1
|
Han B, Yang J, Zhang Z. Selective Methods Promote Protein Solid-State NMR. J Phys Chem Lett 2024; 15:11300-11311. [PMID: 39495892 DOI: 10.1021/acs.jpclett.4c02841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Solid-state nuclear magnetic resonance (ssNMR) is indispensable for studying the structures, dynamics, and interactions of insoluble proteins in native or native-like environments. While ssNMR includes numerous nonselective techniques for general analysis, it also provides various selective methods that allow for the extraction of precise details about proteins. This perspective highlights three key aspects of selective methods: selective signals of protein segments, selective recoupling, and site-specific insights into proteins. These methods leverage protein topology, labeling strategies, and the tailored manipulation of spin interactions through radio frequency (RF) pulses, significantly promoting the field of protein ssNMR. With ongoing advancements in higher magnetic fields and faster magic angle spinning (MAS), there remains an ongoing need to enhance the selectivity and efficiency of selective ssNMR methods, facilitating deeper atomic-level insights into complex biological systems.
Collapse
Affiliation(s)
- Bin Han
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Jun Yang
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Zhengfeng Zhang
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
2
|
A R, Wang H, Nie C, Han Z, Zhou M, Atinuke OO, Wang K, Wang X, Liu S, Zhao J, Qiao W, Sun X, Wu L, Sun X. Glycerol-weighted chemical exchange saturation transfer nanoprobes allow 19F /1H dual-modality magnetic resonance imaging-guided cancer radiotherapy. Nat Commun 2023; 14:6644. [PMID: 37863898 PMCID: PMC10589257 DOI: 10.1038/s41467-023-42286-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023] Open
Abstract
Recently, radiotherapy (RT) has entered a new realm of precision cancer therapy with the introduction of magnetic resonance (MR) imaging guided radiotherapy systems into the clinic. Nonetheless, identifying an optimized radiotherapy time window (ORTW) is still critical for the best therapeutic efficacy of RT. Here we describe pH and O2 dual-sensitive, perfluorooctylbromide (PFOB)-based and glycerol-weighted chemical exchange saturation transfer (CEST) nano-molecular imaging probes (Gly-PFOBs) with dual fluorine and hydrogen proton based CEST MR imaging properties (19F/1H-CEST). Oxygenated Gly-PFOBs ameliorate tumor hypoxia and improve O2-dependent radiotherapy. Moreover, the pH and O2 dual-sensitive properties of Gly-PFOBs could be quantitatively, spatially, and temporally monitored by 19F/1H-CEST imaging to optimize ORTW. In this study, we describe the CEST signal characteristics exhibited by the glycerol components of Gly-PFOBs. The pH and O2 dual-sensitive Gly-PFOBs with19F/1H-CEST MR dual-modality imaging properties, with superior therapeutic efficacy and biosafety, are employed for sensitive imaging-guided lung cancer RT, illustrating the potential of multi-functional imaging to noninvasively monitor and enhance RT-integrated effectiveness.
Collapse
Affiliation(s)
- Rong A
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Heilongjiang Province, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Heilongjiang Province, China
| | - Haoyu Wang
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Heilongjiang Province, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Heilongjiang Province, China
| | - Chaoqun Nie
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Heilongjiang Province, China
| | - Zhaoguo Han
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Heilongjiang Province, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Heilongjiang Province, China
| | - Meifang Zhou
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Heilongjiang Province, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Heilongjiang Province, China
| | - Olagbaju Oluwatosin Atinuke
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Heilongjiang Province, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Heilongjiang Province, China
| | - Kaiqi Wang
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Heilongjiang Province, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Heilongjiang Province, China
| | - Xiance Wang
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Heilongjiang Province, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Heilongjiang Province, China
| | - Shuang Liu
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Heilongjiang Province, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Heilongjiang Province, China
| | - Jingshi Zhao
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Heilongjiang Province, China
| | - Wenju Qiao
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Heilongjiang Province, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Heilongjiang Province, China
| | - Xiaohong Sun
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Heilongjiang Province, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Heilongjiang Province, China
| | - Lina Wu
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Heilongjiang Province, China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Heilongjiang Province, China
| | - Xilin Sun
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Heilongjiang Province, China.
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Heilongjiang Province, China.
| |
Collapse
|
3
|
Dregni AJ, Duan P, Hong M. Hydration and Dynamics of Full-Length Tau Amyloid Fibrils Investigated by Solid-State Nuclear Magnetic Resonance. Biochemistry 2020; 59:2237-2248. [PMID: 32453948 PMCID: PMC7720860 DOI: 10.1021/acs.biochem.0c00342] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The microtubule-associated protein tau aggregates into distinct neurofibrillary tangles in brains afflicted with multiple neurodegenerative diseases such as Alzheimer's disease and corticobasal degeneration (CBD). The mechanism of tau misfolding and aggregation is poorly understood. Determining the structure, dynamics, and water accessibility of tau filaments may provide insight into the pathway of tau misfolding. Here, we investigate the hydration and dynamics of the β-sheet core of heparin-fibrillized 0N4R tau using solid-state nuclear magnetic resonance spectroscopy. This β-sheet core consists of the second and third microtubule-binding repeats, R2 and R3, respectively, which form a hairpin. Water-edited two-dimensional (2D) 13C-13C and 15N-13C correlation spectra show that most residues in R2 and R3 domains have low water accessibility, indicating that this hairpin is surrounded by other proteinaceous segments. However, a small number of residues, especially S285 and S316, are well hydrated compared to other Ser and Thr residues, suggesting that there is a small water channel in the middle of the hairpin. To probe whether water accessibility correlates with protein dynamics, we measured the backbone N-H dipolar couplings of the β-sheet core. Interestingly, residues in the fourth microtubule-binding repeat, R4, show rigid-limit N-H dipolar couplings, even though this domain exhibits weaker intensities in the 2D 15N-13C correlation spectra. These results suggest that the R4 domain participates in cross-β hydrogen bonding in some of the subunits but exhibits dynamic disorder in other subunits. Taken together, these hydration and dynamics data indicate that the R2-R3 hairpin of 0N4R tau is shielded from water by other proteinaceous segments on the exterior but contains a small water pore in the interior. This structural topology has various similarities with the CBD tau fibril structure but also shows specific differences. The disorder of the R4 domain and the presence of a small water channel in the heparin-fibrillized 4R tau have implications for the structure of tau fibrils in diseased brains.
