1
|
Li S, Zhou S, Qin X, Zhang S, Zhao XU, Wang K, Liu P. Heparin-modified polyether ether ketone hollow fiber membrane with improved hemocompatibility and air permeability used for extracorporeal membrane oxygenation. Int J Biol Macromol 2024; 279:135481. [PMID: 39251009 DOI: 10.1016/j.ijbiomac.2024.135481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
To expand the selection of raw material for fabricating extracorporeal membrane oxygenation (ECMO) and promote its application in lung disease therapy, polyether ether ketone hollow fiber membrane (PEEK-HFM) with designable pore characteristics, desired mechanical performances, and excellent biocompatibility was selected as the potential substitute for existing poly (4-methyl-1-pentene) hollow fiber membrane (PMP-HFM). To address the platelet adhesion and plasma leakage issues with PEEK-HFM, a natural anticoagulant heparin was grafted onto the surface using ultraviolet irradiation. Additionally, to explore the substitutability of the heparin layer while considering cost and scalability, a heparin-like layer composed of copolymers of acrylic acid and sodium p-styrenesulfonate was also constructed on the surface of PEEK-HFM Even though the successful grafting of heparin and heparin-like layers on the PEEK-HFM surface reduced the pore parameters, improvements in surface hydrophilicity also prevented the platelet-adhesion phenomenon and improved the anticoagulant behaviour, making it a viable alternative for commercial PMP-HFMs in ECMO production. Furthermore heparin-modified and heparin-like modified PEEK-HFMs demonstrated similar performance, indicating that synthetic layers can effectively replace natural heparin. This study holds practical and instructive significance for future research and the application of membranes in the development of oxygenators.
Collapse
Affiliation(s)
- Shangbo Li
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Shiyi Zhou
- College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| | - Xiangpu Qin
- College of Polymer Science & Engineering, Sichuan University, Chengdu 610065, China
| | - Shengchang Zhang
- College of Polymer Science & Engineering, Sichuan University, Chengdu 610065, China
| | - X U Zhao
- College of Polymer Science & Engineering, Sichuan University, Chengdu 610065, China
| | - Kaixiang Wang
- College of Polymer Science & Engineering, Sichuan University, Chengdu 610065, China
| | - Pengqing Liu
- College of Polymer Science & Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
2
|
Woeppel K, Dhawan V, Shi D, Cui XT. Nanotopography-enhanced biomimetic coating maintains bioactivity after weeks of dry storage and improves chronic neural recording. Biomaterials 2023; 302:122326. [PMID: 37716282 PMCID: PMC10993103 DOI: 10.1016/j.biomaterials.2023.122326] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
We developed a nanoparticle base layer technology capable of maintaining the bioactivity of protein-based neural probe coating intended to improve neural recording quality. When covalently bound on thiolated nanoparticle (TNP) modified surfaces, neural adhesion molecule L1 maintained bioactivity throughout 8 weeks of dry storage at room temperature, while those bound to unmodified surfaces lost 66% bioactivity within 3 days. We tested the TNP + L1 coating in mouse brains on two different neural electrode arrays after two different dry storage durations (3 and 28 days). The results show that dry-stored coating is as good as the freshly prepared, and even after 28 days of storage, the number of single units per channel and signal-to-noise ratio of the TNP + L1 coated arrays were significantly higher by 32% and 40% respectively than uncoated controls over 16 weeks. This nanoparticle base layer approach enables the dissemination of biomolecule-functionalized neural probes to users worldwide and may also benefit a broad range of applications that rely on surface-bound biomolecules.
