, Miyazaki T. Fabrication and properties of alginate/calcium phosphate hybrid beads: A comparative study. Biomed Mater Eng 2021; 32:15-27. [PMID: 33252063 DOI: 10.3233/bme-206012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Microbeads for bone repair have been widely studied because they can be conveniently used in clinical applications. OBJECTIVE This study concerns the preparation, physical properties and in vitro characterisation of different types of alginate/calcium phosphate (CaP) ceramic microbeads, which were designed for use as drug delivery systems and bone-regeneration matrices. METHODS Hybrid microbeads were successfully prepared from sodium alginate and various CaP, namely 𝛼-tricalcium phosphate, 𝛽-tricalcium phosphate and hydroxyapatite using the liquid droplet method. RESULTS Porosity, swelling properties and in vitro degradation of the microbeads in the aqueous environment were significantly changed by the added CaP. The compressive strength of the blocks fabricated from the beads was around 120 MPa irrespective of the type of CaP. The initial release rate of the model drug methylene blue was suppressed by the addition of CaP. CONCLUSION The alginate-CaP composite beads hold promising potential as an encapsulation carrier of drugs and component of bone substitutes.
Collapse
Affiliation(s)
- Garima Tripathi
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - Toshiki Miyazaki
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| |
Collapse
|
6
|
Shimatani A, Toyoda H, Orita K, Ibara Y, Yokogawa Y, Nakamura H. A bone replacement-type calcium phosphate cement that becomes more porous in vivo by incorporating a degradable polymer. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:77. [PMID: 34156560 PMCID: PMC8219573 DOI: 10.1007/s10856-021-06555-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
This study investigated whether mixing low viscosity alginic acid with calcium phosphate cement (CPC) causes interconnected porosity in the CPC and enhances bone replacement by improving the biological interactions. Furthermore, we hypothesized that low viscosity alginic acid would shorten the setting time of CPC and improve its strength. CPC samples were prepared with 0, 5, 10, and 20% low viscosity alginic acid. After immersion in acetate buffer, possible porosification in CPC was monitored in vitro using scanning electron microscopy (SEM), and the setting times and compressive strengths were measured. In vivo study was conducted by placing CPC in a hole created on the femur of New Zealand white rabbit. Microcomputed tomography and histological examination were performed 6 weeks after implantation. SEM images confirmed that alginic acid enhanced the porosity of CPC compared to the control, and the setting time and compressive strength also improved. When incorporating a maximum amount of alginic acid, the new bone mass was significantly higher than the control group (P = 0.0153). These biological responses are promising for the translation of these biomaterials and their commercialization for clinic applications.
Collapse
Affiliation(s)
- Akiyoshi Shimatani
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-Machi, Abeno-ku, Osaka, 545-8585, Japan.
| | - Hiromitsu Toyoda
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-Machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Kumi Orita
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-Machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yuta Ibara
- Department of Mechanical & Physical Engineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Yoshiyuki Yokogawa
- Department of Mechanical & Physical Engineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Hiroaki Nakamura
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-Machi, Abeno-ku, Osaka, 545-8585, Japan
| |
Collapse
|
7
|
Teng K, An Q, Chen Y, Zhang Y, Zhao Y. Recent Development of Alginate-Based Materials and Their Versatile Functions in Biomedicine, Flexible Electronics, and Environmental Uses. ACS Biomater Sci Eng 2021; 7:1302-1337. [PMID: 33764038 DOI: 10.1021/acsbiomaterials.1c00116] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alginate is a natural polysaccharide that is easily chemically modified or compounded with other components for various types of functionalities. The alginate derivatives are appealing not only because they are biocompatible so that they can be used in biomedicine or tissue engineering but also because of the prospering bioelectronics that require various biomaterials to interface between human tissues and electronics or to serve as electronic components themselves. The study of alginate-based materials, especially hydrogels, have repeatedly found new frontiers over recent years. In this Review, we document the basic properties of alginate, their chemical modification strategies, and the recent development of alginate-based functional composite materials. The newly thrived functions such as ionically conductive hydrogel or 3D or 4D cell culturing matrix are emphasized among other appealing potential applications. We expect that the documentation of relevant information will stimulate scientific efforts to further develop biocompatible electronics or smart materials and to help the research domain better address the medicine, energy, and environmental challenges faced by human societies.