Collapse
Affiliation(s)
| | | | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| |
Collapse
|
4
|
Murray DT, Tycko R. Side Chain Hydrogen-Bonding Interactions within Amyloid-like Fibrils Formed by the Low-Complexity Domain of FUS: Evidence from Solid State Nuclear Magnetic Resonance Spectroscopy. Biochemistry 2020; 59:364-378. [PMID: 31895552 DOI: 10.1021/acs.biochem.9b00892] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In aqueous solutions, the 214-residue low-complexity domain of the FUS protein (FUS-LC) is known to undergo liquid-liquid phase separation and also to self-assemble into amyloid-like fibrils. In previous work based on solid state nuclear magnetic resonance (ssNMR) methods, a structural model for the FUS-LC fibril core was developed, showing that residues 39-95 form the fibril core. Unlike fibrils formed by amyloid-β peptides, α-synuclein, and other amyloid-forming proteins, the FUS-LC core is largely devoid of purely hydrophobic amino acid side chains. Instead, the core-forming segment contains numerous hydroxyl-bearing residues, including 18 serines, six threonines, and eight tyrosines, suggesting that the FUS-LC fibril structure may be stabilized in part by inter-residue hydrogen bonds among side chain hydroxyl groups. Here we describe ssNMR measurements, performed on 2H,15N,13C-labeled FUS-LC fibrils, that provide new information about the interactions of hydroxyl-bearing residues with one another and with water. The ssNMR data support the involvement of specific serine, threonine, and tyrosine residues in hydrogen-bonding interactions. The data also reveal differences in hydrogen exchange rates with water for different side chain hydroxyl groups, providing information about solvent exposure and penetration of water into the FUS-LC fibril core.
Collapse
Affiliation(s)
- Dylan T Murray
- Department of Chemistry , University of California , Davis , California 95616-5271 , United States
| | - Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases , National Institutes of Health , Bethesda , Maryland 20892-0520 , United States
| |
Collapse
|
5
|
Qin H, Miao Y, Cross TA, Fu R. Beyond Structural Biology to Functional Biology: Solid-State NMR Experiments and Strategies for Understanding the M2 Proton Channel Conductance. J Phys Chem B 2017; 121:4799-4809. [PMID: 28425709 DOI: 10.1021/acs.jpcb.7b02468] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In terms of structural biology, solid-state NMR experiments and strategies have been well established for resonance assignments, leading to the determination of three-dimensional structures of insoluble membrane proteins in their native-like environment. It is also known that NMR has the unique capabilities to characterize structure-function relationships of membrane-bound biological systems beyond structural biology. Here, we report on solid-state NMR experiments and strategies for extracting functional activities on a sub-millisecond time scale. Specifically, we use the His37-labeled full length M2 (M2FL) protein of the Influenza A virus embedded in synthetic lipid bilayers as an example to characterize the proton conduction mechanism and kinetics. The integral membrane M2 protein assembles as a tetrameric bundle to form a proton-conducting channel that is activated by low pH and is essential for the viral lifecycle. Our results present convincing evidence for the formation of imidazolium-imidazole hydrogen bonds in the His37 tetrad at low pH and that these hydrogen bonds have a low barrier that facilitates the proton conduction mechanism in the M2FL protein. Moreover, it has been possible to measure hydronium ion exchange between water and the protons in the His37 NH bonds based on chemical exchange spectroscopy with minimized spin diffusion. The results identify an exchange rate constant of ∼4000 s-1 for pH 5.8 at -10 °C.
Collapse
Affiliation(s)
- Huajun Qin
- Department of Chemistry and Biochemistry, Florida State University , Tallahassee, Florida 32306, United States
| | - Yimin Miao
- Department of Chemistry and Biochemistry, Florida State University , Tallahassee, Florida 32306, United States
| | - Timothy A Cross
- Department of Chemistry and Biochemistry, Florida State University , Tallahassee, Florida 32306, United States.,National High Magnet Field Lab , 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Riqiang Fu
- National High Magnet Field Lab , 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| |
Collapse
|
6
|
Bauer T, Gath J, Hunkeler A, Ernst M, Böckmann A, Meier BH. Hexagonal ice in pure water and biological NMR samples. JOURNAL OF BIOMOLECULAR NMR 2017; 67:15-22. [PMID: 28028745 DOI: 10.1007/s10858-016-0080-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/07/2016] [Indexed: 06/06/2023]
Abstract
Ice, in addition to "liquid" water and protein, is an important component of protein samples for NMR spectroscopy at subfreezing temperatures but it has rarely been observed spectroscopically in this context. We characterize its spectroscopic behavior in the temperature range from 100 to 273 K, and find that it behaves like pure water ice. The interference of magic-angle spinning (MAS) as well as rf multiple-pulse sequences with Bjerrum-defect motion greatly influences the ice spectra.
Collapse
Affiliation(s)
- Thomas Bauer
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Julia Gath
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Andreas Hunkeler
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland
| | - Matthias Ernst
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS, Université de Lyon 1, 7 passage du Vercors, 69367, Lyon, France.
| | - Beat H Meier
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093, Zurich, Switzerland.
| |
Collapse
|
7
|
Fu R, Miao Y, Qin H, Cross TA. Probing Hydronium Ion Histidine NH Exchange Rate Constants in the M2 Channel via Indirect Observation of Dipolar-Dephased 15N Signals in Magic-Angle-Spinning NMR. J Am Chem Soc 2016; 138:15801-15804. [PMID: 27960325 PMCID: PMC5368641 DOI: 10.1021/jacs.6b08376] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Water-protein chemical exchange in membrane-bound proteins is an important parameter for understanding how proteins interact with their aqueous environment, but has been difficult to observe in membrane-bound biological systems. Here, we demonstrate the feasibility of probing specific water-protein chemical exchange in membrane-bound proteins in solid-state MAS NMR. By spin-locking the 1H magnetization along the magic angle, the 1H spin diffusion is suppressed such that a water-protein chemical exchange process can be monitored indirectly by dipolar-dephased 15N signals through polarization transfer from 1H. In the example of the Influenza A full length M2 protein, the buildup of dipolar-dephased 15N signals from the tetrad of His37 side chains have been observed as a function of spin-lock time. This confirms that hydronium ions are in exchange with protons in the His37 NH bonds at the heart of the M2 proton conduction mechanism, with an exchange rate constant of ∼1750 s-1 for pH 6.2 at -10 °C.
Collapse
Affiliation(s)
- Riqiang Fu
- National High Magnet Field Lab, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
| | - Yimin Miao
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Huajun Qin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Timothy A. Cross
- National High Magnet Field Lab, 1800 East Paul Dirac Drive, Tallahassee, Florida 32310, United States
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
8
|
Mote KR, Agarwal V, Madhu PK. Five decades of homonuclear dipolar decoupling in solid-state NMR: Status and outlook. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2016; 97:1-39. [PMID: 27888838 DOI: 10.1016/j.pnmrs.2016.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/11/2016] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
It has been slightly more than fifty years since the first homonuclear spin decoupling scheme, Lee-Goldburg decoupling, was proposed for removing homonuclear dipolar interactions in solid-state nuclear magnetic resonance. A family of such schemes has made observation of high-resolution NMR spectra of abundant spins possible in various applications in solid state. This review outlines the strategies used in this field and the future prospects of homonuclear spin decoupling in solid-state NMR.