Collapse
Affiliation(s)
- Kevin Woeppel
- University of Pittsburgh, Department of Bioengineering, 4200 Fifth Avenue, Pittsburgh, PA, 15260, USA; Center for the Neural Basis of Cognition, 4400 Fifth Avenue, Suite 115, Pittsburgh, PA, 15213, USA
| | - Vaishnavi Dhawan
- University of Pittsburgh, Department of Bioengineering, 4200 Fifth Avenue, Pittsburgh, PA, 15260, USA; Center for the Neural Basis of Cognition, 4400 Fifth Avenue, Suite 115, Pittsburgh, PA, 15213, USA
| | - Delin Shi
- University of Pittsburgh, Department of Bioengineering, 4200 Fifth Avenue, Pittsburgh, PA, 15260, USA; Center for the Neural Basis of Cognition, 4400 Fifth Avenue, Suite 115, Pittsburgh, PA, 15213, USA
| | - Xinyan Tracy Cui
- University of Pittsburgh, Department of Bioengineering, 4200 Fifth Avenue, Pittsburgh, PA, 15260, USA; Center for the Neural Basis of Cognition, 4400 Fifth Avenue, Suite 115, Pittsburgh, PA, 15213, USA; McGowan Institute for Regenerative Medicine, 450 Technology Drive, Suite 300, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
3
|
Shen J, Salmon S. Biocatalytic Membranes for Carbon Capture and Utilization. MEMBRANES 2023; 13:membranes13040367. [PMID: 37103794 PMCID: PMC10146961 DOI: 10.3390/membranes13040367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 05/12/2023]
Abstract
Innovative carbon capture technologies that capture CO2 from large point sources and directly from air are urgently needed to combat the climate crisis. Likewise, corresponding technologies are needed to convert this captured CO2 into valuable chemical feedstocks and products that replace current fossil-based materials to close the loop in creating viable pathways for a renewable economy. Biocatalytic membranes that combine high reaction rates and enzyme selectivity with modularity, scalability, and membrane compactness show promise for both CO2 capture and utilization. This review presents a systematic examination of technologies under development for CO2 capture and utilization that employ both enzymes and membranes. CO2 capture membranes are categorized by their mode of action as CO2 separation membranes, including mixed matrix membranes (MMM) and liquid membranes (LM), or as CO2 gas-liquid membrane contactors (GLMC). Because they selectively catalyze molecular reactions involving CO2, the two main classes of enzymes used for enhancing membrane function are carbonic anhydrase (CA) and formate dehydrogenase (FDH). Small organic molecules designed to mimic CA enzyme active sites are also being developed. CO2 conversion membranes are described according to membrane functionality, the location of enzymes relative to the membrane, which includes different immobilization strategies, and regeneration methods for cofactors. Parameters crucial for the performance of these hybrid systems are discussed with tabulated examples. Progress and challenges are discussed, and perspectives on future research directions are provided.
Collapse
|
4
|
Combes A, Brodie D, Aissaoui N, Bein T, Capellier G, Dalton HJ, Diehl JL, Kluge S, McAuley DF, Schmidt M, Slutsky AS, Jaber S. Extracorporeal carbon dioxide removal for acute respiratory failure: a review of potential indications, clinical practice and open research questions. Intensive Care Med 2022; 48:1308-1321. [PMID: 35943569 DOI: 10.1007/s00134-022-06796-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023]
Abstract
Extracorporeal carbon dioxide removal (ECCO2R) is a form of extracorporeal life support (ECLS) largely aimed at removing carbon dioxide in patients with acute hypoxemic or acute hypercapnic respiratory failure, so as to minimize respiratory acidosis, allowing more lung protective ventilatory settings which should decrease ventilator-induced lung injury. ECCO2R is increasingly being used despite the lack of high-quality evidence, while complications associated with the technique remain an issue of concern. This review explains the physiological basis underlying the use of ECCO2R, reviews the evidence regarding indications and contraindications, patient management and complications, and addresses organizational and ethical considerations. The indications and the risk-to-benefit ratio of this technique should now be carefully evaluated using structured national or international registries and large randomized trials.
Collapse
Affiliation(s)
- Alain Combes
- Sorbonne Université INSERM Unité Mixte de Recherche (UMRS) 1166, Institute of Cardiometabolism and Nutrition, Paris, France. .,Service de Médecine Intensive-Réanimation, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, INSERM, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, 47, boulevard de l'Hôpital, 75013, Paris, France.
