1
|
Chen B, Liu J. Prospects and challenges of CAR-T in the treatment of ovarian cancer. Int Immunopharmacol 2024; 133:112112. [PMID: 38640714 DOI: 10.1016/j.intimp.2024.112112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Ovarian cancer ranks as the seventh most prevalent cancer among women and is considered the most lethal gynecological malignancy on a global scale. The absence of reliable screening techniques, coupled with the insidious onset of nonspecific symptoms, often results in a delayed diagnosis, typically at an advanced stage characterized by peritoneal involvement. Management of advanced tumors typically involves a combination of chemotherapy and cytoreductive surgery. However, the therapeutic arsenal for ovarian cancer patients remains limited, highlighting the unmet need for precise, targeted, and sustained-release pharmacological agents. Genetically engineered T cells expressing chimeric antigen receptors (CARs) represent a promising novel therapeutic modality that selectively targets specific antigens, demonstrating robust and enduring antitumor responses in numerous patients. CAR T cell therapy has exhibited notable efficacy in hematological malignancies and is currently under investigation for its potential in treating various solid tumors, including ovarian cancer. Currently, numerous researchers are engaged in the development of novel CAR-T cells designed to target ovarian cancer, with subsequent evaluation of these candidate cells in preclinical studies. Given the ability of chimeric antigen receptor (CAR) expressing T cells to elicit potent and long-lasting anti-tumor effects, this therapeutic approach holds significant promise for the treatment of ovarian cancer. This review article examines the utilization of CAR-T cells in the context of ovarian cancer therapy.
Collapse
Affiliation(s)
- Biqing Chen
- Harbin Medical University, Harbin, Heilongjiang, China.
| | | |
Collapse
|
2
|
Silva JIS, Rahal SC, Coris JGF, da Silva BM, Brasileiro FCDS, Nascimento D, Lacerda ZA, da Silva JP, Mamprim MJ, Souza MT. Use of F18 bioglass putty for induced membrane technique in segmental bone defect of the radius in rabbits. Acta Cir Bras 2024; 39:e392424. [PMID: 38808817 PMCID: PMC11126304 DOI: 10.1590/acb392424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/02/2024] [Indexed: 05/30/2024] Open
Abstract
PURPOSE To evaluate the inductive capacity of F18 bioglass putty on the induced membrane technique in a segmental bone defect of the rabbit's radius. METHODS Ten female Norfolk at 24 months of age were used. The animals were randomly separated based on postoperative time points: five rabbits at 21 and four at 42 days. A 1-cm segmental bone defect was created in both radii. The bone defects were filled with an F18 bioglass putty. RESULTS Immediate postoperative radiographic examination revealed the biomaterial occupying the segmental bone defect as a well-defined radiopaque structure with a density close to bone tissue. At 21 and 42 days after surgery, a reduction in radiopacity and volume of the biomaterial was observed, with particle dispersion in the bone defect region. Histologically, the induced membrane was verified in all animals, predominantly composed of fibrocollagenous tissue. In addition, chondroid and osteoid matrices undergoing regeneration, a densely vascularized tissue, and a foreign body type reaction composed of macrophages and multinucleated giant cells were seen. CONCLUSIONS the F18 bioglass putty caused a foreign body-type inflammatory response with the development of an induced membrane without expansion capacity to perform the second stage of the Masquelet technique.
Collapse
Affiliation(s)
- José Ivaldo Siqueira Silva
- Universidade Estadual Paulista – School of Veterinary Medicine and Animal Science – Department of Veterinary Surgery and Animal Reproduction – Botucatu (SP), Brazil
| | - Sheila Canevese Rahal
- Universidade Estadual Paulista – School of Veterinary Medicine and Animal Science – Department of Veterinary Surgery and Animal Reproduction – Botucatu (SP), Brazil
| | - Jennifer Gabriela Figueroa Coris
- Universidade Estadual Paulista – School of Veterinary Medicine and Animal Science – Department of Veterinary Surgery and Animal Reproduction – Botucatu (SP), Brazil
| | - Bruna Martins da Silva
- Universidade Estadual Paulista – School of Veterinary Medicine and Animal Science – Department of Veterinary Surgery and Animal Reproduction – Botucatu (SP), Brazil
| | - Felipe Cesar da Silva Brasileiro
- Universidade Estadual Paulista – School of Veterinary Medicine and Animal Science Department of Veterinary Clinics – Botucatu (SP), Brazil
| | - Diana Nascimento
- Universidade Estadual Paulista – School of Veterinary Medicine and Animal Science Department of Veterinary Clinics – Botucatu (SP), Brazil
| | - Zara Alves Lacerda
- Universidade Estadual Paulista – School of Veterinary Medicine and Animal Science Department of Veterinary Clinics – Botucatu (SP), Brazil
| | - Jeana Pereira da Silva
