• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643712)   Today's Articles (431)   Subscriber (50625)
For: Ghavidel Mehr N, Li X, Ariganello MB, Hoemann CD, Favis BD. Poly(ε-caprolactone) scaffolds of highly controlled porosity and interconnectivity derived from co-continuous polymer blends: model bead and cell infiltration behavior. J Mater Sci Mater Med 2014;25:2083-2093. [PMID: 24962985 DOI: 10.1007/s10856-014-5256-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/09/2014] [Indexed: 06/03/2023]
Number Cited by Other Article(s)
1
Zeshan M, Amjed N, Ashraf H, Farooq A, Akram N, Zia KM. A review on the application of chitosan-based polymers in liver tissue engineering. Int J Biol Macromol 2024;262:129350. [PMID: 38242400 DOI: 10.1016/j.ijbiomac.2024.129350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/29/2023] [Accepted: 01/07/2024] [Indexed: 01/21/2024]
2
Nguyen D, Desse M, Jegat C. Oily phase migration control at the interface of hydrophobic/hydrophilic polymer blends. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
3
Kharbikar BN, Mohindra P, Desai TA. Biomaterials to enhance stem cell transplantation. Cell Stem Cell 2022;29:692-721. [PMID: 35483364 PMCID: PMC10169090 DOI: 10.1016/j.stem.2022.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
4
Chitosan coatings with distinct innate immune bioactivities differentially stimulate angiogenesis, osteogenesis and chondrogenesis in poly-caprolactone scaffolds with controlled interconnecting pore size. Bioact Mater 2021;10:430-442. [PMID: 34901558 PMCID: PMC8636821 DOI: 10.1016/j.bioactmat.2021.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022]  Open
5
Porous Carbonated Hydroxyapatite-Based Paraffin Wax Nanocomposite Scaffold for Bone Tissue Engineering: A Physicochemical Properties and Cell Viability Assay Analysis. COATINGS 2021. [DOI: 10.3390/coatings11101189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
6
Liu YH, Liu W, Zheng ZL, Wei X, Shah NA, Lin H, Zhao BS, Huang SS, Xu JZ, Li ZM. Fabrication of Highly Anisotropic and Interconnected Porous Scaffolds to Promote Preosteoblast Proliferation for Bone Tissue Engineering. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2573-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
7
Sari M, Hening P, Chotimah, Ana ID, Yusuf Y. Bioceramic hydroxyapatite-based scaffold with a porous structure using honeycomb as a natural polymeric Porogen for bone tissue engineering. Biomater Res 2021;25:2. [PMID: 33468254 PMCID: PMC7816331 DOI: 10.1186/s40824-021-00203-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/07/2021] [Indexed: 01/12/2023]  Open
8
Santos-Rosales V, Gallo M, Jaeger P, Alvarez-Lorenzo C, Gómez-Amoza JL, García-González CA. New insights in the morphological characterization and modelling of poly(ε-caprolactone) bone scaffolds obtained by supercritical CO2 foaming. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.105012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
9
Chuaponpat N, Ueda T, Ishigami A, Kurose T, Ito H. Morphology, Thermal and Mechanical Properties of Co-Continuous Porous Structure of PLA/PVA Blends by Phase Separation. Polymers (Basel) 2020;12:E1083. [PMID: 32397439 PMCID: PMC7284429 DOI: 10.3390/polym12051083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023]  Open
10
Song C, Luo Y, Liu Y, Li S, Xi Z, Zhao L, Cen L, Lu E. Fabrication of PCL Scaffolds by Supercritical CO2 Foaming Based on the Combined Effects of Rheological and Crystallization Properties. Polymers (Basel) 2020;12:polym12040780. [PMID: 32252222 PMCID: PMC7240419 DOI: 10.3390/polym12040780] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 11/17/2022]  Open
11
Palmroth A, Pitkänen S, Hannula M, Paakinaho K, Hyttinen J, Miettinen S, Kellomäki M. Evaluation of scaffold microstructure and comparison of cell seeding methods using micro-computed tomography-based tools. J R Soc Interface 2020;17:20200102. [PMID: 32228403 PMCID: PMC7211473 DOI: 10.1098/rsif.2020.0102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/16/2020] [Indexed: 12/24/2022]  Open