| | - Daniel Brodie
- Division of Pulmonary, Allergy, and Critical Care Medicine, Columbia University College of Physicians and Surgeons, NewYork-Presbyterian Hospital, New York, USA.,Center for Acute Respiratory Failure, NewYork-Presbyterian Hospital, New York, USA
| | - Nadia Aissaoui
- Assistance publique des hopitaux de Paris (APHP), Cochin Hospital, Intensive Care Medicine, Université de Paris and Paris Cardiovascular Research Center, INSERM U970, Paris, France
| | - Thomas Bein
- Faculty of Medicine, University of Regensburg, Regensburg, Germany
| | - Gilles Capellier
- CHU Besançon, Réanimation Médicale, 2500, Besançon, France.,Université de Franche Comte, EA, 3920, Besançon, France.,Department of Epidemiology and Preventive Medicine, Australian and New Zealand Intensive, Care Research Centre, Monash University, Melbourne, Australia
| | - Heidi J Dalton
- Heart and Vascular Institute and Department of Pediatrics, INOVA Fairfax Medical Center, Falls Church, VA, USA
| | - Jean-Luc Diehl
- Medical Intensive Care Unit and Biosurgical Research Lab (Carpentier Foundation), HEGP Hospital, Assistance Publique-Hôpitaux de Paris-Centre (APHP-Centre), Paris, France.,Université de Paris, INSERM, Innovative Therapies in Haemostasis, 75006, Paris, France
| | - Stefan Kluge
- Department of Intensive Care, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel F McAuley
- Belfast Health and Social Care Trust, Royal Victoria Hospital, Belfast, UK.,Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Matthieu Schmidt
- Sorbonne Université INSERM Unité Mixte de Recherche (UMRS) 1166, Institute of Cardiometabolism and Nutrition, Paris, France.,Service de Médecine Intensive-Réanimation, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, INSERM, UMRS_1166-ICAN, Institute of Cardiometabolism and Nutrition, 47, boulevard de l'Hôpital, 75013, Paris, France
| | - Arthur S Slutsky
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada.,Keenan Centre for Biomedical Research, Li Ka Shing Knowledge Institute, St Michael's Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Samir Jaber
- PhyMedExp, University of Montpellier, Institut National de La Santé Et de La Recherche Médicale (INSERM), Centre National de La Recherche Scientifique (CNRS), Centre Hospitalier Universitaire (CHU) Montpellier, Montpellier, France.,Département d'Anesthésie-Réanimation, Hôpital Saint-Eloi, Montpellier Cedex, France
| |
Collapse
|
5
|
Respiratory Dialysis-A Novel Low Bicarbonate Dialysate to Provide Extracorporeal CO2 Removal. Crit Care Med 2021; 48:e592-e598. [PMID: 32304418 DOI: 10.1097/ccm.0000000000004351] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES We designed a novel respiratory dialysis system to remove CO2 from blood in the form of bicarbonate. We aimed to determine if our respiratory dialysis system removes CO2 at rates comparable to low-flow extracorporeal CO2 removal devices (blood flow < 500 mL/min) in a large animal model. DESIGN Experimental study. SETTING Animal research laboratory. SUBJECTS Female Yorkshire pigs. INTERVENTIONS Five bicarbonate dialysis experiments were performed. Hypercapnia (PCO2 90-100 mm Hg) was established in mechanically ventilated swine by adjusting the tidal volume. Dialysis was then performed with a novel low bicarbonate dialysate. MEASUREMENTS AND MAIN RESULTS We measured electrolytes, blood gases, and plasma-free hemoglobin in arterial blood, as well as blood entering and exiting the dialyzer. We used a physical-chemical acid-base model to understand the factors influencing blood pH after bicarbonate removal. During dialysis, we removed 101 (±13) mL/min of CO2 (59 mL/min when normalized to venous PCO2 of 45 mm Hg), corresponding to a 29% reduction in PaCO2 (104.0 ± 8.1 vs 74.2 ± 8.4 mm Hg; p < 0.001). Minute ventilation and body temperature were unchanged during dialysis (1.2 ± 0.4 vs 1.1 ± 0.4 L/min; p = 1.0 and 35.3°C ± 0.9 vs 35.2°C ± 0.6; p = 1.0). Arterial pH increased after bicarbonate removal (7.13 ± 0.04 vs 7.21 ± 0.05; p < 0.001) despite no attempt to realkalinize the blood. Our modeling showed that dialysate electrolyte composition, plasma albumin, and plasma total CO2 accurately predict the measured pH of blood exiting the dialyser. However, the final effluent dose exceeded conventional doses, depleting plasma glucose and electrolytes, such as potassium and phosphate. CONCLUSIONS Bicarbonate dialysis results in CO2 removal at rates comparable with existing low-flow extracorporeal CO2 removal in a large animal model, but the final dialysis dose delivered needs to be reduced before the technique can be used for prolonged periods.