Collapse
Affiliation(s)
- Kaixuan Teng
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Qi An
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Yao Chen
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Yantao Zhao
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, Beijing 100048, China.,Beijing Engineering Research Center of Orthopedics Implants, Beijing 100048, China
| |
Collapse
|
8
|
Alshemary AZ, Bilgin S, Işık G, Motameni A, Tezcaner A, Evis Z. Biomechanical Evaluation of an Injectable Alginate / Dicalcium Phosphate Cement Composites for Bone Tissue Engineering. J Mech Behav Biomed Mater 2021; 118:104439. [PMID: 33691231 DOI: 10.1016/j.jmbbm.2021.104439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/22/2021] [Accepted: 02/26/2021] [Indexed: 01/27/2023]
Abstract
Biocompatible dicalcium phosphate (DCP) cements are widely used as bone repair materials. In this study, we aimed to investigate the impact of different amounts of sodium alginate (SA) on the microstructural, mechanical, and biological properties of DCP cements. Beta-tricalcium phosphate (β-TCP) was prepared using a microwave-assisted wet precipitation system. Lattice parameters of the obtained particles determined from X-ray diffraction (XRD), were in good match with a standard phase of β-TCP. Scanning electron microscopy (SEM) examination revealed that the particles were in globular shape. Furthermore, all functional groups of β-TCP were also detected using Fourier-transform infrared spectroscopy (FTIR) spectra. DCP cement (pure phase) was synthesized using monocalcium phosphate monohydrate (MCPM)/β-TCP powder mixture blended with 1.0 mL of water. SA/DCP cement composites were synthesized by dissolving different amounts of SA into water (1.0 mL) to obtain different final concentrations (0.5%, 1%, 2% and 3%). The prepared cements were characterized with XRD, SEM, FTIR and Thermogravimetric analysis (TGA). XRD results showed that pure DCP and SA/DCP cements were in a good match with Monetite phase. SEM results confirmed that addition of SA inhibited the growth of DCP particles. Setting time and injectability behaviour were significantly improved upon increasing the SA amount into DCP cements. In vitro biodegradation was evaluated using Simulated body fluid (SBF) over 21 days at 37 °C. The highest cumulative weight loss (%) in SBF was observed for 2.0% SA/DCP (about 26.52%) after 21 days of incubation. Amount of Ca2+ ions released in SBF increased with the addition of SA. DCP and SA/DCP cements showed the highest mechanical strength after 3 days of incubation in SBF and declined with prolonged immersion periods. In vitro cell culture experiments were conducted using Dental pulp stem cells (DPSCs). Viability and morphology of cells incubated in extract media of DCP and SA/DCP discs after 24 h incubation was studied with MTT assay and fluorescence microscopy imaging, respectively. All cements were cytocompatible and viability of cells incubated in extracts of cements was higher than observed in the control group. Based on the outcomes, SA/DCP bone cements have a promising future to be utilized as bone filler.
Collapse
Affiliation(s)
- Ammar Z Alshemary
- Department of Biomedical Engineering, Faculty of Engineering, Karabuk University, Karabuk, 78050, Turkey.