- Universidade Estadual Paulista – School of Veterinary Medicine and Animal Science – Department of Veterinary Surgery and Animal Reproduction – Botucatu (SP), Brazil
| | - Maria Jaqueline Mamprim
- Universidade Estadual Paulista – School of Veterinary Medicine and Animal Science – Department of Veterinary Surgery and Animal Reproduction – Botucatu (SP), Brazil
| | | |
Collapse
|
3
|
Elshahat S, Elgendy AA, Elsewify T. Osteogenic Differentiation and Proliferation of Apical Papilla Stem Cells Using Chitosan-Coated Nanohydroxyapatite and Bioactive Glass Nanoparticles. Eur J Dent 2024; 18:665-671. [PMID: 38442913 PMCID: PMC11132763 DOI: 10.1055/s-0043-1777044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
OBJECTIVE The aim of this study was to evaluate the osteogenic differentiation ability and proliferation of apical papilla stem cells (SCAPs) using chitosan-coated nanohydroxyapatite and bioactive glass nanoparticles. MATERIALS AND METHODS Hydroxyapatite, chitosan-coated nanohydroxyapatite, and bioactive glass 45S5 nanoparticles were prepared and characterized using a transmission electron microscope and X-ray diffraction. SCAPs were harvested from freshly extracted impacted wisdom teeth, cultured, and characterized using flow cytometric analysis. Tested nanomaterials were mixed and samples were classified into five equal groups as follows: negative control group: SCAP with Dulbecco's modified eagle's medium, positive control group: SCAP with inductive media, first experimental group: nanohydroxyapatite with SCAP, second experimental group: chitosan-coated nanohydroxyapatite with SCAP, third experimental group: bioactive glass nanoparticles with SCAP. Osteoblastic differentiation was assessed using an alkaline phosphatase (ALP) assay. Receptor activator of nuclear factor kappa beta ligand (RANKL) expression was evaluated using specific polyclonal antibodies by fluorescence microscope. The proliferation of SCAP was assessed using cell count and viability of trypan blue in addition to an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RESULTS Isolated SCAP showed a nonhematopoietic origin. Chitosan-coated nanohydroxyapatite showed the highest ALP concentration followed by nanobioactive glass, nanohydroxyapatite, and negative control. Chitosan-coated nanohydroxyapatite showed the highest H score followed by nanobioactive glass, nanohydroxyapatite, and negative control in RANKL expression. Chitosan-coated nanohydroxyapatite showed the highest viable cell count. CONCLUSION SCAP isolation is achievable from extracted fully impacted immature third molars. All tested biomaterials have the ability to induce osteogenic differentiation and proliferation of SCAP. Composite nanoparticle materials show better osteogenic differentiation and proliferation of SCAP than single nanoparticles.
Collapse
Affiliation(s)
- Sara Elshahat
- Endodontic Department, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | | | - Tarek Elsewify
- Endodontic Department, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
- Restorative Dental Sciences Department, College of Dentistry, Gulf Medical University, Ajman, UAE
| |
Collapse
|
4
|
Abdelaziz H, Mahran AH, Elsewify T. Osteogenic differentiation and proliferation of apical papilla stem cells using nanoparticles of Neo MTA and bioactive glass. Saudi Dent J 2024; 36:134-139. [PMID: 38375392 PMCID: PMC10874795 DOI: 10.1016/j.sdentj.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 02/21/2024] Open
Abstract
Objective The aim of this study was to evaluate the osteogenic differentiation ability and proliferation of apical papilla stem cells using nanoparticles of Neo MTA and bioactive glass. Methods Neo MTA and bioactive glass 45S5 nanoparticles were prepared and characterized using a transmission electron microscope and X-ray diffraction. Apical papilla stem cells were harvested from freshly-extracted fully-impacted wisdom teeth, cultured, and characterized using flow cytometric analysis. Tested nanomaterials were mixed and samples were classified into four equal groups as follows; Negative control group: SCAP with Dulbecco's modified eagle's medium, Positive control group: SCAP with inductive media, First experimental group: Neo MTA nanoparticles with SCAP, Second experimental group: Bioactive glass nanoparticles with SCAP. Osteoblastic differentiation was assessed using an alkaline phosphatase assay and RANKL expression using specific polyclonal antibodies by fluorescence microscope. The proliferation of SCAP was assessed using cell count and viability of Trypan Blue in addition to an MTT assay. Results Isolated SCAP showed a non-hematopoietic origin. Neo MTA showed the highest ALP concentration followed by bioactive glass nanoparticles, and negative control. Bioactive glass nanoparticles showed the highest H score for RANKL protein expression followed by Neo MTA, and negative control. Bioactive glass nanoparticles showed the highest viable cell count. Conclusions SCAP isolation is achievable from extracted fully impacted immature third molars. Both tested nanobiomaterials have the ability to induce osteogenic differentiation and proliferation of SCAP.
