1
|
Bandzerewicz A, Wierzchowski K, Mierzejewska J, Denis P, Gołofit T, Szymczyk-Ziółkowska P, Pilarek M, Gadomska-Gajadhur A. Biological Activity of Poly(1,3-propanediol citrate) Films and Nonwovens: Mechanical, Thermal, Antimicrobial, and Cytotoxicity Studies. Macromol Rapid Commun 2024; 45:e2300452. [PMID: 37838916 DOI: 10.1002/marc.202300452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/10/2023] [Indexed: 10/16/2023]
Abstract
Polymers are of great interest for medical and cosmeceutical applications. The current trend is to combine materials of natural and synthetic origin in order to obtain products with appropriate mechanical strength and good biocompatibility, additionally biodegradable and bioresorbable. Citric acid, being an important metabolite, is an interesting substance for the synthesis of materials for biomedical applications. Due to the high functionality of the molecule, it is commonly used in biomaterials chemistry as a crosslinking agent. Among citric acid-based biopolyesters, poly(1,8-octanediol citrate) is the best known. It shows application potential in soft tissue engineering. This work focuses on a much less studied polyester, poly(1,3-propanediol citrate). Porous and non-porous materials based on the synthesized polyesters are prepared and characterized, including mechanical, thermal, and surface properties, morphology, and degradation. The main focus is on assessing the biocompatibility and antimicrobial properties of the materials.
Collapse
Affiliation(s)
- Aleksandra Bandzerewicz
- Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego Street, Warsaw, 00-664, Poland
| | - Kamil Wierzchowski
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1 Street, Warsaw, 00-645, Poland
| | - Jolanta Mierzejewska
- Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego Street, Warsaw, 00-664, Poland
| | - Piotr Denis
- Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research Polish Academy of Sciences, Pawińskiego 5B Street, Warsaw, 02-106, Poland
| | - Tomasz Gołofit
- Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego Street, Warsaw, 00-664, Poland
| | - Patrycja Szymczyk-Ziółkowska
- Centre for Advanced Manufacturing Technologies-Fraunhofer Project Center, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, Lukasiewicza 5, Wroclaw, 50-371, Poland
| | - Maciej Pilarek
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1 Street, Warsaw, 00-645, Poland
| | | |
Collapse
|
2
|
Smola-Dmochowska A, Lewicka K, Macyk A, Rychter P, Pamuła E, Dobrzyński P. Biodegradable Polymers and Polymer Composites with Antibacterial Properties. Int J Mol Sci 2023; 24:ijms24087473. [PMID: 37108637 PMCID: PMC10138923 DOI: 10.3390/ijms24087473] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Antibiotic resistance is one of the greatest threats to global health and food security today. It becomes increasingly difficult to treat infectious disorders because antibiotics, even the newest ones, are becoming less and less effective. One of the ways taken in the Global Plan of Action announced at the World Health Assembly in May 2015 is to ensure the prevention and treatment of infectious diseases. In order to do so, attempts are made to develop new antimicrobial therapeutics, including biomaterials with antibacterial activity, such as polycationic polymers, polypeptides, and polymeric systems, to provide non-antibiotic therapeutic agents, such as selected biologically active nanoparticles and chemical compounds. Another key issue is preventing food from contamination by developing antibacterial packaging materials, particularly based on degradable polymers and biocomposites. This review, in a cross-sectional way, describes the most significant research activities conducted in recent years in the field of the development of polymeric materials and polymer composites with antibacterial properties. We particularly focus on natural polymers, i.e., polysaccharides and polypeptides, which present a mechanism for combating many highly pathogenic microorganisms. We also attempt to use this knowledge to obtain synthetic polymers with similar antibacterial activity.
Collapse
Affiliation(s)
- Anna Smola-Dmochowska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marii Curie-Skłodowskiej Str., 41-819 Zabrze, Poland
| | - Kamila Lewicka
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Alicja Macyk
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
| | - Piotr Rychter
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| | - Elżbieta Pamuła
- Department of Biomaterials and Composites, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Kraków, Poland
| | - Piotr Dobrzyński
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Marii Curie-Skłodowskiej Str., 41-819 Zabrze, Poland
- Faculty of Science and Technology, Jan Dlugosz University in Czestochowa, 13/15 Armii Krajowej Av., 42-200 Czestochowa, Poland
| |
Collapse
|
3
|
Goldmann WH. Biosensitive and antibacterial coatings on metallic material for medical applications. Cell Biol Int 2021; 45:1624-1632. [PMID: 33818836 DOI: 10.1002/cbin.11604] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/01/2021] [Indexed: 11/09/2022]
Abstract
Metallic materials are commonly used for load-bearing implants and as internal fixation devices. It is customary to use austenitic stainless steel, especially surgical grade type 316L SS as temporary and Ti alloys as permanent implants. However, long-term, poor bonding with bone, corrosion, and release of metal ions, such as chromium and nickel occur. These ions are powerful allergens and carcinogens and their uncontrolled leaching may be avoided by surface coatings. Therefore, bioactive glasses (BGs) became a vital biomedical material, which can form a biologically active phase of hydroxycarbonate apatite on their surface when in contact with physiological fluids. To reduce the high coefficient of friction and the brittle nature of BGs, polymers are normally incorporated to avoid the high-temperature sintering/densification of ceramic-only coatings. For medical application, electrophoretic deposition (EPD) is now used for polymer (organic) and ceramic (inorganic) components at room temperature due to its simplicity, control of coating thickness and uniformity, low cost of equipment, ability to coat substrates of intricate shape and to supply thick films in composite form, high purity of deposits as well as no phase transformation during coating. Although extensive research has been conducted on polymer/inorganic composite coatings, only some studies have reported multifunctional properties, such as biological antibacterial activity, enhanced cell adhesion, controlled drug release ability, and mechanical properties. This review will focus on biodegradable coatings, including zien, chitosan, gelatin, cellulose loaded with antibacterial drugs/metallic ions/natural herbs on biostable substrates (PEEK/PMMA/PCL/PLLA layers), which have the potential of multifunctional coating for metallic implants.