| | - Saliha Bilgin
- Department of Biomedical Engineering, Faculty of Engineering, Karabuk University, Karabuk, 78050, Turkey
| | - Gülhan Işık
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey
| | - Ali Motameni
- Department of Engineering Sciences, Middle East Technical University, Ankara, 06800, Turkey
| | - Aysen Tezcaner
- Department of Biotechnology, Middle East Technical University, Ankara 06800, Turkey; Department of Engineering Sciences, Middle East Technical University, Ankara, 06800, Turkey
| | - Zafer Evis
- Department of Engineering Sciences, Middle East Technical University, Ankara, 06800, Turkey
| |
Collapse
|
9
|
Nanostructured Strontium-Doped Calcium Phosphate Cements: A Multifactorial Design. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Calcium phosphate cements (CPCs) have been extensively studied in last decades as nanostructured biomaterials for the regeneration of bone defects, both for dental and orthopedic applications. However, the precise control of their handling properties (setting time, viscosity, and injectability) still represents a remarkable challenge because a complicated adjustment of multiple correlated processing parameters is requested, including powder particle size and the chemical composition of solid and liquid components. This study proposes, for the first time, a multifactorial investigation about the effects of powder and liquid variation on the final performance of Sr-doped apatitic CPCs, based on the Design of Experiment approach. In addition, the effects of two mixing techniques, hand spatula (low-energy) and planetary shear mixing (high-energy), on viscosity and extrusion force were compared. This work aims to shed light on the various steps involved in the processing of CPCs, thus enabling a more precise and tailored design of the device, based on the clinical need.
Collapse
|
10
|
Alginate hydrogels for bone tissue engineering, from injectables to bioprinting: A review. Carbohydr Polym 2020; 229:115514. [DOI: 10.1016/j.carbpol.2019.115514] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/08/2019] [Accepted: 10/20/2019] [Indexed: 12/16/2022]
|
11
|
Das D, Zhang S, Noh I. Synthesis and characterizations of alginate-α-tricalcium phosphate microparticle hybrid film with flexibility and high mechanical property as a biomaterial. ACTA ACUST UNITED AC 2018; 13:025008. [PMID: 28956533 DOI: 10.1088/1748-605x/aa8fa1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A biocompatible hybrid film has been fabricated using alginate (Alg), α-tricalcium phosphate (α-TCP) microparticle and calcium chloride through ionic crosslinking as a biomaterial. The 'screeding method' (like a concrete finishing process) has been employed to develop the Alg-α-TCP film. For this method, the Alg/α-TCP blend has been prepared using an ultra-sonicator and then put on a glass slide. After that, the excess volume of blend has been cut off by skidding another slide along with the surface of the blend to achieve proper grade and flatness. The mechanical strength and flexibility of the film (Alg-α-TCP) has been controlled by changing its compositions. The crosslinking phenomenon has been confirmed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), 13C nuclear magnetic resonance (NMR), x-ray diffraction and thermogravimetric analyses. The ATR-FTIR and 13C NMR analysis results suggest that carboxylate groups of the alginate are ionically cross-linked with Ca2+ ions, while the α-TCP particles reside in the network by physical interaction. The micro-fatigue test results imply high tensile strength (up to 257 MPa) and flexibility (up to 13% elongation) of the Alg-α-TCP hybrid films. The SEM analysis suggests the α-TCP particles are homogeneously distributed on the surface of Alg-α-TCP films, whereas cross-sectional images confirmed the presence of α-TCP in the cross-linked network. TGA results demonstrated that thermal stability of the hybrid film was enhanced due to ionic crosslinking and interfacial interaction between alginate and α-TCP. The incorporation of α-TCP particles diminished the swelling ratio of the hybrid film. The in vitro bone cell (MC3T3) culture and cytotoxicity tests showed that the hybrid film is biocompatible. The hybrid film releases bovine serum albumin and dimethyloxaloylglycine in a controlled way at pH 7 and 7.4, and 37 °C. Overall, the biocompatible Alg-α-TCP hybrid film with excellent mechanical strength and flexibility could be applied as an interfacial film in tissue engineering.
