1
|
Anjum S, Wang Y, Xin Y, Li X, Li T, Zhang H, Quan L, Li Y, Arya DK, Rajinikanth P, Ao Q. Bioinspired core-shell nanofiber drug-delivery system modulates osteogenic and osteoclast activity for bone tissue regeneration. Mater Today Bio 2024; 26:101088. [PMID: 38779556 PMCID: PMC11109009 DOI: 10.1016/j.mtbio.2024.101088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Osteogenic-osteoclast coupling processes play a crucial role in bone regeneration. Recently, strategies that focus on multi-functionalized implant surfaces to enhance the healing of bone defects through the synergistic regulation of osteogenesis and osteoclastogenesis is still a challenging task in the field of bone tissue engineering. The aim of this study was to create a dual-drug release-based core-shell nanofibers with the intent of achieving a time-controlled release to facilitate bone regeneration. We fabricated core-shell P/PCL nanofibers using coaxial electrospinning, where alendronate (ALN) was incorporated into the core layer and hydroxyapatite (HA) into shell. The surface of the nanofiber construct was further modified with mussel-derived polydopamine (PDA) to induce hydrophilicity and enhance cell interactions. Surface characterizations confirmed the successful synthesis of PDA@PHA/PCL-ALN nanofibers endowed with excellent mechanical strength (20.02 ± 0.13 MPa) and hydrophilicity (22.56°), as well as the sustained sequential release of ALN and Ca ions. In vitro experiments demonstrated that PDA-functionalized core-shell PHA/PCL-ALN scaffolds possessed excellent cytocompatibility, enhanced cell adhesion and proliferation, alkaline phosphatase activity and osteogenesis-related genes. In addition to osteogenesis, the engineered scaffolds also significantly reduced osteoclastogenesis, such as tartrate-resistant acid phosphatase activity and osteoclastogenesis-related gene expression. After 12-week of implantation, it was observed that PDA@PHA/PCL-ALN nanofiber scaffolds, in a rat cranial defect model, significantly promoted bone repair and regeneration. Microcomputed tomography, histological examination, and immunohistochemical analysis collectively demonstrated that the PDA-functionalized core-shell PHA/PCL-ALN scaffolds exhibited exceptional osteogenesis-inducing and osteoclastogenesis-inhibiting effects. Finally, it may be concluded from our results that the bio-inspired surface-functionalized multifunctional, biomimetic and controlled release core-shell nanofiber provides a promising strategy to facilitate bone healing.
Collapse
Affiliation(s)
- Shabnam Anjum
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, 110122, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Yulin Wang
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Yuan Xin
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Xiao Li
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, 110122, China
| | - Ting Li
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Hengtong Zhang
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Liang Quan
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Ya Li
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, India
| | - P.S. Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, India
| | - Qiang Ao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, 110122, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan, 610064, China
| |
Collapse
|
2
|
Anjum S, Arya DK, Saeed M, Ali D, Athar MS, Yulin W, Alarifi S, Wu X, Rajinikanth P, Ao Q. Multifunctional electrospun nanofibrous scaffold enriched with alendronate and hydroxyapatite for balancing osteogenic and osteoclast activity to promote bone regeneration. Front Bioeng Biotechnol 2023; 11:1302594. [PMID: 38026845 PMCID: PMC10665524 DOI: 10.3389/fbioe.2023.1302594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Electrospun composite nanofiber scaffolds are well known for their bone and tissue regeneration applications. This research is focused on the development of PVP and PVA nanofiber composite scaffolds enriched with hydroxyapatite (HA) nanoparticles and alendronate (ALN) using the electrospinning technique. The developed nanofiber scaffolds were investigated for their physicochemical as well as bone regeneration potential. The results obtained from particle size, zeta potential, SEM and EDX analysis of HA nanoparticles confirmed their successful fabrication. Further, SEM analysis verified nanofiber's diameters within 200-250 nm, while EDX analysis confirmed the successful incorporation of HA and ALN into the scaffolds. XRD and TGA analysis revealed the amorphous and thermally stable nature of the nanofiber composite scaffolds. Contact angle, FTIR analysis, Swelling and biodegradability studies revealed the hydrophilicity, chemical compatibility, suitable water uptake capacity and increased in-vitro degradation making it appropriate for tissue regeneration. The addition of HA into nanofiber scaffolds enhanced the physiochemical properties. Additionally, hemolysis cell viability, cell adhesion and proliferation by SEM as well as confocal microscopy and live/dead assay results demonstrated the non-toxic and biocompatibility behavior of nanofiber scaffolds. Alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) assays demonstrated osteoblast promotion and osteoclast inhibition, respectively. These findings suggest that developed HA and ALN-loaded PVP/PVA-ALN-HA nanofiber composite scaffolds hold significant promise for bone regeneration applications.