Collapse
Affiliation(s)
- H. Abdelaziz
- Endodontic Department, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - Abeer H. Mahran
- Endodontic Department, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
| | - T. Elsewify
- Endodontic Department, Faculty of Dentistry, Ain Shams University, Cairo, Egypt
- Restorative Dental Sciences Department, College of Dentistry, Gulf Medical University, Ajman, United Arab Emirates
| |
Collapse
|
5
|
Wong SK, Yee MMF, Chin KY, Ima-Nirwana S. A Review of the Application of Natural and Synthetic Scaffolds in Bone Regeneration. J Funct Biomater 2023; 14:jfb14050286. [PMID: 37233395 DOI: 10.3390/jfb14050286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023] Open
Abstract
The management of bone defects is complicated by the presence of clinical conditions, such as critical-sized defects created by high-energy trauma, tumour resection, infection, and skeletal abnormalities, whereby the bone regeneration capacity is compromised. A bone scaffold is a three-dimensional structure matrix serving as a template to be implanted into the defects to promote vascularisation, growth factor recruitment, osteogenesis, osteoconduction, and mechanical support. This review aims to summarise the types and applications of natural and synthetic scaffolds currently adopted in bone tissue engineering. The merits and caveats of natural and synthetic scaffolds will be discussed. A naturally derived bone scaffold offers a microenvironment closer to in vivo conditions after decellularisation and demineralisation, exhibiting excellent bioactivity, biocompatibility, and osteogenic properties. Meanwhile, an artificially produced bone scaffold allows for scalability and consistency with minimal risk of disease transmission. The combination of different materials to form scaffolds, along with bone cell seeding, biochemical cue incorporation, and bioactive molecule functionalisation, can provide additional or improved scaffold properties, allowing for a faster bone repair rate in bone injuries. This is the direction for future research in the field of bone growth and repair.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Michelle Min Fang Yee
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
6
|
Different Species of Marine Sponges Diverge in Osteogenic Potential When Therapeutically Applied as Natural Scaffolds for Bone Regeneration in Rats. J Funct Biomater 2023; 14:jfb14030122. [PMID: 36976046 PMCID: PMC10059666 DOI: 10.3390/jfb14030122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/02/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
A highly porous structure, and an inorganic (biosilica) and collagen-like organic content (spongin) makes marine sponges potential candidates to be used as natural scaffolds in bone tissue engineering. The aim of this study was to characterize (through SEM, FTIR, EDS, XRD, pH, mass degradation and porosity tests) scaffolds produced from two species of marine sponges, Dragmacidon reticulatum (DR) and Amphimedon viridis (AV), and to evaluate the osteogenic potential of these scaffolds by using a bone defect model in rats. First, it was shown that the same chemical composition and porosity (84 ± 5% for DR and 90 ± 2% for AV) occurs among scaffolds from the two species. Higher material degradation was observed in the scaffolds of the DR group, with a greater loss of organic matter after incubation. Later, scaffolds from both species were surgically introduced in rat tibial defects, and histopathological analysis after 15 days showed the presence of neo-formed bone and osteoid tissue within the bone defect in DR, always around the silica spicules. In turn, AV exhibited a fibrous capsule around the lesion (19.9 ± 17.1%), no formation of bone tissue and only a small amount of osteoid tissue. The results showed that scaffolds manufactured from Dragmacidon reticulatum presented a more suitable structure for stimulation of osteoid tissue formation when compared to Amphimedon viridis marine sponge species.
Collapse
|
7
|
Ghorbani F, Ghalandari B, Sahranavard M, Zamanian A, Collins MN. Tuning the biomimetic behavior of hybrid scaffolds for bone tissue engineering through surface modifications and drug immobilization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112434. [PMID: 34702519 DOI: 10.1016/j.msec.2021.112434] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/19/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
Bone defects arising from injury and/or disease are a common and debilitating clinical lesion. While the development of tissue microenvironments utilizing biomimetic constructs is an emerging approach for bone tissue engineering. In this context, bioactive glass nanoparticles (BGNPs) were embedded within polycaprolactone (PCL) scaffolds. The scaffolds exhibit an engineered unidirectional pore structure which are surface activated via oxygen plasma to allow immobilization of simvastatin (SIM) on the pore surface. Microscopic observation indicated the surface modification did not disturb the lamellar orientation of the pores improving the biomimetic formation of hydroxyapatite. Mathematically modelled release profiles reveal that the oxygen plasma pre-treatment can be utilized to modulate the release profile of SIM from the scaffolds. With the release mechanism controlled by the balance between the diffusion and erosion mechanisms. Computational modelling shows that Human Serum Albumin and Human α2-macroglobulin can be utilized to increase SIM bioavailability for cells via a molecular docking mechanism. Cellular studies show positive MG-63 cell attachment and viability on optimized scaffolds with alkaline phosphatase activity enhanced along with enhanced expression of osteocalcoin biomarker.
Collapse
Affiliation(s)
- Farnaz Ghorbani
- Institute of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany
| | - Behafarid Ghalandari
- State Key Laboratory of Oncogenes and Related Genes, Institute for Personalized Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Melika Sahranavard
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Ali Zamanian
- Department of Nanotechnology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran
| | - Maurice N Collins
- Bernal Institute, School of Engineering, University of Limerick, Ireland; Health Research Institute, University of Limerick, Ireland.
| |
Collapse
|
8
|
Brassolatti P, Bossini PS, de Andrade ALM, Luna GLF, da Silva JV, Almeida-Lopes L, Napolitano MA, de Avó LRDS, Leal ÂMDO, Anibal FDF. Comparison of two different biomaterials in the bone regeneration (15, 30 and 60 days) of critical defects in rats. Acta Cir Bras 2021; 36:e360605. [PMID: 34287608 PMCID: PMC8291905 DOI: 10.1590/acb360605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/08/2021] [Accepted: 05/04/2021] [Indexed: 02/08/2023] Open
Abstract
PURPOSE To evaluate and compare two types of different scaffolds in critical bone defects in rats. METHODS Seventy male Wistar rats (280 ± 20 grams) divided into three groups: control group (CG), untreated animals; biomaterial group 1 (BG1), animals that received the scaffold implanted hydroxyapatite (HA)/poly(lactic-co-glycolic) acid (PLGA); and biomaterial group 2 (BG2), animals that received the scaffolds HA/PLGA/Bleed. The critical bone defect was induced in the medial region of the skull calotte with the aid of an 8-mm-diameter trephine drill. The biomaterial was implanted in the form of 1.5 mm thick scaffolds, and samples were collected after 15, 30 and 60 days. Non-parametric Mann-Whitney test was used, with the significance level of 5% (p ≤ 0.05). RESULTS Histology revealed morphological and structural differences of the neoformed tissue between the experimental groups. Collagen-1 (Col-1) findings are consistent with the histological ones, in which BG2 presented the highest amount of fibers in its tissue matrix in all evaluated periods. In contrast, the results of receptor activator of nuclear factor kappa-Β ligand (Rank-L) immunoexpression were higher in BG2 in the periods of 30 and 60 days, indicating an increase of the degradation of the biomaterial and the remodeling activity of the bone. CONCLUSIONS The properties of the HA/PLGA/Bleed scaffold were superior when compared to the scaffold composed only by HA/PLGA.