Collapse
Affiliation(s)
- Kaustubh R Mote
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| | - Vipin Agarwal
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| | - P K Madhu
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India; Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| |
Collapse
|
9
|
Sergeyev IV, Bahri S, Day LA, McDermott AE. Pf1 bacteriophage hydration by magic angle spinning solid-state NMR. J Chem Phys 2015; 141:22D533. [PMID: 25494804 DOI: 10.1063/1.4903230] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
High resolution two- and three-dimensional heteronuclear correlation spectroscopy ((1)H-(13)C, (1)H-(15)N, and (1)H-(13)C-(13)C HETCOR) has provided a detailed characterization of the internal and external hydration water of the Pf1 virion. This long and slender virion (2000 nm × 7 nm) contains highly stretched DNA within a capsid of small protein subunits, each only 46 amino acid residues. HETCOR cross-peaks have been unambiguously assigned to 25 amino acids, including most external residues 1-21 as well as residues 39-40 and 43-46 deep inside the virion. In addition, the deoxyribose rings of the DNA near the virion axis are in contact with water. The sets of cross-peaks to the DNA and to all 25 amino acid residues were from the same hydration water (1)H resonance; some of the assigned residues do not have exchangeable side-chain protons. A mapping of the contacts onto structural models indicates the presence of water "tunnels" through a highly hydrophobic region of the capsid. The present results significantly extend and modify results from a lower resolution study, and yield a comprehensive hydration surface map of Pf1. In addition, the internal water could be distinguished from external hydration water by means of paramagnetic relaxation enhancement. The internal water population may serve as a conveniently localized magnetization reservoir for structural studies.
Collapse
Affiliation(s)
- Ivan V Sergeyev
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - Salima Bahri
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| | - Loren A Day
- Public Health Research Institute, Rutgers University, 225 Warren St., Newark, New Jersey 07103, USA
| | - Ann E McDermott
- Department of Chemistry, Columbia University, 3000 Broadway, New York, New York 10027, USA
| |
Collapse
|
10
|
Ivanir-Dabora H, Nimerovsky E, Madhu PK, Goldbourt A. Site-Resolved Backbone and Side-Chain Intermediate Dynamics in a Carbohydrate-Binding Module Protein Studied by Magic-Angle Spinning NMR Spectroscopy. Chemistry 2015; 21:10778-85. [DOI: 10.1002/chem.201500856] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Indexed: 12/12/2022]
|
11
|
Abramov G, Morag O, Goldbourt A. Magic-angle spinning NMR of intact bacteriophages: insights into the capsid, DNA and their interface. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 253:80-90. [PMID: 25797007 DOI: 10.1016/j.jmr.2015.01.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 01/05/2015] [Accepted: 01/18/2015] [Indexed: 06/04/2023]
Abstract
Bacteriophages are viruses that infect bacteria. They are complex macromolecular assemblies, which are composed of multiple protein subunits that protect genomic material and deliver it to specific hosts. Various biophysical techniques have been used to characterize their structure in order to unravel phage morphogenesis. Yet, most bacteriophages are non-crystalline and have very high molecular weights, in the order of tens of MegaDaltons. Therefore, complete atomic-resolution characterization on such systems that encompass both capsid and DNA is scarce. In this perspective article we demonstrate how magic-angle spinning solid-state NMR has and is used to characterize in detail bacteriophage viruses, including filamentous and icosahedral phage. We discuss the process of sample preparation, spectral assignment of both capsid and DNA and the use of chemical shifts and dipolar couplings to probe the capsid-DNA interface, describe capsid structure and dynamics and extract structural differences between viruses.
Collapse
Affiliation(s)
- Gili Abramov
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | - Omry Morag
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel
| | - Amir Goldbourt
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 69978, Tel Aviv, Israel.
| |
Collapse
|
12
|
Yao X, Dürr UHN, Gattin Z, Laukat Y, Narayanan RL, Brückner AK, Meisinger C, Lange A, Becker S, Zweckstetter M. NMR-based detection of hydrogen/deuterium exchange in liposome-embedded membrane proteins. PLoS One 2014; 9:e112374. [PMID: 25375235 PMCID: PMC4223039 DOI: 10.1371/journal.pone.0112374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/05/2014] [Indexed: 11/17/2022] Open
Abstract
Membrane proteins play key roles in biology. Determination of their structure in a membrane environment, however, is highly challenging. To address this challenge, we developed an approach that couples hydrogen/deuterium exchange of membrane proteins to rapid unfolding and detection by solution-state NMR spectroscopy. We show that the method allows analysis of the solvent protection of single residues in liposome-embedded proteins such as the 349-residue Tom40, the major protein translocation pore in the outer mitochondrial membrane, which has resisted structural analysis for many years.
Collapse
Affiliation(s)
- Xuejun Yao
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Ulrich H N Dürr
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Zrinka Gattin
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Yvonne Laukat
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | - Chris Meisinger
- Institut für Biochemie und Molekularbiologie, ZBMZ and BIOSS Centre for Biological Signalling Studies, Universität Freiburg, Freiburg, Germany
| | - Adam Lange
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan Becker
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Markus Zweckstetter
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Goöttingen, Germany; Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University Medical Center, Göttingen, Germany
| |
Collapse
|
13
|
Wang S, Ladizhansky V. Recent advances in magic angle spinning solid state NMR of membrane proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 82:1-26. [PMID: 25444696 DOI: 10.1016/j.pnmrs.2014.07.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/16/2014] [Accepted: 07/20/2014] [Indexed: 05/14/2023]
Abstract
Membrane proteins mediate many critical functions in cells. Determining their three-dimensional structures in the native lipid environment has been one of the main objectives in structural biology. There are two major NMR methodologies that allow this objective to be accomplished. Oriented sample NMR, which can be applied to membrane proteins that are uniformly aligned in the magnetic field, has been successful in determining the backbone structures of a handful of membrane proteins. Owing to methodological and technological developments, Magic Angle Spinning (MAS) solid-state NMR (ssNMR) spectroscopy has emerged as another major technique for the complete characterization of the structure and dynamics of membrane proteins. First developed on peptides and small microcrystalline proteins, MAS ssNMR has recently been successfully applied to large membrane proteins. In this review we describe recent progress in MAS ssNMR methodologies, which are now available for studies of membrane protein structure determination, and outline a few examples, which highlight the broad capability of ssNMR spectroscopy.