Collapse
Affiliation(s)
- Shabnam Anjum
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Mohammad Saeed
- Department of Pharmacology, Dr. A.P.J. Abdul Kalam Technical University, Lucknow, India
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Wang Yulin
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Xixi Wu
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - P.S. Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Qiang Ao
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, China
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial, Institute of Regulatory Science for Medical Device, National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Zhong Y, Li S. New Progress in Improving the Delivery Methods of Bisphosphonates in the Treatment of Bone Tumors. Drug Des Devel Ther 2021; 15:4939-4959. [PMID: 34916778 PMCID: PMC8672028 DOI: 10.2147/dddt.s337925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/11/2021] [Indexed: 11/23/2022] Open
Abstract
Bone tumors are tumors that occur in the bone or its accessory tissues, including primary tumors and metastatic tumors. The main mechanism of bisphosphonate is to inhibit the resorption of destructive bone, inhibit the activity of osteoclasts and reduce the concentration of blood calcium. Therefore, bisphosphonates can be used for malignant hypercalcaemia, pain caused by osteolytic bone metastasis, prevention of osteolytic bone metastasis, multiple myeloma osteopathy, improving radiosensitivity and so on. However, the traditional administration of bisphosphonates can cause a series of adverse reactions. To overcome this disadvantage, it is necessary to develop novel methods to improve the delivery of bisphosphonates. In this paper, the latest research progress of new and improved bisphosphonate drug delivery methods in the treatment of bone tumors is reviewed. At present, the main design idea is to connect bisphosphonate nanoparticles, liposomes, microspheres, microcapsules, couplings, prodrugs and bone tissue engineering to targeted anti-tumors systems, and positive progress has been made in in vitro and animal experiments. However, its safety and effectiveness in human body still need to be verified by more studies.
Collapse
Affiliation(s)
- Yu Zhong
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning Province, People's Republic of China
| | - Su Li
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, Liaoning Province, People's Republic of China
| |
Collapse
|
4
|
Yang C, Yang S, Li G, Lin H. Study on preparation and in vitro release of gelatin microspheres loaded with steroidal saponins from Ophiopogon japonicus. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1920331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Chunrong Yang
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, China
| | - Shangfeng Yang
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, China
| | - Guanghui Li
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, China
| | - Han Lin
- College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, China
| |
Collapse
|
5
|
Xu Y, Zhang Z, Wang H, Zhong W, Sun C, Sun W, Wu H. Zoledronic Acid-Loaded Hybrid Hyaluronic Acid/Polyethylene Glycol/Nano-Hydroxyapatite Nanoparticle: Novel Fabrication and Safety Verification. Front Bioeng Biotechnol 2021; 9:629928. [PMID: 33659241 PMCID: PMC7917242 DOI: 10.3389/fbioe.2021.629928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/11/2021] [Indexed: 01/11/2023] Open
Abstract
Osteosarcoma is a malignant tumor that often occurs in adolescents and children. Zoledronic acid, a new-generation bisphosphonate, has been widely used as an antitumor drug to inhibit bone metastasis. However, the rapid renal elimination results in low effective concentrations. Meanwhile, high-dose intravenous zoledronic acid administration leads to severe side effects. The present study fabricated an organic-inorganic hybrid nanoparticle as the carrier of zoledronic acid. The rod-like nanoparticle, which had 150-nm length and 40-nm cross-sectional diameter, consisted of a hyaluronic acid/polyethylene glycol (HA-PEG) polymer shell and a nano-hydroxyapatite (nHA) core, with zoledronic acid molecules loading on the surface of nHA and clearance of HA-PEG shell. The nanoparticle was characterized by microscopic analysis, in vitro release study, cytotoxicity analysis, and in vivo immune response examination. Results showed that the compact and stable structure could achieve high drug loading efficiency, sustained drug release, and great biocompatibility. In vitro and in vivo experiments revealed the low cytotoxicity and acceptable immune response under low-dose nanoparticle treatment, indicating its potential application for future osteosarcoma therapeutic strategies.