Collapse
Affiliation(s)
- Patricia Brassolatti
- PhD in Biotechnology. Postgraduate Program in Evolutionary Genetics
and Molecular Biology – Department of Morphology and Pathology – Universidade
Federal de São Carlos – Sao Carlos (SP), Brazil
| | - Paulo Sérgio Bossini
- PhD in Physiotherapy. NUPEN - Research and Education Center in
Health Science and DMC Equipment Import and Export-Co. Ltda – Sao Carlos (SP),
Brazil
| | - Ana Laura Martins de Andrade
- PhD in Physiotherapy. Department of Physiotherapy – Universidade
Federal de São Carlos – Sao Carlos (SP), Brazil
| | - Genoveva Lourdes Flores Luna
- PhD in Biotechnology. Metabolic Endocrine Research Laboratory –
Department of Medicine – Universidade Federal University de São Carlos – Sao Carlos
(SP), Brazil
| | - Juliana Virginio da Silva
- Graduate student in Biotechnology. Institute of Physics of Sao
Carlos– Universidade de São Paulo – Sao Carlos (SP), Brazil
| | - Luciana Almeida-Lopes
- PhD in Science and Materials Engineering. NUPEN - Research and
Education Center in Health Science and DMC Equipment Import and Export-Co. Ltda –
Sao Carlos (SP), Brazil
| | | | | | | | - Fernanda de Freitas Anibal
- Associate Professor. Department of Morphology and Pathology –
Universidade Federal de São Carlos – Sao Carlos (SP), Brazil
| |
Collapse
|
9
|
Girón J, Kerstner E, Medeiros T, Oliveira L, Machado GM, Malfatti CF, Pranke P. Biomaterials for bone regeneration: an orthopedic and dentistry overview. Braz J Med Biol Res 2021; 54:e11055. [PMID: 34133539 PMCID: PMC8208772 DOI: 10.1590/1414-431x2021e11055] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
Because bone-associated diseases are increasing, a variety of tissue engineering approaches with bone regeneration purposes have been proposed over the last years. Bone tissue provides a number of important physiological and structural functions in the human body, being essential for hematopoietic maintenance and for providing support and protection of vital organs. Therefore, efforts to develop the ideal scaffold which is able to guide the bone regeneration processes is a relevant target for tissue engineering researchers. Several techniques have been used for scaffolding approaches, such as diverse types of biomaterials. On the other hand, metallic biomaterials are widely used as support devices in dentistry and orthopedics, constituting an important complement for the scaffolds. Hence, the aim of this review is to provide an overview of the degradable biomaterials and metal biomaterials proposed for bone regeneration in the orthopedic and dentistry fields in the last years.
Collapse
Affiliation(s)
- J Girón
- Laboratório de Hematologia e Células Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Programa de Pós-graduação em Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - E Kerstner
- Programa de Pós-graduação em Engenharia de Minas, Metalúrgica e de Materiais, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - T Medeiros
- Laboratório de Hematologia e Células Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Programa de Pós-graduação em Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - L Oliveira
- Laboratório de Hematologia e Células Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - G M Machado
- Programa de Gradução em Odontologia, Universidade Luterana do Brasil, Canoas, RS, Brasil
| | - C F Malfatti
- Programa de Pós-graduação em Engenharia de Minas, Metalúrgica e de Materiais, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - P Pranke
- Laboratório de Hematologia e Células Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Programa de Pós-graduação em Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.,Instituto de Pesquisa com Células Tronco, Porto Alegre, RS, Brasil
| |
Collapse
|
10
|
Araújo Lopes JM, Benetti F, Rezende GC, Souza MT, Conti LC, Ervolino E, Jacinto RC, Zanotto ED, Cintra LTA. Biocompatibility, induction of mineralization and antimicrobial activity of experimental intracanal pastes based on glass and glass‐ceramic materials. Int Endod J 2020; 53:1494-1505. [DOI: 10.1111/iej.13382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/25/2020] [Accepted: 08/03/2020] [Indexed: 12/16/2022]
Affiliation(s)
- J. M. Araújo Lopes
- Endodontics Section Department of Preventive and Restorative Dentistry School of Dentistry São Paulo State University (Unesp) AraçatubaBrazil
| | - F. Benetti
- Endodontics Section Department of Preventive and Restorative Dentistry School of Dentistry São Paulo State University (Unesp) AraçatubaBrazil
- Endodontic Section Department of Restorative Dentistry School of Dentistry Universidade Federal de Minas Gerais Belo HorizonteBrazil
| | - G. C. Rezende
- Endodontics Section Department of Preventive and Restorative Dentistry School of Dentistry São Paulo State University (Unesp) AraçatubaBrazil
| | - M. T. Souza
- Vitreous Materials Laboratory (LaMaV) Department of Materials Engineering Federal University of São Carlos (UFSCar) São CarlosBrazil
| | - L. C. Conti