Collapse
Affiliation(s)
- Shenlin Wang
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Vladimir Ladizhansky
- Department of Physics, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada; Biophysics Interdepartmental Group, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada.
| |
Collapse
|
14
|
Purusottam RN, Rai RK, Sinha N. Mechanistic Insights into Water–Protein Interactions of Filamentous Bacteriophage. J Phys Chem B 2013; 117:2837-40. [DOI: 10.1021/jp310921n] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rudra N. Purusottam
- Centre of Biomedical Magnetic Resonance, SGPGIMS Campus, Raibareli Road, Lucknow 226014, India
| | - Ratan K. Rai
- Centre of Biomedical Magnetic Resonance, SGPGIMS Campus, Raibareli Road, Lucknow 226014, India
| | - Neeraj Sinha
- Centre of Biomedical Magnetic Resonance, SGPGIMS Campus, Raibareli Road, Lucknow 226014, India
| |
Collapse
|
15
|
Akbey U, Rossum BJV, Oschkinat H. Practical aspects of high-sensitivity multidimensional ¹³C MAS NMR spectroscopy of perdeuterated proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 217:77-85. [PMID: 22440428 DOI: 10.1016/j.jmr.2012.02.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/13/2012] [Accepted: 02/18/2012] [Indexed: 05/31/2023]
Abstract
The double nucleus enhanced recoupling (DONER) experiment employs simultaneous irradiation of protons and deuterons to promote spin diffusion processes in a perdeuterated protein. This results in 4-5 times higher sensitivity in 2D (13)C-(13)C correlation experiments as compared to PDSD [1]. Here, a quantitative comparison of PDSD, (1)H-DARR, (2)H-DARR, and (1)H+(2)H DONER has been performed to analyze the influence of spin diffusion on polarization transfer processes. Cross peak buildup curves were analyzed to obtain guidelines for choosing the best experimental parameters. The largest cross peak intensities were observed for the DONER experiments. The fastest build-up rate was observed in the (2)H-DARR experiment within a buildup range of ∼18-45 ms, whereas values between 24 and 69 ms are observed for the DONER experiment. Furthermore, the effects of direct excitation and cross polarization (CP) are compared. A comparison between DONER and RFDR experiments reveal ∼50% more intense cross peaks in the C(α)-CO and C(α)-C(alip) regions of the 2D (13)C-(13)C DONER spectrum applying proton CP ((1)H-(13)C). As a parameter determining the S/N in (13)C-(13)C correlation experiments, proton CP efficiency is investigated using deuterated samples with proton/deuterium ratios at 20%, 40%, and 100% H(2)O. Sufficiently strong (13)C CPMAS signal intensity is observed for such proteins even with very low proton concentration. The effect of proton and/or deuterium decoupling is analyzed at various MAS spinning frequencies. Deuterium decoupling was found most crucial for obtaining high resolution. Long range correlations are readily observed representing distances up to ∼6 Å by using DONER approach.
Collapse
Affiliation(s)
- Umit Akbey
- NMR Supported Structural Biology, Leibniz-Institut für Molekulare Pharmakologie, Robert-Roessle Str. 10, 13125 Berlin, Germany.
| | | | | |
Collapse
|
16
|
Nand D, Cukkemane A, Becker S, Baldus M. Fractional deuteration applied to biomolecular solid-state NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2012; 52:91-101. [PMID: 22105305 PMCID: PMC3277825 DOI: 10.1007/s10858-011-9585-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 10/29/2011] [Indexed: 05/15/2023]
Abstract
Solid-state Nuclear Magnetic Resonance can provide detailed insight into structural and dynamical aspects of complex biomolecules. With increasing molecular size, advanced approaches for spectral simplification and the detection of medium to long-range contacts become of critical relevance. We have analyzed the protonation pattern of a membrane-embedded ion channel that was obtained from bacterial expression using protonated precursors and D(2)O medium. We find an overall reduction of 50% in protein protonation. High levels of deuteration at H(α) and H(β) positions reduce spectral congestion in ((1)H,(13)C,(15)N) correlation experiments and generate a transfer profile in longitudinal mixing schemes that can be tuned to specific resonance frequencies. At the same time, residual protons are predominantly found at amino-acid side-chain positions enhancing the prospects for obtaining side-chain resonance assignments and for detecting medium to long-range contacts. Fractional deuteration thus provides a powerful means to aid the structural analysis of complex biomolecules by solid-state NMR.
Collapse
Affiliation(s)
- Deepak Nand
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Abhishek Cukkemane
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Stefan Becker
- Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Marc Baldus
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
17
|
Akbey Ü, Camponeschi F, van Rossum BJ, Oschkinat H. Triple Resonance Cross-Polarization for More Sensitive 13C MAS NMR Spectroscopy of Deuterated Proteins. Chemphyschem 2011; 12:2092-6. [DOI: 10.1002/cphc.201100084] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 05/12/2011] [Indexed: 11/05/2022]
|
18
|
Solution- and solid-state NMR studies of GPCRs and their ligands. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1462-75. [DOI: 10.1016/j.bbamem.2010.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 10/02/2010] [Accepted: 10/05/2010] [Indexed: 12/29/2022]
|
19
|
Sharpe S, Simonetti K, Yau J, Walsh P. Solid-State NMR characterization of autofluorescent fibrils formed by the elastin-derived peptide GVGVAGVG. Biomacromolecules 2011; 12:1546-55. [PMID: 21456595 PMCID: PMC3089984 DOI: 10.1021/bm101486s] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
The characterization of the molecular structure and physical properties of self-assembling peptides is an important aspect of optimizing their utility as scaffolds for biomaterials and other applications. Here we report the formation of autofluorescent fibrils by an octapeptide (GVGVAGVG) derived via a single amino acid substitution in one of the hydrophobic repeat elements of human elastin. This is the shortest and most well-defined peptide so far reported to exhibit intrinsic fluorescence in the absence of a discrete fluorophore. Structural characterization by FTIR and solid-state NMR reveals a predominantly β-sheet conformation for the peptide in the fibrils, which are likely assembled in an amyloid-like cross-β structure. Investigation of dynamics and the effects of hydration on the peptide are consistent with a rigid, water excluded structure, which has implications for the likely mechanism of intrinsic fibril fluorescence.
Collapse
Affiliation(s)
- Simon Sharpe
- Molecular Structure and Function Programme, The Hospital for Sick Children, Toronto, ON, Canada.
| | | | | | | |
Collapse
|
20
|
Van Melckebeke H, Schanda P, Gath J, Wasmer C, Verel R, Lange A, Meier BH, Böckmann A. Probing Water Accessibility in HET-s(218–289) Amyloid Fibrils by Solid-State NMR. J Mol Biol 2011; 405:765-72. [DOI: 10.1016/j.jmb.2010.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 09/28/2010] [Accepted: 11/01/2010] [Indexed: 11/29/2022]
|
21
|
Hou G, Paramasivam S, Byeon IJL, Gronenborn AM, Polenova T. Determination of relative tensor orientations by γ-encoded chemical shift anisotropy/heteronuclear dipolar coupling 3D NMR spectroscopy in biological solids. Phys Chem Chem Phys 2010; 12:14873-83. [PMID: 20936218 PMCID: PMC3160241 DOI: 10.1039/c0cp00795a] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this paper, we present 3D chemical shift anisotropy (CSA)/dipolar coupling correlation experiments, based on γ-encoded R-type symmetry sequences. The γ-encoded correlation spectra are exquisitely sensitive to the relative orientation of the CSA and dipolar tensors and can provide important structural and dynamic information in peptides and proteins. We show that the first-order (m = ±1) and second-order (m = ±2) Hamiltonians in the R-symmetry recoupling sequences give rise to different correlation patterns due to their different dependencies on the crystallite orientation. The relative orientation between CSA and dipolar tensors can be determined by fitting the corresponding correlation patterns. The orientation of (15)N CSA tensor in the quasi-molecular frame is determined by the relative Euler angles, α(NH) and β(NH), when the combined symmetry schemes are applied for orientational studies of (1)H-(15)N dipolar and (15)N CSA tensors. The correlation experiments introduced here work at moderate magic angle spinning frequencies (10-20 kHz) and allow for simultaneous measurement of multiple sites of interest. We studied the orientational sensitivity of γ-encoded symmetry-based recoupling techniques numerically and experimentally. The results are demonstrated on [(15)N]-N-acetyl-valine (NAV) and N-formyl-Met-Leu-Phe (MLF) tripeptide.