Collapse
Affiliation(s)
- Yan Xu
- Department of Thoracic Medicine Oncolog, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zheng Zhang
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, China
| | - Hehui Wang
- Department of Orthopedics, Ningbo Yinzhou Second Hospital, Ningbo, China
| | - Wu Zhong
- Department of Orthopedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Chengmei Sun
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, China
| | - Wei Sun
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, China
| | - Hongwei Wu
- Zhejiang University-University of Edinburgh Institute, School of Medicine, Zhejiang University, Haining, China.,Department of Orthopedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
6
|
Rogina A, Vidović D, Antunović M, Ivanković M, Ivanković H. Metal ion-assisted formation of porous chitosan-based microspheres for biomedical applications. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1776283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Anamarija Rogina
- Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Dorina Vidović
- Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Maja Antunović
- Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Marica Ivanković
- Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| | - Hrvoje Ivanković
- Faculty of Chemical Engineering and Technology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
7
|
Cui Y, Zhu T, Li D, Li Z, Leng Y, Ji X, Liu H, Wu D, Ding J. Bisphosphonate-Functionalized Scaffolds for Enhanced Bone Regeneration. Adv Healthc Mater 2019; 8:e1901073. [PMID: 31693315 DOI: 10.1002/adhm.201901073] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/28/2019] [Indexed: 12/11/2022]
Abstract
The local sustained release of bioactive substances are attracting increasing attention in bone tissue engineering, which is beneficial to bone tissue formation and helps to improve the bone ingrowth ability of a scaffold. Bisphosphonates (BPs), as a representative kind of osteoclast inhibitors, are proven to possess excellent osteogenic induction capability. Accordingly, various physical and chemical strategies are developed to functionalize bone tissue scaffolds with BPs to achieve controlled release profiles. Compared with traditional treatment modalities, local release of BPs from these composite scaffolds will contribute to continuous bone integration without the risk of many complications. This review explores the molecular mechanisms of BPs on bone metabolism and analyzes the appropriate concentrations of BPs that promote bone regeneration. The advanced BP loading strategies, implant modification technologies, and BP-loaded composite scaffolds based on different matrices are summarized. Finally, the latest advances and the future development of BP-modified scaffolds for enhanced bone regeneration are discussed. This article provides leading-edge design strategies of the BP-functionalized bone engineering scaffolds for improved bone repairability.