- Endodontics Section Department of Preventive and Restorative Dentistry School of Dentistry São Paulo State University (Unesp) AraçatubaBrazil
| | - E. Ervolino
- Department of Basic Science School of Dentistry São Paulo State University (Unesp) Araçatuba Brazil
| | - R. C. Jacinto
- Endodontics Section Department of Preventive and Restorative Dentistry School of Dentistry São Paulo State University (Unesp) AraçatubaBrazil
| | - E. D. Zanotto
- Vitreous Materials Laboratory (LaMaV) Department of Materials Engineering Federal University of São Carlos (UFSCar) São CarlosBrazil
| | - L. T. A. Cintra
- Endodontics Section Department of Preventive and Restorative Dentistry School of Dentistry São Paulo State University (Unesp) AraçatubaBrazil
| |
Collapse
|
11
|
Passos TF, Souza MT, Zanotto ED, de Souza CWO. Bactericidal activity and biofilm inhibition of F18 bioactive glass against Staphylococcus aureus. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111475. [PMID: 33255054 DOI: 10.1016/j.msec.2020.111475] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/22/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023]
Abstract
Antimicrobial treatment failure has been increasing at alarming rates. In this context, the bactericidal properties of biocompatible antimicrobial agents have been widely studied. F18 is a recently developed bioactive glass that presents a much wider working range when compared to other bioactive glasses, a feature that allows it to be used for coating metallic implants, sintering scaffolds or manufacturing fibers for wound healing applications. The aim of this study was to investigate the in vitro bactericidal and anti-biofilm activity of F18 glass as a powder and as a coating on steel samples, and to explore the effects of its dissolution products at concentrations from 3 mg/mL to 50 mg/mL against the Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) biofilms. Furthermore, we intend to verify whether changes in the medium pH could influence the bactericidal activity of F18. The results indicated that F18 presented bactericidal activity in preformed S. aureus and MRSA biofilms, reducing more than 6 logs of the viable cells that remained in contact with 50 mg/mL for 24 h. Moreover, an anti-biofilm activity was observed after 12 h of direct contact, with a drop of more than 6 logs of the viable bacterial population. Neutralization of the F18 solution pH decreased its bactericidal efficacy. These results indicate that the F18 glass could be considered as an alternative material for controlling and treating infections by S. aureus.
Collapse
Affiliation(s)
- Tathiane Ferroni Passos
- Biotechnology Graduate Program (PPGBiotec-UFSCar), Federal University of São Carlos, SP, Brazil; Microbiology and Parasitology Laboratory (LMP), Department of Morphology and Pathology, Federal University of São Carlos, SP, Brazil.
| | - Marina Trevelin Souza
- Vitreous Materials Laboratory (LaMaV), Department of Materials Engineering, Federal University of São Carlos, SP, Brazil
| | - Edgar Dutra Zanotto
- Vitreous Materials Laboratory (LaMaV), Department of Materials Engineering, Federal University of São Carlos, SP, Brazil
| | - Clovis Wesley Oliveira de Souza
- Biotechnology Graduate Program (PPGBiotec-UFSCar), Federal University of São Carlos, SP, Brazil; Microbiology and Parasitology Laboratory (LMP), Department of Morphology and Pathology, Federal University of São Carlos, SP, Brazil.
| |
Collapse
|
12
|
Wu P, Wang Y, Sun D, Luo Y, Chen C, Tang Z, Liao Y, Cao X, Xu L, Cheng C, Liu W, Liang X. In-vivo histocompatibility and osteogenic potential of biodegradable PLDLA composites containing silica-based bioactive glass fiber. J Biomater Appl 2020; 35:59-71. [PMID: 32233716 DOI: 10.1177/0885328220911598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The purpose of this two-year study was to evaluate the histocompatibility and osteogenic properties of a composite material consisting of poly(l-co-d,l lactide) (PLDLA) and silica-based bioactive glass fibers in vivo. PLDLA and PLDLA/silica-based bioactive glass fibers pins were implanted into the erector spinae muscles and femurs of beagles. Muscle and bone tissue samples were harvested 6, 12, 16, 26, 52, 78, and 104 weeks after implantation. Histology analysis was used to assess the histocompatibility, angiogenesis, and bone-implant contact. Micro-computed tomography was used to evaluate bone formation around the pins. Immunohistochemistry and western blotting revealed the expression level of the osteogenesis-related proteins. Addition of bioactive glass was demonstrated to possess better histocompatibility and reduce the inflammatory reactions in vivo. Moreover, PLDLA/silica-based bioactive glass fibers pins were demonstrated to promote angiogenesis and increase osteogenesis-related proteins expression, and thus played a positive role in osteogenesis and osseointegration after implantation. Our findings indicated that a composite of PLDLA and silica-based bioactive glass fiber is a promising biodegradable material for clinical use.