Collapse
Affiliation(s)
- Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | | | |
Collapse
|
22
|
Siemer AB, Huang KY, McDermott AE. Protein-ice interaction of an antifreeze protein observed with solid-state NMR. Proc Natl Acad Sci U S A 2010; 107:17580-5. [PMID: 20884853 PMCID: PMC2955146 DOI: 10.1073/pnas.1009369107] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
NMR on frozen solutions is an ideal method to study fundamental questions of macromolecular hydration, because the hydration shell of many biomolecules does not freeze together with bulk solvent. In the present study, we present previously undescribed NMR methods to study the interactions of proteins with their hydration shell and the ice lattice in frozen solution. We applied these methods to compare solvent interaction of an ice-binding type III antifreeze protein (AFP III) and ubiquitin a non-ice-binding protein in frozen solution. We measured (1)H-(1)H cross-saturation and cross-relaxation to provide evidence for a molecular contact surface between ice and AFP III at moderate freezing temperatures of -35 °C. This phenomenon is potentially unique for AFPs because ubiquitin shows no such cross relaxation or cross saturation with ice. On the other hand, we detected liquid hydration water and strong water-AFP III and water-ubiquitin cross peaks in frozen solution using relaxation filtered (2)H and HETCOR spectra with additional (1)H-(1)H mixing. These results are consistent with the idea that ubiquitin is surrounded by a hydration shell, which separates it from the bulk ice. For AFP III, the water cross peaks indicate that only a portion of its hydration shell (i.e., at the ice-binding surface) is in contact with the ice lattice. The rest of AFP III's hydration shell behaves similarly to the hydration shell of non-ice-interacting proteins such as ubiquitin and does not freeze together with the bulk water.
Collapse
Affiliation(s)
- Ansgar B. Siemer
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027
| | - Kuo-Ying Huang
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027
| | - Ann E. McDermott
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY 10027
| |
Collapse
|
23
|
Guilbaud JB, Baker H, Clark BC, Meehan E, Khimyak YZ. Effect of Encapsulating Arginine Containing Molecules on PLGA: A Solid-State NMR Study. J Pharm Sci 2010; 99:2697-710. [DOI: 10.1002/jps.22019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Guilbaud JB, Clark BC, Meehan E, Hughes L, Saiani A, Khimyak YZ. Effect of Encapsulating a Pseudo-Decapeptide Containing Arginine on PLGA: A Solid-State NMR Study. J Pharm Sci 2010; 99:2681-96. [DOI: 10.1002/jps.22060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Li S, Su Y, Luo W, Hong M. Water-protein interactions of an arginine-rich membrane peptide in lipid bilayers investigated by solid-state nuclear magnetic resonance spectroscopy. J Phys Chem B 2010; 114:4063-9. [PMID: 20199036 PMCID: PMC2853767 DOI: 10.1021/jp912283r] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interaction of an arginine (Arg) residue with water in a transmembrane antimicrobial peptide, PG-1, is investigated by two-dimensional heteronuclear correlation (HETCOR), solid-state nuclear magnetic resonance (NMR) spectroscopy. Using (13)C and (15)N dipolar-edited (1)H-(15)N HETCOR experiments, we unambiguously assigned a water-guanidinium cross-peak that is distinct from intramolecular protein-protein cross-peaks. This water-Arg cross-peak was detected within a short (1)H spin diffusion mixing time of 1 ms, indicating that water is in close contact with the membrane-inserted guanidinium. Together with previously observed short guanidinium-phosphate distances, these solid-state NMR data suggest that the Arg side chains of PG-1 are stabilized by both hydration water and neutralizing lipid headgroups. The membrane deformation that occurs when water and lipid headgroups are pulled into the hydrophobic region of the bilayer is symptomatic of the membrane-disruptive function of this antimicrobial peptide. The water-Arg interactions observed here provide direct experimental evidence for molecular dynamics simulations of the solvation of Arg side chains of membrane proteins by deeply embedded water in lipid bilayers.
Collapse
Affiliation(s)
- Shenhui Li
- Department of Chemistry, Iowa State University, Ames, Iowa 50011
| | - Yongchao Su
- Department of Chemistry, Iowa State University, Ames, Iowa 50011
| | - Wenbin Luo
- Department of Chemistry, Iowa State University, Ames, Iowa 50011
| | - Mei Hong
- Department of Chemistry, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
26
|
Agarwal V, Linser R, Fink U, Faelber K, Reif B. Identification of Hydroxyl Protons, Determination of Their Exchange Dynamics, and Characterization of Hydrogen Bonding in a Microcrystallin Protein. J Am Chem Soc 2010; 132:3187-95. [DOI: 10.1021/ja910167q] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vipin Agarwal
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, D-13125 Berlin, Germany, and Charité Universitätsmedizin, D-10115 Berlin, Germany
| | - Rasmus Linser
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, D-13125 Berlin, Germany, and Charité Universitätsmedizin, D-10115 Berlin, Germany
| | - Uwe Fink
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, D-13125 Berlin, Germany, and Charité Universitätsmedizin, D-10115 Berlin, Germany
| | - Katja Faelber
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, D-13125 Berlin, Germany, and Charité Universitätsmedizin, D-10115 Berlin, Germany
| | - Bernd Reif
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, D-13125 Berlin, Germany, and Charité Universitätsmedizin, D-10115 Berlin, Germany
| |
Collapse
|
27
|
Yang J, Tasayco ML, Polenova T. Dynamics of reassembled thioredoxin studied by magic angle spinning NMR: snapshots from different time scales. J Am Chem Soc 2009; 131:13690-702. [PMID: 19736935 DOI: 10.1021/ja9037802] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Solid-state NMR spectroscopy can be used to probe internal protein dynamics in the absence of the overall molecular tumbling. In this study, we report (15)N backbone dynamics in differentially enriched 1-73(U-(13)C,(15)N)/74-108(U-(15)N) reassembled thioredoxin on multiple time scales using a series of 2D and 3D MAS NMR experiments probing the backbone amide (15)N longitudinal relaxation, (1)H-(15)N dipolar order parameters, (15)N chemical shift anisotropy (CSA), and signal intensities in the temperature-dependent and (1)H T(2)'-filtered NCA experiments. The spin-lattice relaxation rates R(1) (R(1) = 1/T(1)) were observed in the range from 0.012 to 0.64 s(-1), indicating large site-to-site variations in dynamics on pico- to nanosecond time scales. The (1)H-(15)N dipolar order parameters, <S>, and (15)N CSA anisotropies, delta(sigma), reveal the backbone mobilities in reassembled thioredoxin, as reflected in the average <S> = 0.89 +/- 0.06 and delta(sigma) = 92.3 +/- 5.2 ppm, respectively. From the aggregate of experimental data from different dynamics methods, some degree of correlation between the motions on the different time scales has been suggested. Analysis of the dynamics parameters derived from these solid-state NMR experiments indicates higher mobilities for the residues constituting irregular secondary structure elements than for those located in the alpha-helices and beta-sheets, with no apparent systematic differences in dynamics between the alpha-helical and beta-sheet residues. Remarkably, the dipolar order parameters derived from the solid-state NMR measurements and the corresponding solution NMR generalized order parameters display similar qualitative trends as a function of the residue number. The comparison of the solid-state dynamics parameters to the crystallographic B-factors has identified the contribution of static disorder to the B-factors. The combination of longitudinal relaxation, dipolar order parameter, and CSA line shape analyses employed in this study provides snapshots of dynamics and a new insight on the correlation of these motions on multiple time scales.