Collapse
Affiliation(s)
- Yutao Cui
- Department of OrthopedicsThe Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Tongtong Zhu
- Department of OrthopedicsChina‐Japan Union Hospital of Jilin University Changchun 130033 P. R. China
| | - Di Li
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
| | - Zuhao Li
- Department of OrthopedicsThe Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Yi Leng
- Department of OrthopedicsThe Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Xuan Ji
- Department of StomatologyThe Second Hospital of Jilin University Changchun 130041 P. R. China
| | - He Liu
- Department of OrthopedicsThe Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Dankai Wu
- Department of OrthopedicsThe Second Hospital of Jilin University Changchun 130041 P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences Changchun 130022 P. R. China
| |
Collapse
|
8
|
Koulouktsi C, Nanaki S, Barmpalexis P, Kostoglou M, Bikiaris D. Preparation and characterization of Alendronate depot microspheres based on novel poly(-ε-caprolactone)/Vitamin E TPGS copolymers. INTERNATIONAL JOURNAL OF PHARMACEUTICS-X 2019; 1:100014. [PMID: 31517279 PMCID: PMC6733287 DOI: 10.1016/j.ijpx.2019.100014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/18/2019] [Accepted: 04/21/2019] [Indexed: 12/12/2022]
Abstract
In the present study, new aledronate (AL) loaded microspheres were prepared with the use of polycaprolactone (PCL)/Vitamin E d-ɑ-tocopheryl poly(ethylene glycol) 1000 succinate (TPGS) copolymers. Specifically, PCL-TPGS copolymers, prepared at several PCL to TPGS ratios (namely, 90/10, 80/20, 70/30 and 60/40 w/w) via a ring opening polymerization process, were characterized by intrinsic viscosity, proton nuclear magnetic resonance (1H NMR), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and enzymatic hydrolysis. Results showed that as TPGS content increases the intrinsic viscosity of the copolymer (and hence, the viscosity-average molecular weight) is decreasing, while FTIR analysis showed the formation of hydrogen bonds between the —C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>O of PCL and the —OH of TPGS. Additionally, XRD analysis indicated that the prepared copolymers were semi-crystalline in nature, while enzymatic hydrolysis studies showed that increasing TGPS content led to increasing copolymer hydrolysis. In the following step, AL drug-loaded microspheres were prepared via single emulsification process. Scanning electron microscopy (SEM) revealed the formation of coarse drug-loaded microspheres with particle size close to 5 μm, while XRD analysis showed that the API was amorphously dispersed only in the cases of high TPGS content. Furthermore, FTIR analysis showed that the API did not interact with the copolymer components, while in vitro drug release studies showed that increasing PCL content led to decreasing API release rate. Finally, analysis of the drug release profiles suggested that the API release mechanism was solely governed by the polymer matrix erosion.
Collapse
Affiliation(s)
- Christina Koulouktsi
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
| | - Stavroula Nanaki
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
| | - Panagiotis Barmpalexis
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
| | - Margaritis Kostoglou
- Laboratory of General and Inorganic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR-541 24 Thessaloniki, Greece
| | - Dimitrios Bikiaris
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Macedonia, Greece
| |
Collapse
|
9
|
Bigi A, Boanini E. Calcium Phosphates as Delivery Systems for Bisphosphonates. J Funct Biomater 2018; 9:E6. [PMID: 29342839 PMCID: PMC5872092 DOI: 10.3390/jfb9010006] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/08/2018] [Accepted: 01/11/2018] [Indexed: 12/16/2022] Open
Abstract
Bisphosphonates (BPs) are the most utilized drugs for the treatment of osteoporosis, and are usefully employed also for other pathologies characterized by abnormally high bone resorption, including bone metastases. Due to the great affinity of these drugs for calcium ions, calcium phosphates are ideal delivery systems for local administration of BPs to bone, which is aimed to avoid/limit the undesirable side effects of their prolonged systemic use. Direct synthesis in aqueous medium and chemisorptions from solution are the two main routes proposed to synthesize BP functionalized calcium phosphates. The present review overviews the information acquired through the studies on the interaction between bisphosphonate molecules and calcium phosphates. Moreover, particular attention is addressed to some important recent achievements on the applications of BP functionalized calcium phosphates as biomaterials for bone substitution/repair.
Collapse
Affiliation(s)
- Adriana Bigi
- Department of Chemistry "G. Ciamician", University of Bologna, 40126 Bologna, Italy.
