1
|
Liu S, Simińska-Stanny J, Yan L, Fan L, Ding X, Ma T, Guo W, Zhao Y, Li M, Chen J, Okoro OV, Shavandi A, Nie L. Bioactive ECM-mimicking nerve guidance conduit for enhancing peripheral nerve repair. Mater Today Bio 2024; 29:101324. [PMID: 39649251 PMCID: PMC11621582 DOI: 10.1016/j.mtbio.2024.101324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/10/2024] [Accepted: 10/31/2024] [Indexed: 12/10/2024] Open
Abstract
Extensive research efforts are being directed towards identifying alternatives to autografts for the treatment of peripheral nerve injuries (PNIs) with engineered nerve conduits (NGCs) identified as having potential for PNI patients. These NGCs, however, may not fulfill the necessary criteria for a successful transplant, such as sufficient mechanical structural support and functionalization. To address the aforementioned limitations of NGCs, the present investigation explored the development of double cross-linked hydrogels (o-CSMA-E) that integrate the biocompatibility of porcine tendon extracellular matrix (ECM) with the antimicrobial and conductive properties of methacrylated quaternary chitosan. The hydrogels had matrices that could promote the growth of axons and the transmission of neural signals. The hydrogels were subsequently incorporated into a nanofibrous PLLA-ZnO sheath scaffold (ZnO@PLLA) to emulate the natural nerve structure, guiding cell growth and facilitating nerve regeneration. The collaboration of core and sheath materials in ZnO@PLLA/o-CSMA-E nerve guidance conduits resulted in enhanced migration of Schwann cells, formation of myelin sheaths, and improved locomotion performance in rats with sciatic nerve defects when in vivo studies were undertaken. Notably, the in vivo studies demonstrated the similarity between the newly developed engineered NGCs and autologous transplants, with the newly engineered NGCs possessing the potential to promote functional recovery by mimicking the tubular structure and ECM of nerves.
Collapse
Affiliation(s)
- Shuang Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Julia Simińska-Stanny
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Lizhao Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lihong Fan
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaoyue Ding
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Tengda Ma
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Wei Guo
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Yingsong Zhao
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ming Li
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, 430070, China
| | - Jianghai Chen
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Oseweuba Valentine Okoro
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Armin Shavandi
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Lei Nie
- Université Libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO-BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
- College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| |
Collapse
|
2
|
Liu K, Tang W, Jin S, Hao X, Hu Y, Zhou T, Zhou C, Chen G, Cui Y, Liu Q, Zhang Z. PLCL/SF/NGF nerve conduit loaded with RGD-TA-PPY hydrogel promotes regeneration of sciatic nerve defects in rats through PI3K/AKT signalling pathways. J Cell Mol Med 2024; 28:e18544. [PMID: 39098996 PMCID: PMC11298313 DOI: 10.1111/jcmm.18544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/27/2024] [Accepted: 07/11/2024] [Indexed: 08/06/2024] Open
Abstract
Peripheral nerve defect are common clinical problem caused by trauma or other diseases, often leading to the loss of sensory and motor function in patients. Autologous nerve transplantation has been the gold standard for repairing peripheral nerve defects, but its clinical application is limited due to insufficient donor tissue. In recent years, the application of tissue engineering methods to synthesize nerve conduits for treating peripheral nerve defect has become a current research focus. This study introduces a novel approach for treating peripheral nerve defects using a tissue-engineered PLCL/SF/NGF@TA-PPy-RGD conduit. The conduit was fabricated by combining electrospun PLCL/SF with an NGF-loaded conductive TA-PPy-RGD gel. The gel, synthesized from RGD-modified tannic acid (TA) and polypyrrole (PPy), provides growth anchor points for nerve cells. In vitro results showed that this hybrid conduit could enhance PC12 cell proliferation, migration, and reduce apoptosis under oxidative stress. Furthermore, the conduit activated the PI3K/AKT signalling pathway in PC12 cells. In a rat model of sciatic nerve defect, the PLCL/SF/NGF@TA-PPy-RGD conduit significantly improved motor function, gastrocnemius muscle function, and myelin sheath axon thickness, comparable to autologous nerve transplantation. It also promoted angiogenesis around the nerve defect. This study suggests that PLCL/SF/NGF@TA-PPy-RGD conduits provide a conducive environment for nerve regeneration, offering a new strategy for peripheral nerve defect treatment, this study provided theoretical basis and new strategies for the research and treatment of peripheral nerve defect.