Collapse
|
6
|
Immobilization of carbonic anhydrase for CO2 capture and its industrial implementation: A review. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101475] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
May AG, Omecinski KS, Frankowski BJ, Federspiel WJ. Effect of Hematocrit on the CO2 Removal Rate of Artificial Lungs. ASAIO J 2021; 66:1161-1165. [PMID: 33136604 PMCID: PMC8207609 DOI: 10.1097/mat.0000000000001140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Extracorporeal CO2 removal (ECCO2R) can permit lung protective or noninvasive ventilation strategies in patients with chronic obstructive pulmonary disease (COPD) and acute respiratory distress syndrome (ARDS). With evidence supporting ECCO2R growing, investigating factors which affect CO2 removal is necessary. Multiple factors are known to affect the CO2 removal rate (vCO2) which can complicate the interpretation of changes in vCO2; however, the effect of hematocrit on the vCO2 of artificial lungs has not been investigated. This in vitro study evaluates the relationship between hematocrit level and vCO2 within an ECCO2R device. In vitro gas transfer was measured in bovine blood in accordance with the ISO 7199 standard. Plasma and saline were used to hemodilute the blood to hematocrits between 33% and 8%. The vCO2 significantly decreased as the blood was hemodiluted with saline and plasma by 42% and 32%, respectively, between a hematocrit of 33% and 8%. The hemodilution method did not significantly affect the vCO2. In conclusion, the hematocrit level significantly affects vCO2 and should be taken into account when interpreting changes in the vCO2 of an ECCO2R device.
Collapse
Affiliation(s)
- Alexandra G. May
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McCowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Katelin S. Omecinski
- McCowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Brian J. Frankowski
- McCowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William J. Federspiel
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McCowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
May AG, Jeffries RG, Frankowski BJ, Burgreen GW, Federspiel WJ. Bench Validation of a Compact Low-Flow CO 2 Removal Device. Intensive Care Med Exp 2018; 6:34. [PMID: 30251223 PMCID: PMC6153260 DOI: 10.1186/s40635-018-0200-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 09/07/2018] [Indexed: 01/03/2023] Open
Abstract
Background There is increasing evidence demonstrating the value of partial extracorporeal CO2 removal (ECCO2R) for the treatment of hypercapnia in patients with acute exacerbations of chronic obstructive pulmonary disease and acute respiratory distress syndrome. Mechanical ventilation has traditionally been used to treat hypercapnia in these patients, however, it has been well-established that aggressive ventilator settings can lead to ventilator-induced lung injury. ECCO2R removes CO2 independently of the lungs and has been used to permit lung protective ventilation to prevent ventilator-induced lung injury, prevent intubation, and aid in ventilator weaning. The Low-Flow Pittsburgh Ambulatory Lung (LF-PAL) is a low-flow ECCO2R device that integrates the fiber bundle (0.65 m2) and centrifugal pump into a compact unit to permit patient ambulation. Methods A blood analog was used to evaluate the performance of the pump at various impeller rotation rates. In vitro CO2 removal tested under normocapnic conditions and 6-h hemolysis testing were completed using bovine blood. Computational fluid dynamics and a mass-transfer model were also used to evaluate the performance of the LF-PAL. Results The integrated pump was able to generate flows up to 700 mL/min against the Hemolung 15.5 Fr dual lumen catheter. The maximum vCO2 of 105 mL/min was achieved at a blood flow rate of 700 mL/min. The therapeutic index of hemolysis was 0.080 g/(100 min). The normalized index of hemolysis was 0.158 g/(100 L). Conclusions The LF-PAL met pumping, CO2 removal, and hemolysis design targets and has the potential to enable ambulation while on ECCO2R.