| | - Elisa Boanini
- Department of Chemistry "G. Ciamician", University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
10
|
Chen X, Xu ML, Wang CN, Zhang LZ, Zhao YH, Zhu CL, Chen Y, Wu J, Yang YM, Wang XD. A partition-type tubular scaffold loaded with PDGF-releasing microspheres for spinal cord repair facilitates the directional migration and growth of cells. Neural Regen Res 2018; 13:1231-1240. [PMID: 30028332 PMCID: PMC6065242 DOI: 10.4103/1673-5374.235061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The best tissue-engineered spinal cord grafts not only match the structural characteristics of the spinal cord but also allow the seed cells to grow and function in situ. Platelet-derived growth factor (PDGF) has been shown to promote the migration of bone marrow stromal cells; however, cytokines need to be released at a steady rate to maintain a stable concentration in vivo. Therefore, new methods are needed to maintain an optimal concentration of cytokines over an extended period of time to effectively promote seed cell localization, proliferation and differentiation. In the present study, a partition-type tubular scaffold matching the anatomical features of the thoracic 8–10 spinal cord of the rat was fabricated using chitosan and then subsequently loaded with chitosan-encapsulated PDGF-BB microspheres (PDGF-MSs). The PDGF-MS-containing scaffold was then examined in vitro for sustained-release capacity, biocompatibility, and its effect on neural progenitor cells differentiated in vitro from multilineage-differentiating stress-enduring cells (MUSE-NPCs). We found that pre-freezing for 2 hours at −20°C significantly increased the yield of partition-type tubular scaffolds, and 30 μL of 25% glutaraldehyde ensured optimal crosslinking of PDGF-MSs. The resulting PDGF-MSs cumulatively released 52% of the PDGF-BB at 4 weeks in vitro without burst release. The PDGF-MS-containing tubular scaffold showed suitable biocompatibility towards MUSE-NPCs and could promote the directional migration and growth of these cells. These findings indicate that the combination of a partition-type tubular scaffold, PDGF-MSs and MUSE-NPCs may be a promising model for the fabrication of tissue-engineered spinal cord grafts.
Collapse
Affiliation(s)
- Xue Chen
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou; Department of Histology and Embryology, Medical College, Nantong University, Nantong; Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Mei-Ling Xu
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu Province, China
| | - Cheng-Niu Wang
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu Province, China
| | - Lu-Zhong Zhang
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Ya-Hong Zhao
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Chang-Lai Zhu
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Ying Chen
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu Province, China
| | - Jian Wu
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu Province, China
| | - Yu-Min Yang
- Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xiao-Dong Wang
- Department of Histology and Embryology, Medical College, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
11
|
Zhou Y, Liu S, Ming J, Li Y, Deng M, He B. Sustained release effects of berberine-loaded chitosan microspheres on in vitro chondrocyte culture. Drug Dev Ind Pharm 2017; 43:1703-1714. [PMID: 28585864 DOI: 10.1080/03639045.2017.1339076] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yan Zhou
- Department of Orthopedics, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shiqing Liu
- Department of Orthopedics, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jianghua Ming
- Department of Orthopedics, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yaming Li
- Department of Orthopedics, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ming Deng
- Department of Orthopedics, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bin He
- Department of Orthopedics, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
12
|
Wu H, Lei P, Liu G, Shrike Zhang Y, Yang J, Zhang L, Xie J, Niu W, Liu H, Ruan J, Hu Y, Zhang C. Reconstruction of Large-scale Defects with a Novel Hybrid Scaffold Made from Poly(L-lactic acid)/Nanohydroxyapatite/Alendronate-loaded Chitosan Microsphere: in vitro and in vivo Studies. Sci Rep 2017; 7:359. [PMID: 28337023 PMCID: PMC5428684 DOI: 10.1038/s41598-017-00506-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/28/2017] [Indexed: 01/26/2023] Open
Abstract
A chitosan-based microsphere delivery system has been fabricated for controlled release of alendronate (AL). The present study aimed to incorporate the chitosan/hydroxyapatite microspheres-loaded with AL (CH/nHA-AL) into poly(L-lactic acid)/nanohydroxyapatite (PLLA/nHA) matrix to prepare a novel microspheres-scaffold hybrid system (CM-ALs) for drug delivery and bone tissue engineering application. The characteristics of CM-ALs scaffolds containing 10% and 20% CH/nHA-AL were evaluated in vitro, including surface morphology and porosity, mechanical properties, drug release, degradation, and osteogenic differentiation. The in vivo bone repair for large segmental radius defects (1.5 cm) in a rabbit model was evaluated by radiography and histology. In vitro study showed more sustained drug release of CM-AL-containing scaffolds than these of CM/nHA-AL and PLLA/nHA/AL scaffolds, and the mechanical and degradation properties of CM-ALs (10%) scaffolds were comparable to that of PLLA/nHA control. The osteogenic differentiation of adipose-derived stem cells (ASCs) was significantly enhanced as indicated by increased alkaline phosphates (ALP) activity and calcium deposition. In vivo study further showed better performance of CM-ALs (10%) scaffolds with complete repair of large-sized bone defects within 8 weeks. A microspheres-scaffold-based release system containing AL-encapsulated chitosan microspheres was successfully fabricated in this study. Our results suggested the promising application of CM-ALs (10%) scaffolds for drug delivery and bone tissue engineering.