Collapse
Affiliation(s)
- Peng Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dongyuan Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Youran Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Cheng Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ziqing Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunmao Liao
- State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Xiaoyan Cao
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Lijun Xu
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beijing, China
| | - Chengkung Cheng
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China.,School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Weiqing Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xing Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Synthetic Blocks for Bone Regeneration: A Systematic Review and Meta-Analysis. Int J Mol Sci 2019; 20:ijms20174221. [PMID: 31466409 PMCID: PMC6747264 DOI: 10.3390/ijms20174221] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 12/15/2022] Open
Abstract
This systematic review is aimed at evaluating the effectiveness of synthetic block materials for bone augmentation in preclinical in vivo studies. An electronic search was performed on Pubmed, Scopus, EMBASE. Articles selected underwent risk-of-bias assessment. The outcomes were: new bone formation and residual graft with histomorphometry, radiographic bone density, soft tissue parameters, complications. Meta-analysis was performed to compare new bone formation in test (synthetic blocks) vs. control group (autogenous blocks or spontaneous healing). The search yielded 214 articles. After screening, 39 studies were included, all performed on animal models: rabbits (n = 18 studies), dogs (n = 4), rats (n = 7), minipigs (n = 4), goats (n = 4), and sheep (n = 2). The meta-analysis on rabbit studies showed significantly higher new bone formation for synthetic blocks with respect to autogenous blocks both at four-week (mean difference (MD): 5.91%, 95% confidence intervals (CI): 1.04, 10.79%, p = 0.02) and at eight-week healing (MD: 4.44%, 95% CI: 0.71, 8.17%, p = 0.02). Other animal models evidenced a trend for better outcomes with synthetic blocks, though only based on qualitative analysis. Synthetic blocks may represent a viable resource in bone regenerative surgery for achieving new bone formation. Differences in the animal models, the design of included studies, and the bone defects treated should be considered when generalizing the results. Clinical studies are needed to confirm the effectiveness of synthetic blocks in bone augmentation procedures.
Collapse
|
14
|
Fernandes KR, Parisi JR, Magri AMP, Kido HW, Gabbai-Armelin PR, Fortulan CA, Zanotto ED, Peitl O, Granito RN, Renno ACM. Influence of the incorporation of marine spongin into a Biosilicate®: an in vitro study. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:64. [PMID: 31127392 DOI: 10.1007/s10856-019-6266-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 05/10/2019] [Indexed: 06/09/2023]
Abstract
The combination of different biomaterials can be a promising intervention for the composites manufacture, mainly by adding functional and structural characteristics of each material and guarantee the advantages of the use of these composites. In this context, the aim of this study was to develop and evaluated the influence of the incorporation of marine spongin (SPG) into Biosilicate® (BS) in different proportions be used during bone repair. For this purpose, it was to develop and investigate different BS/SPG formulations for physico-chemical and morphological characteristics by pH, loss mass, Fourier transform infrared spectrometer (FTIR) and scanning electron microscope (SEM) analysis. Additionally, the influence of these composites on cell viability, proliferation, and alkaline phosphatase (ALP) activity were investigated. The results revealed that the pH values of all BS groups (with or without SPG) increased over time. A significant mass loss was observed in all composites, mainly with higher SPG percentages. Additionaly, SEM micrographies demonstrated fibers of SPG into BS and material degradation over time. Moreover, FTIR spectral analysis revealed characteristic peaks of PMMA, BS, and SPG in BS/SPG composites. BS/SPG groups demonstrated a positive effect for fibroblast proliferation after 3 and 7 days of culture. Additionally, BS and BS/SPG formulations (at 10% and 20% of SPG) presented similar values of osteoblasts viability and proliferation after 7 days of culture. Furthermore, ALP activity demonstrated no significant difference between BS and BS/SPG scaffolds, at any composition. Based on the present in vitro results, it can be concluded that the incorporation of SPG into BS was possible and produced an improvement in the physical-chemical characteristics and in the biological performance of the graft especially the formulation with 80/20 and 90/10. Future research should focus on in vivo evaluations of this novel composite.
Collapse
Affiliation(s)
- K R Fernandes
- Department of Physiotherapy, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil.
| | - J R Parisi
- Department of Physiotherapy, Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - A M P Magri
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - H W Kido
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - P R Gabbai-Armelin
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - C A Fortulan
- Department of Mechanical Engineering, São Carlos School of Engineering, São Carlos, SP, Brazil
| | - E D Zanotto
- Department of Materials Engineering, Vitreous Materials Laboratory (LaMaV), Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - O Peitl
- Department of Materials Engineering, Vitreous Materials Laboratory (LaMaV), Federal University of São Carlos (UFSCar), São Carlos, SP, Brazil
| | - R N Granito
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - A C M Renno
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| |
Collapse
|
15
|
Incorporation of collagen and PLGA in bioactive glass: in vivo biological evaluation. Int J Biol Macromol 2019; 134:869-881. [PMID: 31102678 DOI: 10.1016/j.ijbiomac.2019.05.090] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/01/2019] [Accepted: 05/15/2019] [Indexed: 01/19/2023]
Abstract
Bioactive glasses (BG) are known for their unique ability to bond to bone tissue. However, in critical situations, even the osteogenic properties of BG may be not sufficient to produce bone consolidation. The use of composite materials may constitute an optimized therapeutical intervention for bone stimulation. The aim of this study was to characterize BG/collagen/poly (d,l-lactic-co-glycolic) acid (BG/COL/PLGA) composites, in vitro biocompatibility and in vivo biological properties. MC3T3-E1 cells were evaluated by cell proliferation, ALP activity, cell adhesion and morphology. Qualitative histology and immunohistochemistry were performed in a calvarial bone defect model in rats. The in vitro study demonstrated, after 3 and 6 days of culture, a significant increase of proliferation was observed for BG/PLGA compared to BG/COL and BG/COL/PLGA. BG/COL/PLGA presented a higher value for ALP activity after 3 days of culture compared to BG/PLGA. For in vivo analysis, 6 weeks post-surgery, BG/PLGA showed a more mature neoformed bone tissue. As a conclusion, the in vitro and in vivo studies pointed out that BG/PLGA samples improved biological properties in calvarial bone defects, highlighting the potential of BG/PLGA composites to be used as a bone graft for bone regeneration applications.