Collapse
Affiliation(s)
- Jun Yang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, USA
| | | | | |
Collapse
|
28
|
Böckmann A, Gardiennet C, Verel R, Hunkeler A, Loquet A, Pintacuda G, Emsley L, Meier BH, Lesage A. Characterization of different water pools in solid-state NMR protein samples. JOURNAL OF BIOMOLECULAR NMR 2009; 45:319-27. [PMID: 19779834 DOI: 10.1007/s10858-009-9374-3] [Citation(s) in RCA: 222] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 09/04/2009] [Indexed: 05/09/2023]
Abstract
We observed and characterized two distinct signals originating from different pools of water protons in solid-state NMR protein samples, namely from crystal water which exchanges polarization with the protein (on the NMR timescale) and is located in the protein-rich fraction at the periphery of the magic-angle spinning (MAS) sample container, and supernatant water located close to the axis of the sample container. The polarization transfer between the water and the protein can be probed by two-dimensional exchange spectroscopy, and we show that the supernatant water does not interact with protein on the timescale of the experiments. The two water pools have different spectroscopic properties, including resonance frequency, longitudinal, transverse and rotating frame relaxation times. The supernatant water can be removed almost completely physically or can be frozen selectively. Both measures lead to an enhancement of the quality factor of the probe circuit, accompanied by an improvement of the experimental signal/noise, and greatly simplify solvent-suppression by substantially reducing the water signal. We also present a tool, which allows filling solid-state NMR sample containers in a more efficient manner, greatly reducing the amount of supernatant water and maximizing signal/noise.
Collapse
Affiliation(s)
- Anja Böckmann
- Institut de Biologie et Chimie des Protéines, Université de Lyon, UMR 5086 CNRS/UCB-Lyon 1, 7 passage du Vercors, 69367 Lyon, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Linser R, Fink U, Reif B. Probing Surface Accessibility of Proteins Using Paramagnetic Relaxation in Solid-State NMR Spectroscopy. J Am Chem Soc 2009; 131:13703-8. [DOI: 10.1021/ja903892j] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rasmus Linser
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, D-13125 Berlin, Germany and Charité Universitätsmedizin, D-10115 Berlin, Germany
| | - Uwe Fink
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, D-13125 Berlin, Germany and Charité Universitätsmedizin, D-10115 Berlin, Germany
| | - Bernd Reif
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, D-13125 Berlin, Germany and Charité Universitätsmedizin, D-10115 Berlin, Germany
| |
Collapse
|
30
|
Tian Y, Chen L, Niks D, Kaiser JM, Lai J, Rienstra CM, Dunn MF, Mueller LJ. J-Based 3D sidechain correlation in solid-state proteins. Phys Chem Chem Phys 2009; 11:7078-86. [PMID: 19652843 PMCID: PMC2798598 DOI: 10.1039/b911570f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Scalar-based three-dimensional homonuclear correlation experiments are reported for (13)C sidechain correlation in solid-state proteins. These experiments are based on a sensitive constant-time format, in which homonuclear scalar couplings are utilized for polarization transfer, but decoupled during chemical shift evolution, to yield highly resolved indirect dimensions and band selectivity as desired. The methods therefore yield spectra of high quality that give unique sets of sidechain correlations for small proteins even at 9.4 Tesla (400 MHz (1)H frequency). We demonstrate versions of the pulse sequence that enable correlation from the sidechain to the backbone carbonyl as well as purely sidechain correlation sets; together these two data sets provide the majority of (13)C-(13)C correlations for assignment. The polarization transfer efficiency is approximately 30% over two bonds. In the protein GB1 (56 residues), we find essentially all cross peaks uniquely resolved. We find similar efficiency of transfer (approximately 30%) in the 140 kDa tryptophan synthase (TS), since the relaxation rates of immobilized solid proteins are not sensitive to global molecular tumbling, as long as the correlation time is much longer than the magic-angle spinning rotor period. In 3D data sets of TS at 400 MHz, some peaks are resolved and, in combination with higher field data sets, we anticipate that assignments will be possible; in this vein, we demonstrate 2D (13)C-(13)C spectra of TS at 900 MHz that are well resolved. These results together provide optimism about the prospects for assigning the spectra of such large enzymes in the solid state.
Collapse
Affiliation(s)
- Ye Tian
- Department of Chemistry, University of California, Riverside, California 92521
| | - Lingling Chen
- Department of Chemistry, University of California, Riverside, California 92521
| | - Dimitri Niks
- Department of Biochemistry, University of California, Riverside, California 92521
| | - J. Michael Kaiser
- Department of Chemistry, University of California, Riverside, California 92521
| | - Jinfeng Lai
- Department of Chemistry, University of California, Riverside, California 92521
| | - Chad M. Rienstra
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Michael F. Dunn
- Department of Biochemistry, University of California, Riverside, California 92521
| | - Leonard J. Mueller
- Department of Chemistry, University of California, Riverside, California 92521
| |
Collapse
|
31
|
Ader C, Schneider R, Seidel K, Etzkorn M, Becker S, Baldus M. Structural Rearrangements of Membrane Proteins Probed by Water-Edited Solid-State NMR Spectroscopy. J Am Chem Soc 2008; 131:170-6. [DOI: 10.1021/ja806306e] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Christian Ader
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Robert Schneider
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Karsten Seidel
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Manuel Etzkorn
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan Becker
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Marc Baldus
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands, and Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
32
|
Lesage A, Gardiennet C, Loquet A, Verel R, Pintacuda G, Emsley L, Meier B, Böckmann A. Polarisationstransfer über die Wasser‐Protein‐Grenzfläche im Festkörper. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200801110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
33
|
|
34
|
Gardiennet C, Loquet A, Etzkorn M, Heise H, Baldus M, Böckmann A. Structural constraints for the Crh protein from solid-state NMR experiments. JOURNAL OF BIOMOLECULAR NMR 2008; 40:239-50. [PMID: 18320329 PMCID: PMC2579321 DOI: 10.1007/s10858-008-9229-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Accepted: 02/06/2008] [Indexed: 05/11/2023]
Abstract
We demonstrate that short, medium and long-range constraints can be extracted from proton mediated, rare-spin detected correlation solid-state NMR experiments for the microcrystalline 10.4 x 2 kDa dimeric model protein Crh. Magnetization build-up curves from cross signals in NHHC and CHHC spectra deliver detailed information on side chain conformers and secondary structure for interactions between spin pairs. A large number of medium and long-range correlations can be observed in the spectra, and an analysis of the resolved signals reveals that the constraints cover the entire sequence, also including inter-monomer contacts between the two molecules forming the domain-swapped Crh dimer. Dynamic behavior is shown to have an impact on cross signals intensities, as indicated for mobile residues or regions by contacts predicted from the crystal structure, but absent in the spectra. Our work validates strategies involving proton distance measurements for large and complex proteins as the Crh dimer, and confirms the magnetization transfer properties previously described for small molecules in solid protein samples.