Collapse
Affiliation(s)
- Dipankar Das
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea. Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | | | | |
Collapse
|
12
|
Das D, Bang S, Zhang S, Noh I. Bioactive Molecules Release and Cellular Responses of Alginate-Tricalcium Phosphate Particles Hybrid Gel. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E389. [PMID: 29135939 PMCID: PMC5707606 DOI: 10.3390/nano7110389] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/07/2017] [Accepted: 11/13/2017] [Indexed: 12/14/2022]
Abstract
In this article, a hybrid gel has been developed using sodium alginate (Alg) and α-tricalcium phosphate (α-TCP) particles through ionic crosslinking process for the application in bone tissue engineering. The effects of pH and composition of the gel on osteoblast cells (MC3T3) response and bioactive molecules release have been evaluated. At first, a slurry of Alg and α-TCP has been prepared using an ultrasonicator for the homogeneous distribution of α-TCP particles in the Alg network and to achieve adequate interfacial interaction between them. After that, CaCl2 solution has been added to the slurry so that ionic crosslinked gel (Alg-α-TCP) is formed. The developed hybrid gel has been physico-chemically characterized using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and a swelling study. The SEM analysis depicted the presence of α-TCP micro-particles on the surface of the hybrid gel, while cross-section images signified that the α-TCP particles are fully embedded in the porous gel network. Different % swelling ratio at pH 4, 7 and 7.4 confirmed the pH responsiveness of the Alg-α-TCP gel. The hybrid gel having lower % α-TCP particles showed higher % swelling at pH 7.4. The hybrid gel demonstrated a faster release rate of bovine serum albumin (BSA), tetracycline (TCN) and dimethyloxalylglycine (DMOG) at pH 7.4 and for the grade having lower % α-TCP particles. The MC3T3 cells are viable inside the hybrid gel, while the rate of cell proliferation is higher at pH 7.4 compared to pH 7. The in vitro cytotoxicity analysis using thiazolyl blue tetrazolium bromide (MTT), bromodeoxyuridine (BrdU) and neutral red assays ascertained that the hybrid gel is non-toxic for MC3T3 cells. The experimental results implied that the non-toxic and biocompatible Alg-α-TCP hybrid gel could be used as scaffold in bone tissue engineering.
Collapse
Affiliation(s)
- Dipankar Das
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science of Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea.
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science of Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea.
| | - Sumi Bang
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science of Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea.
| | - Shengmin Zhang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Insup Noh
- Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science of Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea.
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science of Technology, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Korea.
| |
Collapse
|
13
|
Henriques Lourenço A, Neves N, Ribeiro-Machado C, Sousa SR, Lamghari M, Barrias CC, Trigo Cabral A, Barbosa MA, Ribeiro CC. Injectable hybrid system for strontium local delivery promotes bone regeneration in a rat critical-sized defect model. Sci Rep 2017; 7:5098. [PMID: 28698571 PMCID: PMC5506032 DOI: 10.1038/s41598-017-04866-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 05/22/2017] [Indexed: 12/11/2022] Open
Abstract
Strontium (Sr) has been described as having beneficial influence in bone strength and architecture. However, negative systemic effects have been reported on oral administration of Sr ranelate, leading to strict restrictions in clinical application. We hypothesized that local delivery of Sr improves osteogenesis without eliciting detrimental side effects. Therefore, the in vivo response to an injectable Sr-hybrid system composed of RGD-alginate hydrogel cross-linked in situ with Sr and reinforced with Sr-doped hydroxyapatite microspheres, was investigated. The system was injected in a critical-sized bone defect model and compared to a similar Sr-free material. Micro-CT results show a trend towards higher new bone formed in Sr-hybrid group and major histological differences were observed between groups. Higher cell invasion was detected at the center of the defect of Sr-hybrid group after 15 days with earlier bone formation. Higher material degradation with increase of collagen fibers and bone formation in the center of the defect after 60 days was observed as opposed to bone formation restricted to the periphery of the defect in the control. These histological findings support the evidence of an improved response with the Sr enriched material. Importantly, no alterations were observed in the Sr levels in systemic organs or serum.