Collapse
Affiliation(s)
- Kunyu Liu
- Department of OrthopedicThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Weilong Tang
- Department of OrthopedicThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Shixin Jin
- Department of OrthopedicThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Xin Hao
- Department of OrthopedicThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yuhang Hu
- Department of OrthopedicThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Tianyi Zhou
- Department of OrthopedicThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Chenliang Zhou
- Department of OrthopedicThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Guanghua Chen
- Department of OrthopedicThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yifeng Cui
- Department of Hepatic SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Qianqi Liu
- Department of UltrasoundThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Zhenyu Zhang
- Department of OrthopedicThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| |
Collapse
|
3
|
Liu K, Yan S, Liu Y, Liu J, Li R, Zhao L, Liu B. Conductive and alignment-optimized porous fiber conduits with electrical stimulation for peripheral nerve regeneration. Mater Today Bio 2024; 26:101064. [PMID: 38698883 PMCID: PMC11063606 DOI: 10.1016/j.mtbio.2024.101064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024] Open
Abstract
Autologous nerve transplantation (ANT) is currently considered the gold standard for treating long-distance peripheral nerve defects. However, several challenges associated with ANT, such as limited availability of donors, donor site injury, mismatched nerve diameters, and local neuroma formation, remain unresolved. To address these issues comprehensively, we have developed porous poly(lactic-co-glycolic acid) (PLGA) electrospinning fiber nerve guide conduits (NGCs) that are optimized in terms of alignment and conductive coating to facilitate peripheral nerve regeneration (PNR) under electrical stimulation (ES). The physicochemical and biological properties of aligned porous PLGA fibers and poly(3,4-ethylenedioxythiophene):polystyrene sodium sulfonate (PEDOT:PSS) coatings were characterized through assessments of electrical conductivity, surface morphology, mechanical properties, hydrophilicity, and cell proliferation. Material degradation experiments demonstrated the biocompatibility in vivo of electrospinning fiber films with conductive coatings. The conductive NGCs combined with ES effectively facilitated nerve regeneration. The designed porous aligned NGCs with conductive coatings exhibited suitable physicochemical properties and excellent biocompatibility, thereby significantly enhancing PNR when combined with ES. This combination of porous aligned NGCs with conductive coatings and ES holds great promise for applications in the field of PNR.
Collapse
Affiliation(s)
- Kai Liu
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, China
- Engineering Laboratory of Tissue Engineering Biomaterials of Jilin Province, Changchun, 130021, China
| | - Shuai Yan
- Department of Operating Room, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yao Liu
- Engineering Laboratory of Tissue Engineering Biomaterials of Jilin Province, Changchun, 130021, China
- Department of Sport Medicine, Orthopedics Center, First Hospital of Jilin University, Changchun, 130021, China
| | - Jianfeng Liu
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, China
- Engineering Laboratory of Tissue Engineering Biomaterials of Jilin Province, Changchun, 130021, China
| | - Ruijun Li
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, China
- Engineering Laboratory of Tissue Engineering Biomaterials of Jilin Province, Changchun, 130021, China
| | - Lirong Zhao
- Department of Ultrasound, The First Hospital of Jilin University, Changchun, 130021, China
| | - Bin Liu
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, 130021, China
- Engineering Laboratory of Tissue Engineering Biomaterials of Jilin Province, Changchun, 130021, China
| |
Collapse
|
4
|
Gao H, Liu Y, Guan W, Sun S, Zheng T, Wu L, Li G. Surface topologized ovalbumin scaffolds containing YIGSR peptides for modulating Schwann cell behavior. Int J Biol Macromol 2023; 253:127015. [PMID: 37758111 DOI: 10.1016/j.ijbiomac.2023.127015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023]
Abstract
Peripheral nerve injuries (PNI) currently have limited therapeutic efficacy, and functional scaffolds have been shown to be effective for treating PNI. Ovalbumin (OVA) is widely used as a natural biomaterial for repairing damaged tissues due to its excellent biocompatibility and the presence of various bioactive components. However, there are few reports on the repair of PNI by ovalbumin. In this study, a novel bionic functionalized topological scaffold based on ovalbumin and grafted with tyrosine-isoleucine-glycine-serine-arginine (YIGSR) peptide was constructed by micro-molding method and surface-biomodification technology. The scaffolds were subjected to a series of evaluations in terms of morphology, mechanics, hydrophilicity, and biocompatibility, and the related molecular mechanisms were further penetrated. The results showed that the scaffolds prepared in this study had aligned ridge/groove structure, good mechanical properties and biocompatibility, and could be used as carriers to slowly release YIGSR, which effectively promoted the proliferation, migration and elongation of Schwann Cells (SCs), and significantly up-regulated the gene expression related to proliferation, apoptosis, migration and axon regeneration. Therefore, the bionic functional topological scaffold has significant application potential for promoting peripheral nerve regeneration and provides a new therapeutic option for repairing PNI.