Collapse
Affiliation(s)
- Alexandra G May
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, 3025 East Carson Street, Suite 226, Pittsburgh, PA, 15203, USA
| | - R Garrett Jeffries
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 3025 East Carson Street, Suite 226, Pittsburgh, PA, 15203, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, USA
| | - Brian J Frankowski
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 3025 East Carson Street, Suite 226, Pittsburgh, PA, 15203, USA
| | - Greg W Burgreen
- Computational Fluid Dynamics Group, Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, MS, USA
| | - William J Federspiel
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, USA. .,McGowan Institute for Regenerative Medicine, University of Pittsburgh, 3025 East Carson Street, Suite 226, Pittsburgh, PA, 15203, USA. .,Department of Bioengineering, University of Pittsburgh, Pittsburgh, USA. .,Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, USA.
| |
Collapse
|
9
|
Woeppel KM, Zheng XS, Cui XT. Enhancing surface immobilization of bioactive molecules via a silica nanoparticle based coating. J Mater Chem B 2018; 6:3058-3067. [PMID: 30464839 PMCID: PMC6242288 DOI: 10.1039/c8tb00408k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Surface modification is of significant interest in biomaterials, biosensors, and device biocompatibility. Immobilization of bioactive or biomimetic molecules is a common method of disguising a foreign body as host tissue to decrease the foreign body response (FBR) and/or increase device-tissue integration. For example, in neural interfacing devices, immobilization of L1, a neuron-specific adhesion molecule, has been shown to increase neuron adhesion and reduce inflammatory gliosis on and around the implants. However, the activity of modified surfaces is limited by the relatively low concentration of the immobilized component, in part due to the low surface area of flat surfaces available for modification. In this work, we demonstrate a novel method for increasing the device surface area by attaching a layer of thiolated silica nanoparticles (TNPs). This coating method results in an almost two-fold increase in the immobilized L1 protein. L1 immobilized nanotextured surfaces showed a 100% increase in neurite outgrowth than smooth L1 immobilized surfaces without increasing the adhesion of astrocytes in vitro. The increased bioactivity observed in the cell assay was determined to be mainly due to the higher protein surface density, not the increase in surface roughness. In addition, we tested immobilization of a superoxide dismutase mimic (SODm) on smooth and roughened substrates. The SODm immobilized rough surfaces demonstrated an increase of 145% in superoxide scavenging activity compared to chemically matched smooth surfaces. These results not only show promise in improving biomimetic coating for neural implants, but may also improve surface immobilization efficacy in other fields such as catalysts, protein purification, sensors, and tissue engineering devices.
Collapse
Affiliation(s)
- K M Woeppel
- University of Pittsburgh, Department of Bioengineering, 5057 Biomedical Science Tower 3, 3501 Fifth Ave, Pittsburgh, Pa, 15213, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pa, 15213, USA
| | - X S Zheng
- University of Pittsburgh, Department of Bioengineering, 5057 Biomedical Science Tower 3, 3501 Fifth Ave, Pittsburgh, Pa, 15213, USA
| | - X T Cui
- University of Pittsburgh, Department of Bioengineering, 5057 Biomedical Science Tower 3, 3501 Fifth Ave, Pittsburgh, Pa, 15213, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pa, 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pa, 15213, USA
| |
Collapse
|
10
|
Jeffries RG, Lund L, Frankowski B, Federspiel WJ. An extracorporeal carbon dioxide removal (ECCO 2R) device operating at hemodialysis blood flow rates. Intensive Care Med Exp 2017; 5:41. [PMID: 28875449 PMCID: PMC5585119 DOI: 10.1186/s40635-017-0154-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/21/2017] [Indexed: 01/21/2023] Open
Abstract
Background Extracorporeal carbon dioxide removal (ECCO2R) systems have gained clinical appeal as supplemental therapy in the treatment of acute and chronic respiratory injuries with low tidal volume or non-invasive ventilation. We have developed an ultra-low-flow ECCO2R device (ULFED) capable of operating at blood flows comparable to renal hemodialysis (250 mL/min). Comparable operating conditions allow use of minimally invasive dialysis cannulation strategies with potential for direct integration to existing dialysis circuitry. Methods A carbon dioxide (CO2) removal device was fabricated with rotating impellers inside an annular hollow fiber membrane bundle to disrupt blood flow patterns and enhance gas exchange. In vitro gas exchange and hemolysis testing was conducted at hemodialysis blood flows (250 mL/min). Results In vitro carbon dioxide removal rates up to 75 mL/min were achieved in blood at normocapnia (pCO2 = 45 mmHg). In vitro hemolysis (including cannula and blood pump) was comparable to a Medtronic Minimax oxygenator control loop using a time-of-therapy normalized index of hemolysis (0.19 ± 0.04 g/100 min versus 0.12 ± 0.01 g/100 min, p = 0.169). Conclusions In vitro performance suggests a new ultra-low-flow extracorporeal CO2 removal device could be utilized for safe and effective CO2 removal at hemodialysis flow rates using simplified and minimally invasive connection strategies.