Collapse
Affiliation(s)
- Ana Henriques Lourenço
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal.,Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465, Porto, Portugal
| | - Nuno Neves
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal.,Faculdade de Medicina, Universidade do Porto, Serviço de Ortopedia, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Cláudia Ribeiro-Machado
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal
| | - Susana R Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal.,ISEP - Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Meriem Lamghari
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal
| | - Cristina C Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal
| | - Abel Trigo Cabral
- Faculdade de Medicina, Universidade do Porto, Serviço de Ortopedia, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Mário A Barbosa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal.,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal.,ICBAS - Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 228, 4050-313, Porto, Portugal
| | - Cristina C Ribeiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal. .,INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200 - 135, Porto, Portugal. .,ISEP - Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal.
| |
Collapse
|
14
|
Patel R, Patel M, Kwak J, Iyer AK, Karpoormath R, Desai S, Rarh V. Polymeric microspheres: a delivery system for osteogenic differentiation. POLYM ADVAN TECHNOL 2017. [DOI: 10.1002/pat.4084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Rajkumar Patel
- School of Electrical and Computer Engineering; The University of Seoul; Seoul 02504 Korea
| | - Madhumita Patel
- Department of Chemistry and Nano Science; Ewha Womans University; Seodaemun-gu Seoul 120-750 South Korea
| | - Jeonghun Kwak
- School of Electrical and Computer Engineering; The University of Seoul; Seoul 02504 Korea
| | - Arun K. Iyer
- Use-inspired Biomaterials & Integrated Nano Delivery (U-Bind) Systems Laboratory, Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health, Sciences; Wayne State University; 259 Mack Ave Detroit MI 48201 USA
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, College of Health Sciences; University of Kwa Zulu Natal; Durban 4000 Africa
| | - Shrojal Desai
- Global Infusion Systems R&D at Hospira; Chicago, IL USA
| | - Vimal Rarh
- Department of Chemistry, S.G.T.B. Khalsa College; University of Delhi; Delhi 110007 India
| |
Collapse
|
15
|
Sprio S, Dapporto M, Montesi M, Panseri S, Lattanzi W, Pola E, Logroscino G, Tampieri A. Novel Osteointegrative Sr-Substituted Apatitic Cements Enriched with Alginate. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E763. [PMID: 28773884 PMCID: PMC5457115 DOI: 10.3390/ma9090763] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/29/2016] [Accepted: 09/02/2016] [Indexed: 12/16/2022]
Abstract
The present work describes the synthesis of novel injectable, self-setting bone cements made of strontium-substituted hydroxyapatite (Sr-HA), obtained by single-phase calcium phosphate precursors doped with different amounts of strontium and enriched with alginate. The addition of alginate improved the injectability, cohesion, and compression strength of the cements, without affecting the hardening process. A Sr-HA cement exhibiting adequate hardening times and mechanical strength for clinical applications was further tested in vivo in a rabbit model, in comparison with a commercial calcium phosphate cement, revealing the maintenance of biomimetic composition and porous microstructure even after one month in vivo, as well as enhanced ability to induce new bone formation and penetration.
Collapse
Affiliation(s)
- Simone Sprio
- Institute of Science and Technology for Ceramics, National Research Council of Italy, Via Granarolo 64, Faenza 48018, Italy.
| | - Massimiliano Dapporto
- Institute of Science and Technology for Ceramics, National Research Council of Italy, Via Granarolo 64, Faenza 48018, Italy.
| | - Monica Montesi
- Institute of Science and Technology for Ceramics, National Research Council of Italy, Via Granarolo 64, Faenza 48018, Italy.
| | - Silvia Panseri
- Institute of Science and Technology for Ceramics, National Research Council of Italy, Via Granarolo 64, Faenza 48018, Italy.
| | - Wanda Lattanzi
- Institute of Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, Largo F Vito, 1, Rome 00168, Italy.
- Latium Musculoskeletal Tissue Bank, Largo F Vito, 1, Rome 00168, Italy.
| | - Enrico Pola
- Orthopaedics and Traumatology, Università Cattolica del Sacro Cuore, Largo F Vito, 1, Rome 00168, Italy.
| | - Giandomenico Logroscino
- Orthopaedics and Traumatology, Università Cattolica del Sacro Cuore, Largo F Vito, 1, Rome 00168, Italy.