Collapse
Affiliation(s)
- Hongwei Wu
- Department of Orthopedics, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Pengfei Lei
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410011, China.,Department of Orthopedics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, 02115, United States
| | - Gengyan Liu
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yu Shrike Zhang
- Biomaterials Innovation Research Centre, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, 02115, USA
| | - Jingzhou Yang
- Biomaterials Innovation Research Centre, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, 02115, USA
| | - Longbo Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410011, China.,Department of Neurosurgery, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Jie Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wanting Niu
- Department of Orthopedics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, 02115, United States.,Department of Orthopedics, VA Boston Healthcare System, Boston, MA, USA
| | - Hua Liu
- Biomaterials Innovation Research Centre, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, 02115, USA.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jianming Ruan
- Powder Metallurgy Research Institute, Central South University, Changsha, 410083, Hunan, China
| | - Yihe Hu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410011, China.
| | - Chaoyue Zhang
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| |
Collapse
|
13
|
Guo K, Cang J. A novel tetrandrine-loaded chitosan microsphere: characterization and in vivo evaluation. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:1291-8. [PMID: 27099474 PMCID: PMC4821377 DOI: 10.2147/dddt.s103169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In this study, novel tetrandrine-loaded chitosan microspheres were prepared by the emulsion cross-linking method. The systems were then characterized for physicochemical properties and in vitro drug release. In addition, the pharmacokinetics and tissue distribution of microspheres were further verified in animal models. Particle-size distribution indicated that the size of microspheres was within the range of 7–15 μm, with a median diameter of 12.4 μm. The drug loading and entrapment efficiency of the formulation were 34.6%±12.5% and 87.3%±9.7% (mean ± SD), respectively. In vitro release showed a typical sustained and long-term drug release behavior. The Higuchi equation was the model that fit best with release data. Maintaining a relatively constant plasma concentration in the long-term drug treatment is an outstanding pharmacokinetic advantage of tetrandrine microspheres in vivo. Moreover, compared with tetrandrine solution, tetrandrine microspheres produced a lower drug concentration in the heart, liver, and kidneys. This indicated that the microspheres used in this study were preferable for targeting lung tissue versus other tissues. No damage to the tissues of the lung was found in histopathological examination.
Collapse
Affiliation(s)
- Kefang Guo
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jing Cang
- Department of Anesthesia, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
14
|
Uskoković V. When 1+1>2: Nanostructured composites for hard tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 57:434-51. [PMID: 26354283 PMCID: PMC4567690 DOI: 10.1016/j.msec.2015.07.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/15/2015] [Accepted: 07/23/2015] [Indexed: 12/20/2022]
Abstract
Multicomponent, synergistic and multifunctional nanostructures have taken over the spotlight in the realm of biomedical nanotechnologies. The most prospective materials for bone regeneration today are almost exclusively composites comprising two or more components that compensate for the shortcomings of each one of them alone. This is quite natural in view of the fact that all hard tissues in the human body, except perhaps the tooth enamel, are composite nanostructures. This review article highlights some of the most prospective breakthroughs made in this research direction, with the hard tissues in main focus being those comprising bone, tooth cementum, dentin and enamel. The major obstacles to creating collagen/apatite composites modeled after the structure of bone are mentioned, including the immunogenicity of xenogeneic collagen and continuously failing attempts to replicate the biomineralization process in vitro. Composites comprising a polymeric component and calcium phosphate are discussed in light of their ability to emulate the soft/hard composite structure of bone. Hard tissue engineering composites created using hard material components other than calcium phosphates, including silica, metals and several types of nanotubes, are also discoursed on, alongside additional components deliverable using these materials, such as cells, growth factors, peptides, antibiotics, antiresorptive and anabolic agents, pharmacokinetic conjugates and various cell-specific targeting moieties. It is concluded that a variety of hard tissue structures in the body necessitates a similar variety of biomaterials for their regeneration. The ongoing development of nanocomposites for bone restoration will result in smart, theranostic materials, capable of acting therapeutically in direct feedback with the outcome of in situ disease monitoring at the cellular and subcellular scales. Progress in this research direction is expected to take us to the next generation of biomaterials, designed with the purpose of fulfilling Daedalus' dream - not restoring the tissues, but rather augmenting them.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, Department of Bioengineering, University of Illinois, Chicago, IL, USA.