Collapse
Affiliation(s)
- R Garrett Jeffries
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, 3025 E Carson St, Suite 226, Pittsburgh, PA, 15203, USA
| | - Laura Lund
- ALung Technologies, Inc., 2500 Jane Street, Suite 1, Pittsburgh, PA, 15203, USA
| | - Brian Frankowski
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 3025 E Carson St, Suite 226, Pittsburgh, PA, 15203, USA
| | - William J Federspiel
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA. .,McGowan Institute for Regenerative Medicine, University of Pittsburgh, 3025 E Carson St, Suite 226, Pittsburgh, PA, 15203, USA. .,Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
11
|
May AG, Sen A, Cove ME, Kellum JA, Federspiel WJ. Extracorporeal CO 2 removal by hemodialysis: in vitro model and feasibility. Intensive Care Med Exp 2017; 5:20. [PMID: 28390055 PMCID: PMC5383917 DOI: 10.1186/s40635-017-0132-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/30/2017] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Critically ill patients with acute respiratory distress syndrome and acute exacerbations of chronic obstructive pulmonary disease often develop hypercapnia and require mechanical ventilation. Extracorporeal carbon dioxide removal can manage hypercarbia by removing carbon dioxide directly from the bloodstream. Respiratory hemodialysis uses traditional hemodialysis to remove CO2 from the blood, mainly as bicarbonate. In this study, Stewart's approach to acid-base chemistry was used to create a dialysate that would maintain blood pH while removing CO2 as well as determine the blood and dialysate flow rates necessary to remove clinically relevant CO2 volumes. METHODS Bench studies were performed using a scaled down respiratory hemodialyzer in bovine or porcine blood. The scaling factor for the bench top experiments was 22.5. In vitro dialysate flow rates ranged from 2.2 to 24 mL/min (49.5-540 mL/min scaled up) and blood flow rates were set at 11 and 18.7 mL/min (248-421 mL/min scaled up). Blood inlet CO2 concentrations were set at 50 and 100 mmHg. RESULTS Results are reported as scaled up values. The CO2 removal rate was highest at intermittent hemodialysis blood and dialysate flow rates. At an inlet pCO2 of 50 mmHg, the CO2 removal rate increased from 62.6 ± 4.8 to 77.7 ± 3 mL/min when the blood flow rate increased from 248 to 421 mL/min. At an inlet pCO2 of 100 mmHg, the device was able to remove up to 117.8 ± 3.8 mL/min of CO2. None of the test conditions caused the blood pH to decrease, and increases were ≤0.08. CONCLUSIONS When the bench top data is scaled up, the system removes a therapeutic amount of CO2 standard intermittent hemodialysis flow rates. The zero bicarbonate dialysate did not cause acidosis in the post-dialyzer blood. These results demonstrate that, with further development, respiratory hemodialysis can be a minimally invasive extracorporeal carbon dioxide removal treatment option.
Collapse
Affiliation(s)
- Alexandra G May
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, USA.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ayan Sen
- Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, USA.,Department of Critical Care Medicine, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Matthew E Cove
- Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, USA.,Division of Respiratory and Critical Care Medicine, Department of Medicine, National University of Singapore, Level 10, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - John A Kellum
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, USA.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - William J Federspiel
- Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, USA. .,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, USA. .,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|