Collapse
|
16
|
Soares PBF, Moura CCG, Chinaglia CR, Zanotto ED, Zanetta-Barbosa D, Stavropoulos A. Effect of titanium surface functionalization with bioactive glass on osseointegration: An experimental study in dogs. Clin Oral Implants Res 2018; 29:1120-1125. [PMID: 30264907 DOI: 10.1111/clr.13375] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 11/29/2022]
Abstract
PURPOSE The purpose of this study was to evaluate the effect of surface functionalization with bioactive glass BSF18 on the osseointegration of sandblasted and dual acid-etched surface (AE) implants. METHODS AND MATERIALS Forty Morse taper implants with an AE surface as controls (C) or with an AE surface functionalized with BSF18 (BF) were placed in the mandibles of 10 beagles. Implants were analyzed after 2 and 4 weeks of healing. Implant stability quotient (ISQ) values were registered immediately after installation and prior to sacrifice. Samples were analyzed for bone-to-implant contact (BIC) and bone density (BD). The characterization of BF implants included surface roughness analysis with atomic force microscopy and contact angle (CA) analysis to evaluate wettability. Data were analyzed using two-way ANOVA followed by Tukey's test (p < 0.05). RESULTS Surface roughness was not affected by BF treatment. CA was lower in the BF group compared to the C group. No significant difference was observed in ISQ values between surfaces (p = 0,231), irrespective of time. Significantly higher ISQ values were observed for both implants after 4 weeks when compared with baseline (p = 0.04). Significantly higher BIC (p = 0.011) and BD (p = 0.025) values were observed for the BF compared to the C group at 2 weeks. Significantly higher BIC (p = 0.030) and BD (p = 0.015) values for the C group were observed at 4 weeks compared to 2 weeks. No significant difference was observed in the BF group between 2 and 4 weeks. CONCLUSIONS Implant functionalization with BSF18 improved the wettability of the implant surface; enhancing BIC and BD at 2 weeks.
Collapse
Affiliation(s)
| | | | - Clever Ricardo Chinaglia
- Department of Materials Engineering (DEMa), Federal University of São Carlos, São Carlos, Brazil
| | - Edgar Dutra Zanotto
- Department of Materials Engineering (DEMa), Federal University of São Carlos, São Carlos, Brazil
| | | | - Andreas Stavropoulos
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden
| |
Collapse
|
17
|
Abstract
Barrier membranes that are used for guided tissue regeneration (GTR) therapy usually lack bioactivity and the capability to promote new bone tissue formation. However, the incorporation of an osteogenic agent into polymeric membranes seems to be the most assertive strategy to enhance their regenerative potential. Here, the manufacturing of composite electrospun membranes made of poly (ε-caprolactone) (PCL) and particles of a novel bioactive glass composition (F18) is described. The membranes were mechanically and biologically tested with tensile strength tests and tissue culture with MG-63 osteoblast-like cell line, respectively. The PCL-F18 composite membranes demonstrated no increased cytotoxicity and an enhanced osteogenic potential when compared to pure PCL membranes. Moreover, the addition of the bioactive phase increased the membrane tensile strength. These preliminary results suggested that these new membranes can be a strong candidate for small bone injuries treatment by GTR technique.
Collapse
|
18
|
Broad-spectrum bactericidal activity of a new bioactive grafting material (F18) against clinically important bacterial strains. Int J Antimicrob Agents 2017; 50:730-733. [DOI: 10.1016/j.ijantimicag.2017.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/02/2017] [Accepted: 08/05/2017] [Indexed: 11/22/2022]
|
19
|
Investigation of Osteoinductive Effects of Different Compositions of Bioactive Glass Nanoparticles for Bone Tissue Engineering. ASAIO J 2017; 63:512-517. [DOI: 10.1097/mat.0000000000000509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
20
|
Souza MT, Rennó ACM, Peitl O, Zanotto ED. New highly bioactive crystallization-resistant glass for tissue engineering applications. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/2053-1613/aa53b5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
21
|
Souza MT, Tansaz S, Zanotto ED, Boccaccini AR. Bioactive Glass Fiber-Reinforced PGS Matrix Composites for Cartilage Regeneration. MATERIALS 2017; 10:ma10010083. [PMID: 28772442 PMCID: PMC5344602 DOI: 10.3390/ma10010083] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 01/25/2023]
Abstract
Poly(glycerol sebacate) (PGS) is an elastomeric polymer which is attracting increasing interest for biomedical applications, including cartilage regeneration. However, its limited mechanical properties and possible negative effects of its degradation byproducts restrict PGS for in vivo application. In this study, a novel PGS–bioactive glass fiber (F18)-reinforced composite was developed and characterized. PGS-based reinforced scaffolds were fabricated via salt leaching and characterized regarding their mechanical properties, degradation, and bioactivity in contact with simulated body fluid. Results indicated that the incorporation of silicate-based bioactive glass fibers could double the composite tensile strength, tailor the polymer degradability, and improve the scaffold bioactivity.