Collapse
Affiliation(s)
- Hongxia Gao
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Yaqiong Liu
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Wenchao Guan
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Shaolan Sun
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Tiantian Zheng
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Linliang Wu
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Guicai Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, Chongqing 400038, China; Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China.
| |
Collapse
|
5
|
Zheng S, Wei H, Cheng H, Qi Y, Gu Y, Ma X, Sun J, Ye F, Guo F, Cheng C. Advances in nerve guidance conduits for peripheral nerve repair and regeneration. AMERICAN JOURNAL OF STEM CELLS 2023; 12:112-123. [PMID: 38213640 PMCID: PMC10776341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/02/2023] [Indexed: 01/13/2024]
Abstract
Peripheral nerve injury (PNI) can cause partial or total motor and sensory nerve function, leading to physical disability and nerve pain that severely affects patients' quality of life. Autologous nerve transplantation is currently the clinically recognized gold standard, but due to its inherent limitations, researchers have been searching for alternative treatments. Nerve guidance conduits (NGCs) have attracted much attention as a favorable alternative to promote the repair and regeneration of damaged peripheral nerves. In this review, we provide an overview of the anatomy of peripheral nerves, peripheral nerve injury and repair, and current treatment methods. Importantly, different design strategies of NGCs used for the treatment of PNI and their applications in PNI repair are highlighted. Finally, an outlook on the future development and challenges of NGCs is presented.
Collapse
Affiliation(s)
- Shasha Zheng
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)Nanjing 210003, Jiangsu, China
| | - Hao Wei
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)Nanjing 210003, Jiangsu, China
| | - Hong Cheng
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)Nanjing 210003, Jiangsu, China
| | - Yanru Qi
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)Nanjing 210003, Jiangsu, China
| | - Yajun Gu
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)Nanjing 210003, Jiangsu, China
| | - Xiaofeng Ma
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)Nanjing 210003, Jiangsu, China
| | - Jiaqiang Sun
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefei 230001, Anhui, China
| | - Fanglei Ye
- Department of Otology, The First Affiliated Hospital of Zhengzhou UniversityZhengzhou 450000, Henan, China
| | - Fangfang Guo
- Department of Plastic and Reconstruction Surgery, Zhongda Hospital, Southeast UniversityNanjing 210009, Jiangsu, China
| | - Cheng Cheng
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory)Nanjing 210003, Jiangsu, China
| |
Collapse
|
6
|
Mahdian M, Tabatabai TS, Abpeikar Z, Rezakhani L, Khazaei M. Nerve regeneration using decellularized tissues: challenges and opportunities. Front Neurosci 2023; 17:1295563. [PMID: 37928728 PMCID: PMC10620322 DOI: 10.3389/fnins.2023.1295563] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
In tissue engineering, the decellularization of organs and tissues as a biological scaffold plays a critical role in the repair of neurodegenerative diseases. Various protocols for cell removal can distinguish the effects of treatment ability, tissue structure, and extracellular matrix (ECM) ability. Despite considerable progress in nerve regeneration and functional recovery, the slow regeneration and recovery potential of the central nervous system (CNS) remains a challenge. The success of neural tissue engineering is primarily influenced by composition, microstructure, and mechanical properties. The primary objective of restorative techniques is to guide existing axons properly toward the distal end of the damaged nerve and the target organs. However, due to the limitations of nerve autografts, researchers are seeking alternative methods with high therapeutic efficiency and without the limitations of autograft transplantation. Decellularization scaffolds, due to their lack of immunogenicity and the preservation of essential factors in the ECM and high angiogenic ability, provide a suitable three-dimensional (3D) substrate for the adhesion and growth of axons being repaired toward the target organs. This study focuses on mentioning the types of scaffolds used in nerve regeneration, and the methods of tissue decellularization, and specifically explores the use of decellularized nerve tissues (DNT) for nerve transplantation.
Collapse
Affiliation(s)
- Maryam Mahdian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tayebeh Sadat Tabatabai
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Zahra Abpeikar
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|