Collapse
Affiliation(s)
- Carole Gardiennet
- Institut de Biologie et Chimie des Protéines, UMR 5086 C.N.R.S./Université de Lyon, 7, passage du Vercors, 69367 Lyon Cedex 07, France
| | - Antoine Loquet
- Institut de Biologie et Chimie des Protéines, UMR 5086 C.N.R.S./Université de Lyon, 7, passage du Vercors, 69367 Lyon Cedex 07, France
| | - Manuel Etzkorn
- Max-Planck-Institute for Biophysical Chemistry, Solid-state NMR, Am Fassberg 11, 37077 Gottingen, Germany
| | - Henrike Heise
- Max-Planck-Institute for Biophysical Chemistry, Solid-state NMR, Am Fassberg 11, 37077 Gottingen, Germany
| | - Marc Baldus
- Max-Planck-Institute for Biophysical Chemistry, Solid-state NMR, Am Fassberg 11, 37077 Gottingen, Germany
| | - Anja Böckmann
- Institut de Biologie et Chimie des Protéines, UMR 5086 C.N.R.S./Université de Lyon, 7, passage du Vercors, 69367 Lyon Cedex 07, France
| |
Collapse
|
35
|
Chen L, Kaiser JM, Lai J, Polenova T, Yang J, Rienstra CM, Mueller LJ. J-based 2D homonuclear and heteronuclear correlation in solid-state proteins. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2007; 45 Suppl 1:S84-S92. [PMID: 18157839 DOI: 10.1002/mrc.2107] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Scalar-based two-dimensional heteronuclear experiments are reported for NCO and NCA chemical shift correlation in the solid state. In conjunction with homonuclear CACO correlation, these experiments form a useful set for tracing connectivities and assigning backbone resonances in solid-state proteins. The applicability of this approach is demonstrated on two proteins, the β 1 immunoglobulin binding domain of protein G at 9.4 T and reassembled thioredoxin at 14.1 T, using different decoupling conditions and MAS frequencies. These constant-time J-based correlation experiments exhibit increased resolution in the indirect dimension owing to homonuclear and heteronuclear decoupling, and because the indirect evolution and transfer periods are combined into a single constant time interval, this increased resolution is not obtained at the cost of sensitivity. These experiments are also shown to be compatible with in-phase anti-phase (IPAP) selection, giving increased resolution in the directly detected dimension.
Collapse
Affiliation(s)
- Lingling Chen
- Department of Chemistry, University of California, Riverside, California 92521, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Böckmann A. High-resolution solid-state MAS NMR of proteins-Crh as an example. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2007; 45 Suppl 1:S24-S31. [PMID: 18081212 DOI: 10.1002/mrc.2106] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 09/04/2007] [Accepted: 09/12/2007] [Indexed: 05/25/2023]
Abstract
Solid-state NMR spectroscopy provides unique possibilities for the structural investigation of insoluble molecules at the atomic level. Recent efforts aim at solving the complete structures of biological macromolecules using high-resolution magic angle spinning NMR. Structurally homogenous samples of [(13)C,(15)N]-labeled proteins have to be used in this type of studies. Microcrystalline model proteins present valuable tools for the developments of methods towards this goal. This review discusses recent progress in the field, using the Crh protein as an illustrative example. We discuss strategies for resonance assignments and for the determination of structure and dynamics, as well as techniques for the detection of protein interaction partners and folding mechanisms by solid-state NMR methods.
Collapse
Affiliation(s)
- Anja Böckmann
- IFR 128 BioSciences Lyon-Gerland, IBCP UMR 5086 CNRS/Université de Lyon Claude Bernard, 7 passage du Vercors, 69367 Lyon, France.
| |
Collapse
|
37
|
Varga K, Aslimovska L, Parrot I, Dauvergne MT, Haertlein M, Forsyth VT, Watts A. NMR crystallography: the effect of deuteration on high resolution 13C solid state NMR spectra of a 7-TM protein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:3029-35. [PMID: 18001693 DOI: 10.1016/j.bbamem.2007.09.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 09/24/2007] [Accepted: 09/27/2007] [Indexed: 11/24/2022]
Abstract
The effect of deuteration on the 13C linewidths of U-13C, 15N 2D crystalline bacteriorhodopsin (bR) from Halobacterium salinarium, a 248-amino acid protein with seven-transmembrane (7TM) spanning regions, has been studied in purple membranes as a prelude to potential structural studies. Spectral doubling of resonances was observed for receptor expressed in 2H medium (for both 50:50% 1H:2H, and a more highly deuterated form) with the resonances being of similar intensities and separated by <0.3 ppm in the methyl spectral regions in which they were readily distinguished. Line-widths of the methyl side chains were not significantly altered when the protein was expressed in highly deuterated medium compared to growth in fully protonated medium (spectral line widths were about 0.5 ppm on average for receptor expressed both in the fully protonated and highly deuterated media from the C delta, C gamma 1, and C gamma 2 Ile 13C signals observed in the direct, 21-39 ppm, and indirect, 9-17 ppm, dimensions). The measured 13C NMR line-widths observed for both protonated and deuterated form of the receptor are sufficiently narrow, indicating that this crystalline protein morphology is suitable for structural studies. 1) decoupling comparison of the protonated and deuterated bR imply that deuteration may be advantageous for samples in which low power 1H decoupling is required.
Collapse
Affiliation(s)
- K Varga
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | | | | | | | | | | | | |
Collapse
|
38
|
Giraud N, Sein J, Pintacuda G, Böckmann A, Lesage A, Blackledge M, Emsley L. Observation of heteronuclear overhauser effects confirms the 15N-1H dipolar relaxation mechanism in a crystalline protein. J Am Chem Soc 2007; 128:12398-9. [PMID: 16984173 DOI: 10.1021/ja064037g] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The observation of proton to nitrogen-15 heteronuclear Overhauser effects in the microcrystalline protein Crh is used to confirm that the principal mechanism of relaxation of amide nitrogens is due to the fluctuation of the N-H dipolar couplings caused by N-H bond dynamics. Our observations reveal the central role of water as the main source of proton magnetization, and we provide an analysis of the different pathways that could lead to the observed results.