Collapse
Affiliation(s)
- Wolfgang H Goldmann
- Department of Biophysics, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
4
|
Aydemir T, Liverani L, Pastore JI, Ceré SM, Goldmann WH, Boccaccini AR, Ballarre J. Functional behavior of chitosan/gelatin/silica-gentamicin coatings by electrophoretic deposition on surgical grade stainless steel. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111062. [DOI: 10.1016/j.msec.2020.111062] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/18/2020] [Accepted: 05/05/2020] [Indexed: 02/08/2023]
|
5
|
The Functional Properties of Mg-Zn-X Biodegradable Magnesium Alloys. MATERIALS 2020; 13:ma13030544. [PMID: 31979227 PMCID: PMC7040658 DOI: 10.3390/ma13030544] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 11/17/2022]
Abstract
The implantation of metallic devices in orthopaedic surgical procedures and coronary angioplasty is associated with the risk of various adverse events: (i) mechanical (premature failure), (ii) chemo-mechanical (corrosion and corrosion-fatigue degradation) and (iii) biomedical (chronic local inflammatory reactions, tissue necrosis, etc.). In this regard, the development of biodegradable implants/stents, which provide the necessary mechanical support for the healing period of the bone or the vessel wall and then are completely resorbed, has bright prospects. Magnesium alloys are the most suitable candidates for that purpose due to their superior mechanical performance, bioresorbability and biocompatibility. This article presents the results of the comparative research on several wrought biodegradable alloys, assessing their potential for biomedical applications. The Mg-Zn-X alloys with different chemical compositions and microstructures were produced using severe plastic deformation techniques. Functional properties pivotal for biomedical applications-mechanical strength, in vitro corrosion resistance and cytotoxic activity-were included in the focus of the study. Excellent mechanical performance and low cytotoxic effects are documented for all alloys with a notable exception for one of two Mg-Zn-Zr alloys. The in vitro corrosion resistance is, however, below expectations due to critical impurities, and this property has yet to be drastically improved through the cleaner materials fabrication processing before they can be considered for biomedical applications.
Collapse
|
6
|
Uskoković V, Tang S, Nikolić MG, Marković S, Wu VM. Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: In search of the key particle property. Biointerphases 2019; 14:031001. [PMID: 31109162 PMCID: PMC6527436 DOI: 10.1116/1.5090396] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/08/2019] [Accepted: 05/06/2019] [Indexed: 01/10/2023] Open
Abstract
One of the main goals of materials science in the 21st century is the development of materials with rationally designed properties as substitutes for traditional pharmacotherapies. At the same time, there is a lack of understanding of the exact material properties that induce therapeutic effects in biological systems, which limits their rational optimization for the related medical applications. This study sets the foundation for a general approach for elucidating nanoparticle properties as determinants of antibacterial activity, with a particular focus on calcium phosphate nanoparticles. To that end, nine physicochemical effects were studied and a number of them were refuted, thus putting an end to frequently erred hypotheses in the literature. Rather than having one key particle property responsible for eliciting the antibacterial effect, a complex synergy of factors is shown to be at work, including (a) nanoscopic size; (b) elevated intracellular free calcium levels due to nanoparticle solubility; (c) diffusivity and favorable electrostatic properties of the nanoparticle surface, primarily low net charge and high charge density; and (d) the dynamics of perpetual exchange of ultrafine clusters across the particle/solution interface. On the positive side, this multifaceted mechanism is less prone to induce bacterial resistance to the therapy and can be a gateway to the sphere of personalized medicine. On a more problematic side, it implies a less intense effect compared to single-target molecular therapies and a difficulty of elucidating the exact mechanisms of action, while also making the rational design of theirs for this type of medical application a challenge.
Collapse
Affiliation(s)
- Vuk Uskoković
- Department of Bioengineering, University of Illinois, Chicago, Illinois 60607-7052
| | - Sean Tang
- Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, Chapman University, Irvine, California 92618-1908
| | - Marko G Nikolić
- Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Smilja Marković
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts (SASA), Knez Mihailova 35/IV, 11000 Belgrade, Serbia
| | - Victoria M Wu
- Advanced Materials and Nanobiotechnology Laboratory, Department of Biomedical and Pharmaceutical Sciences, Center for Targeted Drug Delivery, Chapman University, Irvine, California 92618-1908
| |
Collapse
|