Collapse
Affiliation(s)
- Marina Trevelin Souza
- CeRTEV-Center for Research, Technology and Education in Vitreous Materials, Vitreous Material Laboratory, Department of Materials Engineering, Universidade Federal de São Carlos-UFSCar, 13565905 São Carlos, SP, Brazil.
| | - Samira Tansaz
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| | - Edgar Dutra Zanotto
- CeRTEV-Center for Research, Technology and Education in Vitreous Materials, Vitreous Material Laboratory, Department of Materials Engineering, Universidade Federal de São Carlos-UFSCar, 13565905 São Carlos, SP, Brazil.
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| |
Collapse
|
22
|
Ueno FR, Kido HW, Granito RN, Gabbai-Armelin PR, Magri AMP, Fernandes KR, da Silva AC, Braga FJC, Renno ACM. Calcium phosphate fibers coated with collagen: In vivo evaluation of the effects on bone repair. Biomed Mater Eng 2017; 27:259-73. [PMID: 27567780 DOI: 10.3233/bme-161581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of this study was to assess the characteristics of the CaP/Col composites, in powder and fiber form, via scanning electron microscopy (SEM), pH and calcium release evaluation after immersion in SBF and to evaluate the performance of these materials on the bone repair process in a tibial bone defect model. For this, four different formulations (CaP powder - CaPp, CaP powder with collagen - CaPp/Col, CaP fibers - CaPf and CaP fibers with collagen - CaPf/Col) were developed. SEM images indicated that both material forms were successfully coated with collagen and that CaPp and CaPf presented HCA precursor crystals on their surface. Although presenting different forms, FTIR analysis indicated that CaPp and CaPf maintained the characteristic peaks for this class of material. Additionally, the calcium assay study demonstrated a higher Ca uptake for CaPp compared to CaPf for up to 5 days. Furthermore, pH measurements revealed that the collagen coating prevented the acidification of the medium, leading to higher pH values for CaPp/Col and CaPf/Col. The histological analysis showed that CaPf/Col demonstrated a higher amount of newly formed bone in the region of the defect and a reduced presence of material. In summary, the results indicated that the fibrous CaP enriched with the organic part (collagen) glassy scaffold presented good degradability and bone-forming properties and also supported Runx2 and RANKL expression. These results show that the present CaP/Col fibrous composite may be used as a bone graft for inducing bone repair.
Collapse
Affiliation(s)
- Fabio Roberto Ueno
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - Hueliton Wilian Kido
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - Renata Neves Granito
- Department of Biosciences, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
23
|
Novajra G, Boetti N, Lousteau J, Fiorilli S, Milanese D, Vitale-Brovarone C. Phosphate glass fibre scaffolds: Tailoring of the properties and enhancement of the bioactivity through mesoporous glass particles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 67:570-580. [DOI: 10.1016/j.msec.2016.05.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 05/07/2016] [Accepted: 05/12/2016] [Indexed: 01/29/2023]
|
24
|
Fernandes KR, Magri AMP, Kido HW, Ueno F, Assis L, Fernandes KPS, Mesquita-Ferrari RA, Martins VC, Plepis AM, Zanotto ED, Peitl O, Ribeiro D, van den Beucken JJ, Renno ACM. Characterization and biological evaluation of the introduction of PLGA into biosilicate®. J Biomed Mater Res B Appl Biomater 2016; 105:1063-1074. [DOI: 10.1002/jbm.b.33654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 12/11/2022]
Affiliation(s)
- K. R. Fernandes
- Department of Biosciences; Federal University of São Paulo (UNIFESP); Santos, São Paulo Brazil
| | - A. M. P. Magri
- Department of Biosciences; Federal University of São Paulo (UNIFESP); Santos, São Paulo Brazil
| | - H. W. Kido
- Department of Biosciences; Federal University of São Paulo (UNIFESP); Santos, São Paulo Brazil
| | - F. Ueno
- Department of Biosciences; Federal University of São Paulo (UNIFESP); Santos, São Paulo Brazil
| | - L. Assis
- Department of Biosciences; Federal University of São Paulo (UNIFESP); Santos, São Paulo Brazil
| | - K. P. S. Fernandes
- Department of Rehabilitation Sciences and Biophotonics Applied to Health Sciences; Nove de Julho University (UNINOVE); São Paulo, São Paulo Brazil
| | - R. A. Mesquita-Ferrari
- Department of Rehabilitation Sciences and Biophotonics Applied to Health Sciences; Nove de Julho University (UNINOVE); São Paulo, São Paulo Brazil
| | - V. C. Martins
- Institute of Chemistry, University of São Paulo (USP); São Carlos, São Paulo Brazil
| | - A. M. Plepis
- Institute of Chemistry, University of São Paulo (USP); São Carlos, São Paulo Brazil
| | - E. D. Zanotto
- Vitreous Materials Laboratory (LaMaV), Department of Materials Engineering; Federal University of São Carlos (UFSCar); Brazil
| | - O. Peitl
- Vitreous Materials Laboratory (LaMaV), Department of Materials Engineering; Federal University of São Carlos (UFSCar); Brazil
| | - D. Ribeiro
- Department of Biosciences; Federal University of São Paulo (UNIFESP); Santos, São Paulo Brazil
| | | | - A. C. M. Renno
- Department of Biosciences; Federal University of São Paulo (UNIFESP); Santos, São Paulo Brazil
| |
Collapse
|
25
|
Griffin KS, Davis KM, McKinley TO, Anglen JO, Chu TMG, Boerckel JD, Kacena MA. Evolution of Bone Grafting: Bone Grafts and Tissue Engineering Strategies for Vascularized Bone Regeneration. Clin Rev Bone Miner Metab 2015. [DOI: 10.1007/s12018-015-9194-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|