| |
Collapse
|
15
|
Wang Y, Zhu G, Li N, Song J, Wang L, Shi X. Small molecules and their controlled release that induce the osteogenic/chondrogenic commitment of stem cells. Biotechnol Adv 2015; 33:1626-40. [PMID: 26341834 DOI: 10.1016/j.biotechadv.2015.08.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/21/2015] [Accepted: 08/23/2015] [Indexed: 12/17/2022]
Abstract
Stem cell-based tissue engineering plays a significant role in skeletal system repair and regenerative therapies. However, stem cells must be differentiated into specific mature cells prior to implantation (direct implantation may lead to tumour formation). Natural or chemically synthesised small molecules provide an efficient, accurate, reversible, and cost-effective way to differentiate stem cells compared with bioactive growth factors and gene-related methods. Thus, investigating the influences of small molecules on the differentiation of stem cells is of great significance. Here, we review a series of small molecules that can induce or/and promote the osteogenic/chondrogenic commitment of stem cells. The controlled release of these small molecules from various vehicles for stem cell-based therapies and tissue engineering applications is also discussed. The extensive studies in this field represent significant contributions to stem cell-based tissue engineering research and regenerative medicine.
Collapse
Affiliation(s)
- Yingjun Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510640, PR China; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Guanglin Zhu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510640, PR China; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Nanying Li
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510640, PR China; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Juqing Song
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510640, PR China; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Lin Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510640, PR China; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China
| | - Xuetao Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510640, PR China; School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
16
|
Wang Y, Gao Z, Shen F, Li Y, Zhang S, Ren X, Hu S. Physicochemical Characteristics and Slow Release Performances of Chlorpyrifos Encapsulated by Poly(butyl acrylate-co-styrene) with the Cross-Linker Ethylene Glycol Dimethacrylate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:5196-5204. [PMID: 25946639 DOI: 10.1021/acs.jafc.5b01378] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Chlorpyrifos' application and delivery to the target substrate needs to be controlled to improve its use. Herein, poly(butyl acrylate-co-styrene) (poly(BA/St)) and poly(BA/St/ethylene glycol dimethacrylate (EGDMA)) microcapsules loaded with chlorpyrifos as a slow release formulation were prepared by emulsion polymerization. The effects of structural characteristics on the chlorpyrifos microcapsule particle size, entrapment rate (ER), pesticide loading (PL), and release behaviors in ethyl alcohol were investigated. Fourier transform infrared and thermogravimetric analysis confirmed the successful entrapment of chlorpyrifos. The ER and PL varied with the BA/St monomer ratio, chlorpyrifos/monomer core-to-shell ratio, and EGDMA cross-linker content with consequence that suitable PL was estimated to be smaller than 3.09% and the highest ER was observed as 96.74%. The microcapsule particle size (88.36-101.8 nm) remained mostly constant. The extent of sustainable release decreased with increasing content of BA, St, or chlorpyrifos in the oil phase. Specifically, an adequate degree of cross-linking with EGMDA (0.5-2.5%) increased the extent of sustainable release considerably. However, higher levels of cross-linking with EGDMA (5-10%) reduced the extent of sustainable release. Chlorpyrifos release from specific microcapsules (monomer ratio 1:2 with 0.5% EGDMA or 5 g chlopyrifos) tended to be a diffusion-controlled process, while for others, the kinetics probably indicated the initial rupture release.
Collapse
Affiliation(s)
- Yu Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Zideng Gao
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Feng Shen
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yang Li
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Sainan Zhang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xueqin Ren
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Shuwen Hu
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|