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics, National Research Council of Italy, Via Granarolo 64, Faenza 48018, Italy.
| |
Collapse
|
16
|
de Reese J, Sperl N, Schmid J, Sieber V, Plank J. Effect of biotechnologically modified alginates on LDH structures. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2015. [DOI: 10.1680/jbibn.14.00032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Four alginates possessing different guluronic/mannuronic acid ratios and one acetylated alginate were investigated with respect to their behaviour during intercalation into layered double hydroxides (LDHs). Two alginates were commercial products while the others were synthesised by way of bacterial fermentation and in one sample followed by enzymatic treatment. Intercalation was performed by way of co-precipitation of aluminium nitrate and zinc nitrate in alginate solution at a pH of 8·5–9. The products were characterised by powder X-ray diffraction, elemental analysis, wide-angle X-ray scattering, scanning electron microscopy and magic angle spinning (MAS) NMR spectroscopy. All alginates intercalate well into the Zn2Al-LDH host structure. With an increase in the content of guluronic acid in the alginate, the d-spacing (interlayer distance) in the alginate-LDH compound increases from 1·28 to 1·85 nm. Similarly, acetylation of the carboxylic groups leads to an increased steric volume of such alginate and therefore to a higher d-spacing (1·72 nm). The results indicate that different guluronic/mannuronic acid ratios can be used to trigger the steric size of the alginates and consequently the d-spacing of the alginate-LDHs. 13C CP MAS NMR spectroscopy confirmed an interaction between the carboxylic groups present in the alginate with the inorganic main layer.
Collapse
Affiliation(s)
- Johanna de Reese
- Chair for Construction Chemicals, Technische Universität München, Garching, Germany
| | - Nadine Sperl
- Chair of Chemistry of Biogenic Resources, Technische Universität München, Straubing, Germany
| | - Jochen Schmid
- Chair of Chemistry of Biogenic Resources, Technische Universität München, Straubing, Germany
| | - Volker Sieber
- Chair of Chemistry of Biogenic Resources, Technische Universität München, Straubing, Germany
| | - Johann Plank
- Chair for Construction Chemicals, Technische Universität München, Garching, Germany
| |
Collapse
|
17
|
Park JH, Lee EJ, Knowles JC, Kim HW. Preparation of in situ hardening composite microcarriers: calcium phosphate cement combined with alginate for bone regeneration. J Biomater Appl 2013; 28:1079-84. [PMID: 23836845 PMCID: PMC4107800 DOI: 10.1177/0885328213496486] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Novel microcarriers consisting of calcium phosphate cement and alginate were prepared for
use as three-dimensional scaffolds for the culture and expansion of cells that are
effective for bone tissue engineering. The calcium phosphate cement-alginate composite
microcarriers were produced by an emulsification of the composite aqueous solutions mixed
at varying ratios (calcium phosphate cement powder/alginate solution = 0.8–1.2) in an oil
bath and the subsequent in situ hardening of the compositions during spherodization.
Moreover, a porous structure could be easily created in the solid microcarriers by soaking
the produced microcarriers in water and a subsequent freeze-drying process. Bone
mineral-like apatite nanocrystallites were shown to rapidly develop on the calcium
phosphate cement–alginate microcarriers under moist conditions due to the conversion of
the α-tricalcium phosphate phase in the calcium phosphate cement into a
carbonate–hydroxyapatite. Osteoblastic cells cultured on the microspherical scaffolds were
proven to be viable, with an active proliferative potential during 14 days of culture, and
their osteogenic differentiation was confirmed by the determination of alkaline
phosphatase activity. The in situ hardening calcium phosphate cement–alginate
microcarriers developed herein may be used as potential three-dimensional scaffolds for
cell delivery and tissue engineering of bone.
Collapse
Affiliation(s)
- Jung-Hui Park
- 1Department of Nanobiomedical Science, WCU Research Center, Dankook University, South Korea
| | | | | | | |
Collapse
|