Collapse
Affiliation(s)
- Nicolas Giraud
- Laboratoire de Chimie (UMR 5182 CNRS/ENS), Ecole Normale Supérieure de Lyon, 69364 Lyon, France
| | | | | | | | | | | | | |
Collapse
|
39
|
Baldus M. ICMRBS founder's medal 2006: biological solid-state NMR, methods and applications. JOURNAL OF BIOMOLECULAR NMR 2007; 39:73-86. [PMID: 17657566 DOI: 10.1007/s10858-007-9177-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 06/26/2007] [Indexed: 05/16/2023]
Abstract
Solid-state NMR (ssNMR) provides increasing possibilities to study structure and dynamics of biomolecular systems. Our group has been interested in developing ssNMR-based approaches that are applicable to biomolecules of increasing molecular size and complexity without the need of specific isotope-labelling. Methodological aspects ranging from spectral assignments to the indirect detection of proton-proton contacts in multi-dimensional ssNMR are discussed and applied to (membrane) protein complexes.
Collapse
Affiliation(s)
- Marc Baldus
- Research Group Solid-state NMR, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Gottingen, Germany.
| |
Collapse
|
40
|
Zhou DH, Shah G, Cormos M, Mullen C, Sandoz D, Rienstra CM. Proton-detected solid-state NMR spectroscopy of fully protonated proteins at 40 kHz magic-angle spinning. J Am Chem Soc 2007; 129:11791-801. [PMID: 17725352 DOI: 10.1021/ja073462m] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Remarkable progress in solid-state NMR has enabled complete structure determination of uniformly labeled proteins in the size range of 5-10 kDa. Expanding these applications to larger or mass-limited systems requires further improvements in spectral sensitivity, for which inverse detection of 13C and 15N signals with 1H is one promising approach. Proton detection has previously been demonstrated to offer sensitivity benefits in the limit of sparse protonation or with approximately 30 kHz magic-angle spinning (MAS). Here we focus on experimental schemes for proteins with approximately 100% protonation. Full protonation simplifies sample preparation and permits more complete chemical shift information to be obtained from a single sample. We demonstrate experimental schemes using the fully protonated, uniformly 13C,15N-labeled protein GB1 at 40 kHz MAS rate with 1.6-mm rotors. At 500 MHz proton frequency, 1-ppm proton line widths were observed (500 +/- 150 Hz), and the sensitivity was enhanced by 3 and 4 times, respectively, versus direct 13C and 15N detection. The enhanced sensitivity enabled a family of 3D experiments for spectral assignment to be performed in a time-efficient manner with less than a micromole of protein. CANH, CONH, and NCAH 3D spectra provided sufficient resolution and sensitivity to make full backbone and partial side-chain proton assignments. At 750 MHz proton frequency and 40 kHz MAS rate, proton line widths improve further in an absolute sense (360 +/- 115 Hz). Sensitivity and resolution increase in a better than linear manner with increasing magnetic field, resulting in 14 times greater sensitivity for 1H detection relative to that of 15N detection.
Collapse
Affiliation(s)
- Donghua H Zhou
- Department of Chemistry, Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
41
|
Chen L, Olsen RA, Elliott DW, Boettcher JM, Zhou DH, Rienstra CM, Mueller LJ. Constant-time through-bond 13C correlation spectroscopy for assigning protein resonances with solid-state NMR spectroscopy. J Am Chem Soc 2007; 128:9992-3. [PMID: 16881610 DOI: 10.1021/ja062347t] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Even as available magnetic fields for NMR continue to increase, resolution remains one of the most critical limitations in assigning and solving structures of larger biomolecules. Here we present a novel constant-time through-bond correlation spectroscopy for solids that offers superior resolution for 13C chemical shift assignments in proteins. In this experiment, the indirect evolution and transfer periods are combined into a single constant time interval, offering increased resolution while not sacrificing sensitivity. In GB1, this allows us to resolve peaks that are otherwise unresolved and to make assignments in the absence of multibond transfers.
Collapse
Affiliation(s)
- Lingling Chen
- Department of Chemistry, University of California, Riverside, California 92521, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Giraud N, Blackledge M, Böckmann A, Emsley L. The influence of nitrogen-15 proton-driven spin diffusion on the measurement of nitrogen-15 longitudinal relaxation times. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2007; 184:51-61. [PMID: 17030133 DOI: 10.1016/j.jmr.2006.09.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 09/13/2006] [Accepted: 09/14/2006] [Indexed: 05/12/2023]
Abstract
The effect of nitrogen-15 proton-driven spin diffusion on quantitative (15)N T(1) measurements in solid proteins is investigated, and the impact on the measurement of dynamic parameters is assessed. A simple model of exchange between neighboring nitrogens is used to reproduce the evolution of (15)N spin systems whose longitudinal relaxation rates and exchange rates are compatible with experimental measurements. We show that the induced error in the measured T(1) and its effect on the determination of dynamics parameters is likely to be less than the current experimental error. The use of deuterated protein samples is shown to have a small but sometimes visible effect, and may also considerably slow down or even suppress the exchange of magnetization due to spin diffusion.
Collapse
Affiliation(s)
- Nicolas Giraud
- Laboratoire de Chimie (UMR 5182 CNRS/ENS Lyon), Ecole Normale Supérieure de Lyon, Lyon, France
| | | | | | | |
Collapse
|
43
|
Lesage A, Emsley L, Penin F, Böckmann A. Investigation of Dipolar-Mediated Water−Protein Interactions in Microcrystalline Crh by Solid-State NMR Spectroscopy. J Am Chem Soc 2006; 128:8246-55. [PMID: 16787089 DOI: 10.1021/ja060866q] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Water-protein interactions play a major role in protein folding, structure, and function, and solid-state NMR has recently been shown to be a powerful tool for the site-resolved observation of these interactions in solid proteins. In this article we report investigations on possible water-protein dipolar transfer mechanisms in the microcrystalline deuterated protein Crh by a set of solid-state NMR techniques. Double-quantum (DQ) filtered and edited heteronuclear correlation experiments are used to follow direct dipolar water-protein magnetization transfers. Experimental data reveal no evidence for "solid-like" water molecules, indicating that residence times of solvent molecules are shorter than required for DQ creation, typically a few hundred microseconds. An alternative magnetization pathway, intermolecular cross-relaxation via heteronuclear nuclear Overhauser effects (NOEs), is probed by saturation transfer experiments. The significant additional enhancements observed when irradiating at the water frequency can possibly be attributed to direct heteronuclear water-protein NOEs; however, a contribution from relayed magnetization transfer via chemical exchange or proton-proton dipolar mechanisms cannot be excluded.
Collapse
Affiliation(s)
- Anne Lesage
- Laboratoire de Chimie (UMR 5182 ENS/CNRS), Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon, France
| | | | | | | |
Collapse
|