12
Hayashi K, Munar ML, Ishikawa K. Effects of macropore size in carbonate apatite honeycomb scaffolds on bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020;111:110848. [PMID: 32279778 DOI: 10.1016/j.msec.2020.110848] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 02/13/2020] [Accepted: 03/12/2020] [Indexed: 01/23/2023]
13
Chen J, Ye J, Liao X, Li S, Xiao W, Yang Q, Li G. Organic solvent free preparation of porous scaffolds based on the phase morphology control using supercritical CO2. J Supercrit Fluids 2019. [DOI: 10.1016/j.supflu.2019.03.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
14
Fuchs A, Youssef A, Seher A, Hochleitner G, Dalton PD, Hartmann S, Brands RC, Müller-Richter UDA, Linz C. Medical-grade polycaprolactone scaffolds made by melt electrospinning writing for oral bone regeneration - a pilot study in vitro. BMC Oral Health 2019;19:28. [PMID: 30709394 PMCID: PMC6359770 DOI: 10.1186/s12903-019-0717-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 01/21/2019] [Indexed: 11/12/2022]  Open
15
Akilbekova D, Shaimerdenova M, Adilov S, Berillo D. Biocompatible scaffolds based on natural polymers for regenerative medicine. Int J Biol Macromol 2018;114:324-333. [PMID: 29578021 DOI: 10.1016/j.ijbiomac.2018.03.116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/06/2018] [Accepted: 03/21/2018] [Indexed: 01/01/2023]
16
Babaie E, Bhaduri SB. Fabrication Aspects of Porous Biomaterials in Orthopedic Applications: A Review. ACS Biomater Sci Eng 2017;4:1-39. [DOI: 10.1021/acsbiomaterials.7b00615] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
17
Jegat C, Virgilio N, Favis BD. Self-assembly of oil microdroplets at the interface in co-continuous polymer blends. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
18
A novel route to the generation of porous scaffold based on the phase morphology control of co-continuous poly(ε-caprolactone)/polylactide blend in supercritical CO 2. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.04.065] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
19
Li X, Ghavidel Mehr N, Guzmán-Morales J, Favis BD, De Crescenzo G, Yakandawala N, Hoemann CD. Cationic osteogenic peptide P15-CSP coatings promote 3-D osteogenesis in poly(epsilon-caprolactone) scaffolds of distinct pore size. J Biomed Mater Res A 2017;105:2171-2181. [PMID: 28380658 DOI: 10.1002/jbm.a.36082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/24/2017] [Accepted: 03/29/2017] [Indexed: 01/12/2023]
20
Guarino V, D’Albore M, Altobelli R, Ambrosio L. Polymer Bioprocessing to Fabricate 3D Scaffolds for Tissue Engineering. INT POLYM PROC 2016. [DOI: 10.3139/217.3239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
21
Semnani D, Naghashzargar E, Hadjianfar M, Dehghan Manshadi F, Mohammadi S, Karbasi S, Effaty F. Evaluation of PCL/chitosan electrospun nanofibers for liver tissue engineering. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2016.1190931] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
22
Ahmed OA, Hussein AK, Mady FM. Optimisation of microstructured biodegradable finasteride formulation for depot parenteral application. J Microencapsul 2016;33:229-38. [DOI: 10.3109/02652048.2016.1144821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
23
Chitosan surface modification of fully interconnected 3D porous poly(ε-caprolactone) by the LbL approach. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.03.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
24
Mehr NG, Li X, Chen G, Favis BD, Hoemann CD. Pore size and LbL chitosan coating influence mesenchymal stem cellin vitrofibrosis and biomineralization in 3D porous poly(epsilon-caprolactone) scaffolds. J Biomed Mater Res A 2014;103:2449-59. [DOI: 10.1002/jbm.a.35381] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/01/2014] [Indexed: 12/30/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA