1
|
Nimerovsky E, Becker S, Andreas LB. Windowed cross polarization at 55 kHz magic-angle spinning. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 349:107404. [PMID: 36848688 DOI: 10.1016/j.jmr.2023.107404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Cross polarization (CP) transfers via Hartmann-Hahn matching conditions are one of the cornerstones of solid-state magic-angle spinning NMR experiments. Here we investigate a windowed sequence for cross polarization (wCP) at 55 kHz magic-angle spinning, placing one window (and one pulse) per rotor period on one or both rf channels. The wCP sequence is known to have additional matching conditions. We observe a striking similarity between wCP and CP transfer conditions when considering the flip angle of the pulse rather than the rf-field strength applied during the pulse. Using fictitious spin-1/2 formalism and average Hamiltonian theory, we derive an analytical approximation that matches these observed transfer conditions. We recorded data at spectrometers with different external magnetic fields up to 1200 MHz, for strong and weak heteronuclear dipolar couplings. These transfers, and even the selectivity of CP were again found to relate to flip angle (average nutation).
Collapse
Affiliation(s)
- Evgeny Nimerovsky
- Department of NMR based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany.
| | - Stefan Becker
- Department of NMR based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany
| | - Loren B Andreas
- Department of NMR based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany.
| |
Collapse
|
2
|
Gopinath T, Manu VS, Weber DK, Veglia G. PHRONESIS: a one-shot approach for sequential assignment of protein resonances by ultrafast MAS solid-state NMR spectroscopy. Chemphyschem 2022; 23:e202200127. [PMID: 35499980 PMCID: PMC9400877 DOI: 10.1002/cphc.202200127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/25/2022] [Indexed: 11/09/2022]
Abstract
Solid‐state NMR (ssNMR) spectroscopy has emerged as the method of choice to analyze the structural dynamics of fibrillar, membrane‐bound, and crystalline proteins that are recalcitrant to other structural techniques. Recently, 1H detection under fast magic angle spinning and multiple acquisition ssNMR techniques have propelled the structural analysis of complex biomacromolecules. However, data acquisition and resonance‐specific assignments remain a bottleneck for this technique. Here, we present a comprehensive multi‐acquisition experiment (PHRONESIS) that simultaneously generates up to ten 3D 1H‐detected ssNMR spectra. PHRONESIS utilizes broadband transfer and selective pulses to drive multiple independent polarization pathways. High selectivity excitation and de‐excitation of specific resonances were achieved by high‐fidelity selective pulses that were designed using a combination of an evolutionary algorithm and artificial intelligence. We demonstrated the power of this approach with microcrystalline U‐13C,15N GB1 protein, reaching 100 % of the resonance assignments using one data set of ten 3D experiments. The strategy outlined in this work opens up new avenues for implementing novel 1H‐detected multi‐acquisition ssNMR experiments to speed up and expand the application to larger biomolecular systems.
Collapse
Affiliation(s)
- T Gopinath
- University of Minnesota College of Biological Sciences, Biochemistry, Molecular Biology & Biophysics, UNITED STATES
| | - V S Manu
- University of Minnesota College of Biological Sciences, Biochemistry, Molecular Biology & Biophysics, 321 Church St SE, 55455, Minneapolis, UNITED STATES
| | - Daniel K Weber
- University of Minnesota College of Biological Sciences, Biochemistry, Molecular Biology & Biophysics, UNITED STATES
| | - Gianluigi Veglia
- University of Minnesota, Biochemistry, 321 Church Street SE, 55455, Minneapolis, UNITED STATES
| |
Collapse
|
3
|
Taware PP, Raran-Kurussi S, Mote KR. CURD: a Single-Shot Strategy to Obtain Assignments and Distance Restraints for Proteins Using Solid-State MAS NMR Spectroscopy. J Phys Chem B 2022; 126:3269-3275. [PMID: 35473315 DOI: 10.1021/acs.jpcb.2c00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a strategy dubbed CURD (correlations using recycle delays) to acquire chemical-shift assignments and distance restraints for proteins in a single experimental block under slow-moderate magic-angle spinning conditions. This is done by concatenating the 3D-CCC and 3D-NNC experiments, both of which individually require long experimental times for sufficient resolution and sensitivity to be realized. Unlike previous approaches, the CURD strategy does not increase the amount of radio-frequency deposition on the sample and does not require lengthy procedures to optimize any of the pulse sequence elements. Instead, time savings is obtained by using the hitherto unused recycle delay of one of the experiments (2D-CC/3D-CCC) to establish inter-residue correlations for the second experiment (2D-NN/3D-NNC). Experiments are demonstrated on a model protein at the MAS frequency of 12.5 kHz and are shown to result in time savings of the order of days for most of the routine cases.
Collapse
Affiliation(s)
- Pravin P Taware
- Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, Telangana 500046, India
| | - Sreejith Raran-Kurussi
- Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, Telangana 500046, India
| | - Kaustubh R Mote
- Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, Telangana 500046, India
| |
Collapse
|
4
|
Abstract
In the last two decades, solid-state nuclear magnetic resonance (ssNMR) spectroscopy has transformed from a spectroscopic technique investigating small molecules and industrial polymers to a potent tool decrypting structure and underlying dynamics of complex biological systems, such as membrane proteins, fibrils, and assemblies, in near-physiological environments and temperatures. This transformation can be ascribed to improvements in hardware design, sample preparation, pulsed methods, isotope labeling strategies, resolution, and sensitivity. The fundamental engagement between nuclear spins and radio-frequency pulses in the presence of a strong static magnetic field is identical between solution and ssNMR, but the experimental procedures vastly differ because of the absence of molecular tumbling in solids. This review discusses routinely employed state-of-the-art static and MAS pulsed NMR methods relevant for biological samples with rotational correlation times exceeding 100's of nanoseconds. Recent developments in signal filtering approaches, proton methodologies, and multiple acquisition techniques to boost sensitivity and speed up data acquisition at fast MAS are also discussed. Several examples of protein structures (globular, membrane, fibrils, and assemblies) solved with ssNMR spectroscopy have been considered. We also discuss integrated approaches to structurally characterize challenging biological systems and some newly emanating subdisciplines in ssNMR spectroscopy.
Collapse
Affiliation(s)
- Sahil Ahlawat
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Kaustubh R Mote
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Nils-Alexander Lakomek
- University of Düsseldorf, Institute for Physical Biology, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| |
Collapse
|
5
|
Shcherbakov AA, Medeiros-Silva J, Tran N, Gelenter MD, Hong M. From Angstroms to Nanometers: Measuring Interatomic Distances by Solid-State NMR. Chem Rev 2021; 122:9848-9879. [PMID: 34694769 DOI: 10.1021/acs.chemrev.1c00662] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Internuclear distances represent one of the main structural constraints in molecular structure determination using solid-state NMR spectroscopy, complementing chemical shifts and orientational restraints. Although a large number of magic-angle-spinning (MAS) NMR techniques have been available for distance measurements, traditional 13C and 15N NMR experiments are inherently limited to distances of a few angstroms due to the low gyromagnetic ratios of these nuclei. Recent development of fast MAS triple-resonance 19F and 1H NMR probes has stimulated the design of MAS NMR experiments that measure distances in the 1-2 nm range with high sensitivity. This review describes the principles and applications of these multiplexed multidimensional correlation distance NMR experiments, with an emphasis on 19F- and 1H-based distance experiments. Representative applications of these long-distance NMR methods to biological macromolecules as well as small molecules are reviewed.
Collapse
Affiliation(s)
- Alexander A Shcherbakov
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - João Medeiros-Silva
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Nhi Tran
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Martin D Gelenter
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Kupče Ē, Mote KR, Webb A, Madhu PK, Claridge TDW. Multiplexing experiments in NMR and multi-nuclear MRI. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 124-125:1-56. [PMID: 34479710 DOI: 10.1016/j.pnmrs.2021.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 05/22/2023]
Abstract
Multiplexing NMR experiments by direct detection of multiple free induction decays (FIDs) in a single experiment offers a dramatic increase in the spectral information content and often yields significant improvement in sensitivity per unit time. Experiments with multi-FID detection have been designed with both homonuclear and multinuclear acquisition, and the advent of multiple receivers on commercial spectrometers opens up new possibilities for recording spectra from different nuclear species in parallel. Here we provide an extensive overview of such techniques, designed for applications in liquid- and solid-state NMR as well as in hyperpolarized samples. A brief overview of multinuclear MRI is also provided, to stimulate cross fertilization of ideas between the two areas of research (NMR and MRI). It is shown how such techniques enable the design of experiments that allow structure elucidation of small molecules from a single measurement. Likewise, in biomolecular NMR experiments multi-FID detection allows complete resonance assignment in proteins. Probes with multiple RF microcoils routed to multiple NMR receivers provide an alternative way of increasing the throughput of modern NMR systems, effectively reducing the cost of NMR analysis and increasing the information content at the same time. Solid-state NMR experiments have also benefited immensely from both parallel and sequential multi-FID detection in a variety of multi-dimensional pulse schemes. We are confident that multi-FID detection will become an essential component of future NMR methodologies, effectively increasing the sensitivity and information content of NMR measurements.
Collapse
Affiliation(s)
- Ēriks Kupče
- Bruker UK Ltd., Banner Lane, Coventry CV4 9GH, United Kingdom.
| | - Kaustubh R Mote
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research-Hyderabad, 36/P Gopanpally Village, Ranga Reddy District, Hyderabad 500 046, Telangana, India
| | - Andrew Webb
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Perunthiruthy K Madhu
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research-Hyderabad, 36/P Gopanpally Village, Ranga Reddy District, Hyderabad 500 046, Telangana, India
| | - Tim D W Claridge
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
7
|
Gopinath T, Weber DK, Veglia G. Multi-receiver solid-state NMR using polarization optimized experiments (POE) at ultrafast magic angle spinning. JOURNAL OF BIOMOLECULAR NMR 2020; 74:267-285. [PMID: 32333193 PMCID: PMC7236978 DOI: 10.1007/s10858-020-00316-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 04/11/2020] [Indexed: 05/04/2023]
Abstract
Ultrafast magic angle spinning (MAS) technology and 1H detection have dramatically enhanced the sensitivity of solid-state NMR (ssNMR) spectroscopy of biopolymers. We previously showed that, when combined with polarization optimized experiments (POE), these advancements enable the simultaneous acquisition of multi-dimensional 1H- or 13C-detected experiments using a single receiver. Here, we propose a new sub-class within the POE family, namely HC-DUMAS, HC-MEIOSIS, and HC-MAeSTOSO, that utilize dual receiver technology for the simultaneous detection of 1H and 13C nuclei. We also expand this approach to record 1H-, 13C-, and 15N-detected homonuclear 2D spectra simultaneously using three independent receivers. The combination of POE and multi-receiver technology will further shorten the total experimental time of ssNMR experiments for biological solids.
Collapse
Affiliation(s)
- T Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN, 55455, USA
| | - Daniel K Weber
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN, 55455, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN, 55455, USA.
- Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
8
|
Gopinath T, Veglia G. Proton-detected polarization optimized experiments (POE) using ultrafast magic angle spinning solid-state NMR: Multi-acquisition of membrane protein spectra. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 310:106664. [PMID: 31837552 PMCID: PMC7003683 DOI: 10.1016/j.jmr.2019.106664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 05/05/2023]
Abstract
Proton-detected solid-state NMR (ssNMR) spectroscopy has dramatically improved the sensitivity and resolution of fast magic angle spinning (MAS) methods. While relatively straightforward for fibers and crystalline samples, the routine application of these techniques to membrane protein samples is still challenging. This is due to the low sensitivity of these samples, which require high lipid:protein ratios to maintain the structural and functional integrity of membrane proteins. We previously introduced a family of novel polarization optimized experiments (POE) that enable to make the best of nuclear polarization and obtain multiple-acquisitions from a single pulse sequence and one receiver. Here, we present the 1H-detected versions of POE using ultrafast MAS ssNMR. Specifically, we implemented proton detection into our three main POE strategies, H-DUMAS, H-MEIOSIS, and H-MAeSTOSO, achieving the acquisition of up to ten different experiments using a single pulse sequence. We tested these experiments on a model compound N-Acetyl-Val-Leu dipeptide and applied to a six transmembrane acetate transporter, SatP, reconstituted in lipid membranes. These new methods will speed up the spectroscopy of challenging biomacromolecules such as membrane proteins.
Collapse
Affiliation(s)
- T Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States; Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
9
|
Gallo A, Franks WT, Lewandowski JR. A suite of solid-state NMR experiments to utilize orphaned magnetization for assignment of proteins using parallel high and low gamma detection. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 305:219-231. [PMID: 31319283 DOI: 10.1016/j.jmr.2019.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 05/18/2023]
Abstract
We present a suite of two-receiver solid-state NMR experiments for backbone and side chain resonance assignment. The experiments rely on either dipolar coupling or scalar coupling for polarization transfer and are devised to acquire a 1H-detected 3D experiment AND a nested 13C-detected 2D from a shared excitation pulse. In order to compensate for the lower sensitivity of detection on 13C nucleus, 2D rows are signal averaged during 3D planes. The 3D dual receiver experiments do not suffer from any appreciable signal loss compared to their single receiver versions and require no extra optimization. The resulting data is higher in information content with no additional experiment time. The approach is expected to become widespread as multiple receivers become standard for new NMR spectrometers.
Collapse
Affiliation(s)
- A Gallo
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, UK
| | - W T Franks
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, UK; Department of Physics, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, UK
| | - J R Lewandowski
- Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL Coventry, UK.
| |
Collapse
|
10
|
Kupče Ē, Mote KR, Madhu PK. Experiments with direct detection of multiple FIDs. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 304:16-34. [PMID: 31077929 DOI: 10.1016/j.jmr.2019.04.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/26/2019] [Accepted: 04/29/2019] [Indexed: 05/04/2023]
Abstract
Pulse schemes with direct observation of multiple free induction decays (FIDs) offer a dramatic increase in the spectral information content of NMR experiments and often yield substantial improvement in measurement sensitivity per unit time. Availability of multiple receivers on the state-of-the-art commercial spectrometers allows spectra from different nuclear species to be recorded in parallel routinely. Experiments with multi-FID detection have been designed with both, homonuclear and multinuclear acquisition. We provide a brief overview of such techniques designed for applications in liquid- and solid- state NMR as well as in hyperpolarized samples. Here we show how these techniques have led to design of experiments that allow structure elucidation of small molecules and resonance assignment in proteins from a single measurement. Probes with multiple RF micro-coils routed to multiple NMR receivers provide an alternative way of increasing the throughput of modern NMR systems. Solid-state NMR experiments have also benefited immensely from both parallel and simultaneous FID acquisition in a variety of multi-dimensional pulse schemes. We believe that multi-FID detection will become an essential component of the future NMR methodologies effectively increasing the information content of NMR experiments and reducing the cost of NMR analysis.
Collapse
Affiliation(s)
- Ēriks Kupče
- Bruker UK Ltd., Banner Lane, Coventry CV4 9GH, United Kingdom.
| | - Kaustubh R Mote
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Ranga Reddy District, Hyderabad 500107, India
| | - Perunthiruthy K Madhu
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Ranga Reddy District, Hyderabad 500107, India
| |
Collapse
|
11
|
Sharma K, Madhu PK, Mote KR. A suite of pulse sequences based on multiple sequential acquisitions at one and two radiofrequency channels for solid-state magic-angle spinning NMR studies of proteins. JOURNAL OF BIOMOLECULAR NMR 2016; 65:127-141. [PMID: 27364976 DOI: 10.1007/s10858-016-0043-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/14/2016] [Indexed: 05/04/2023]
Abstract
One of the fundamental challenges in the application of solid-state NMR is its limited sensitivity, yet a majority of experiments do not make efficient use of the limited polarization available. The loss in polarization in a single acquisition experiment is mandated by the need to select out a single coherence pathway. In contrast, sequential acquisition strategies can encode more than one pathway in the same experiment or recover unused polarization to supplement a standard experiment. In this article, we present pulse sequences that implement sequential acquisition strategies on one and two radiofrequency channels with a combination of proton and carbon detection to record multiple experiments under magic-angle spinning. We show that complementary 2D experiments such as [Formula: see text] and [Formula: see text] or DARR and [Formula: see text], and 3D experiments such as [Formula: see text] and [Formula: see text], or [Formula: see text] and [Formula: see text] can be combined in a single experiment to ensure time savings of at least 40 %. These experiments can be done under fast or slow-moderate magic-angle spinning frequencies aided by windowed [Formula: see text] acquisition and homonulcear decoupling. The pulse sequence suite is further expanded by including pathways that allow the recovery of residual polarization, the so-called 'afterglow' pathways, to encode a number of pulse sequences to aid in assignments and chemical-shift mapping.
Collapse
Affiliation(s)
- Kshama Sharma
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, 21, Brundavan Colony, Narsingi, Hyderabad, 500 075, India
| | - Perunthiruthy K Madhu
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, 21, Brundavan Colony, Narsingi, Hyderabad, 500 075, India.
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400 005, India.
| | - Kaustubh R Mote
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, 21, Brundavan Colony, Narsingi, Hyderabad, 500 075, India.
| |
Collapse
|
12
|
Gopinath T, Veglia G. Multiple acquisitions via sequential transfer of orphan spin polarization (MAeSTOSO): How far can we push residual spin polarization in solid-state NMR? JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 267:1-8. [PMID: 27039168 PMCID: PMC4862926 DOI: 10.1016/j.jmr.2016.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/22/2016] [Accepted: 03/07/2016] [Indexed: 05/05/2023]
Abstract
Conventional multidimensional magic angle spinning (MAS) solid-state NMR (ssNMR) experiments detect the signal arising from the decay of a single coherence transfer pathway (FID), resulting in one spectrum per acquisition time. Recently, we introduced two new strategies, namely DUMAS (DUal acquisition Magic Angle Spinning) and MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), that enable the simultaneous acquisitions of multidimensional ssNMR experiments using multiple coherence transfer pathways. Here, we combined the main elements of DUMAS and MEIOSIS to harness both orphan spin operators and residual polarization and increase the number of simultaneous acquisitions. We show that it is possible to acquire up to eight two-dimensional experiments using four acquisition periods per each scan. This new suite of pulse sequences, called MAeSTOSO for Multiple Acquisitions via Sequential Transfer of Orphan Spin pOlarization, relies on residual polarization of both (13)C and (15)N pathways and combines low- and high-sensitivity experiments into a single pulse sequence using one receiver and commercial ssNMR probes. The acquisition of multiple experiments does not affect the sensitivity of the main experiment; rather it recovers the lost coherences that are discarded, resulting in a significant gain in experimental time. Both merits and limitations of this approach are discussed.
Collapse
Affiliation(s)
- T Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States; Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
13
|
Das BB, Opella SJ. Simultaneous cross polarization to (13)C and (15)N with (1)H detection at 60kHz MAS solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 262:20-26. [PMID: 26705905 PMCID: PMC4716881 DOI: 10.1016/j.jmr.2015.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/30/2015] [Accepted: 12/02/2015] [Indexed: 05/05/2023]
Abstract
We describe high resolution MAS solid-state NMR experiments that utilize (1)H detection with 60kHz magic angle spinning; simultaneous cross-polarization from (1)H to (15)N and (13)C nuclei; bidirectional cross-polarization between (13)C and (15)N nuclei; detection of both amide nitrogen and aliphatic carbon (1)H; and measurement of both (13)C and (15)N chemical shifts through multi-dimensional correlation experiments. Three-dimensional experiments correlate amide (1)H and alpha (1)H selectively with (13)C or (15)N nuclei in a polypeptide chain. Two separate three-dimensional spectra correlating (1)Hα/(13)Cα/(1)H(N) and (1)H(N)/(15)N/(1)Hα are recorded simultaneously in a single experiment, demonstrating that a twofold savings in experimental time is potentially achievable. Spectral editing using bidirectional coherence transfer pathways enables simultaneous magnetization transfers between (15)N, (13)Cα(()(i)()) and (13)C'(()(i)(-1)), facilitating intra- and inter-residue correlations for sequential resonance assignment. Non-uniform sampling is integrated into the experiments, further reducing the length of experimental time.
Collapse
Affiliation(s)
- Bibhuti B Das
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Stanley J Opella
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
14
|
Gopinath T, Veglia G. Multiple acquisition of magic angle spinning solid-state NMR experiments using one receiver: application to microcrystalline and membrane protein preparations. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 253:143-53. [PMID: 25797011 PMCID: PMC4399235 DOI: 10.1016/j.jmr.2015.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 01/02/2015] [Accepted: 01/04/2015] [Indexed: 05/05/2023]
Abstract
Solid-state NMR spectroscopy of proteins is a notoriously low-throughput technique. Relatively low-sensitivity and poor resolution of protein samples require long acquisition times for multidimensional NMR experiments. To speed up data acquisition, we developed a family of experiments called Polarization Optimized Experiments (POE), in which we utilized the orphan spin operators that are discarded in classical multidimensional NMR experiments, recovering them to allow simultaneous acquisition of multiple 2D and 3D experiments, all while using conventional probes with spectrometers equipped with one receiver. POE allow the concatenation of multiple 2D or 3D pulse sequences into a single experiment, thus potentially combining all of the aforementioned advances, boosting the capability of ssNMR spectrometers at least two-fold without the addition of any hardware. In this perspective, we describe the first generation of POE, such as dual acquisition MAS (or DUMAS) methods, and then illustrate the evolution of these experiments into MEIOSIS, a method that enables the simultaneous acquisition of multiple 2D and 3D spectra. Using these new pulse schemes for the solid-state NMR investigation of biopolymers makes it possible to obtain sequential resonance assignments, as well as distance restraints, in about half the experimental time. While designed for acquisition of heteronuclei, these new experiments can be easily implemented for proton detection and coupled with other recent advancements, such as dynamic nuclear polarization (DNP), to improve signal to noise. Finally, we illustrate the application of these methods to microcrystalline protein preparations as well as single and multi-span membrane proteins reconstituted in lipid membranes.
Collapse
Affiliation(s)
- T Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, United States; Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
15
|
Abstract
In the stationary, aligned samples used in oriented sample (OS) solid-state NMR, (1)H-(1)H homonuclear dipolar couplings are not attenuated as they are in magic angle spinning solid-state NMR; consequently, they are available for participation in dipolar coupling-based spin-exchange processes. Here we describe analytically the pathways of (15)N-(15)N spin-exchange mediated by (1)H-(1)H homonuclear dipolar couplings. The mixed-order proton-relay mechanism can be differentiated from the third spin assisted recoupling mechanism by setting the (1)H to an off-resonance frequency so that it is at the "magic angle" during the spin-exchange interval in the experiment, since the "magic angle" irradiation nearly quenches the former but only slightly attenuates the latter. Experimental spectra from a single crystal of N-acetyl leucine confirm that this proton-relay mechanism plays the dominant role in (15)N-(15)N dilute-spin-exchange in OS solid-state NMR in crystalline samples. Remarkably, the "forbidden" spin-exchange condition under "magic angle" irradiation results in (15)N-(15)N cross-peaks intensities that are comparable to those observed with on-resonance irradiation in applications to proteins. The mechanism of the proton relay in dilute-spin-exchange is crucial for the design of polarization transfer experiments.
Collapse
Affiliation(s)
- George J Lu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0307, USA
| | - Stanley J Opella
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0307, USA
| |
Collapse
|
16
|
Gopinath T, Veglia G. Orphan spin operators enable the acquisition of multiple 2D and 3D magic angle spinning solid-state NMR spectra. J Chem Phys 2013; 138:184201. [PMID: 23676036 DOI: 10.1063/1.4803126] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We propose a general method that enables the acquisition of multiple 2D and 3D solid-state NMR spectra for U-(13)C, (15)N-labeled proteins. This method, called MEIOSIS (Multiple ExperIments via Orphan SpIn operatorS), makes it possible to detect four coherence transfer pathways simultaneously, utilizing orphan (i.e., neglected) spin operators of nuclear spin polarization generated during (15)N-(13)C cross polarization (CP). In the MEIOSIS experiments, two phase-encoded free-induction decays are decoded into independent nuclear polarization pathways using Hadamard transformations. As a proof of principle, we show the acquisition of multiple 2D and 3D spectra of U-(13)C, (15)N-labeled microcrystalline ubiquitin. Hadamard decoding of CP coherences into multiple independent spin operators is a new concept in solid-state NMR and is extendable to many other multidimensional experiments. The MEIOSIS method will increase the throughput of solid-state NMR techniques for microcrystalline proteins, membrane proteins, and protein fibrils.
Collapse
Affiliation(s)
- T Gopinath
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
17
|
Ferella L, Luchinat C, Ravera E, Rosato A. SedNMR: a web tool for optimizing sedimentation of macromolecular solutes for SSNMR. JOURNAL OF BIOMOLECULAR NMR 2013; 57:319-26. [PMID: 24243317 DOI: 10.1007/s10858-013-9795-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 11/11/2013] [Indexed: 05/09/2023]
Abstract
We have proposed solid state NMR (SSNMR) of sedimented solutes as a novel approach to sample preparation for biomolecular SSNMR without crystallization or other sample manipulations. The biomolecules are confined by high gravity--obtained by centrifugal forces either directly in a SSNMR rotor or in a ultracentrifugal device--into a hydrated non-crystalline solid suitable for SSNMR investigations. When gravity is removed, the sample reverts to solution and can be treated as any solution NMR sample. We here describe a simple web tool to calculate the relevant parameters for the success of the experiment.
Collapse
Affiliation(s)
- Lucio Ferella
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy
| | | | | | | |
Collapse
|
18
|
Mote KR, Gopinath T, Veglia G. Determination of structural topology of a membrane protein in lipid bilayers using polarization optimized experiments (POE) for static and MAS solid state NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2013; 57:91-102. [PMID: 23963722 PMCID: PMC3883141 DOI: 10.1007/s10858-013-9766-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 07/26/2013] [Indexed: 05/11/2023]
Abstract
The low sensitivity inherent to both the static and magic angle spinning techniques of solid-state NMR (ssNMR) spectroscopy has thus far limited the routine application of multidimensional experiments to determine the structure of membrane proteins in lipid bilayers. Here, we demonstrate the advantage of using a recently developed class of experiments, polarization optimized experiments, for both static and MAS spectroscopy to achieve higher sensitivity and substantial time-savings for 2D and 3D experiments. We used sarcolipin, a single pass membrane protein, reconstituted in oriented bicelles (for oriented ssNMR) and multilamellar vesicles (for MAS ssNMR) as a benchmark. The restraints derived by these experiments are then combined into a hybrid energy function to allow simultaneous determination of structure and topology. The resulting structural ensemble converged to a helical conformation with a backbone RMSD ~0.44 Å, a tilt angle of 24° ± 1°, and an azimuthal angle of 55° ± 6°. This work represents a crucial first step toward obtaining high-resolution structures of large membrane proteins using combined multidimensional oriented solid-state NMR and magic angle spinning solid-state NMR.
Collapse
Affiliation(s)
- Kaustubh R. Mote
- Department of Chemistry University of Minnesota, Minneapolis, MN 55455, USA
| | - T. Gopinath
- Department of Biochemistry, Molecular Biology & Biophysics University of Minnesota, Minneapolis, MN 55455, USA
| | - Gianluigi Veglia
- Department of Chemistry University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biochemistry, Molecular Biology & Biophysics University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
19
|
Agarwal V, Sardo M, Scholz I, Böckmann A, Ernst M, Meier BH. PAIN with and without PAR: variants for third-spin assisted heteronuclear polarization transfer. JOURNAL OF BIOMOLECULAR NMR 2013; 56:365-377. [PMID: 23807391 DOI: 10.1007/s10858-013-9756-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/17/2013] [Indexed: 06/02/2023]
Abstract
In this article, we describe third-spin assisted heteronuclear recoupling experiments, which play an increasingly important role in measuring long-range heteronuclear couplings, in particular (15)N-(13)C, in proteins. In the proton-assisted insensitive nuclei cross polarization (PAIN-CP) experiment (de Paëpe et al. in J Chem Phys 134:095101, 2011), heteronuclear polarization transfer is always accompanied by homonuclear transfer of the proton-assisted recoupling (PAR) type. We present a phase-alternating experiment that promotes heteronuclear (e.g. (15)N → (13)C) polarization transfer while simultaneously minimizing homonuclear (e.g.(13)C → (13)C) transfer (PAIN without PAR). This minimization of homonuclear polarization transfer is based on the principle of the resonant second-order transfer (RESORT) recoupling scheme where the passive proton spins are irradiated by a phase-alternating sequence and the modulation frequency is matched to an integer multiple of the spinning frequency. The similarities and differences between the PAIN-CP and this het-RESORT experiment are discussed here.
Collapse
Affiliation(s)
- Vipin Agarwal
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
20
|
Bhaumik A, Luchinat C, Parigi G, Ravera E, Rinaldelli M. NMR crystallography on paramagnetic systems: solved and open issues. CrystEngComm 2013. [DOI: 10.1039/c3ce41485j] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Bertini I, Engelke F, Gonnelli L, Knott B, Luchinat C, Osen D, Ravera E. On the use of ultracentrifugal devices for sedimented solute NMR. JOURNAL OF BIOMOLECULAR NMR 2012; 54:123-7. [PMID: 22872367 DOI: 10.1007/s10858-012-9657-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 07/26/2012] [Indexed: 05/09/2023]
Abstract
We have recently proposed sedimented solute NMR (SedNMR) as a solid-state method to access biomolecules without the need of crystallization or other sample manipulation. The drawback of SedNMR is that samples are intrinsically diluted and this is detrimental for the signal intensity. Ultracentrifugal devices can be used to increase the amount of sample inside the rotor, overcoming the intrinsic sensitivity limitation of the method. We designed two different devices and we here report the directions for using such devices and the relevant equations for determining the parameters for sedimentation.
Collapse
Affiliation(s)
- Ivano Bertini
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, FI, Italy.
| | | | | | | | | | | | | |
Collapse
|
22
|
Gopinath T, Veglia G. 3D DUMAS: simultaneous acquisition of three-dimensional magic angle spinning solid-state NMR experiments of proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2012; 220:79-84. [PMID: 22698806 PMCID: PMC3487463 DOI: 10.1016/j.jmr.2012.04.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 04/13/2012] [Indexed: 05/15/2023]
Abstract
Using the DUMAS (Dual acquisition Magic Angle Spinning) solid-state NMR approach, we created new pulse schemes that enable the simultaneous acquisition of three dimensional (3D) experiments on uniformly (13)C, (15)N labeled proteins. These new experiments exploit the simultaneous cross-polarization (SIM-CP) from (1)H to (13)C and (15)N to acquire two 3D experiments simultaneously. This is made possible by bidirectional polarization transfer between (13)C and (15)N and the long living (15)N z-polarization in solid state NMR. To demonstrate the power of this approach, four 3D pulse sequences (NCACX, CANCO, NCOCX, CON(CA)CX) are combined into two pulse sequences (3D DUMAS-NCACX-CANCO, 3D DUMAS-NCOCX-CON(CA)CX) that allow simultaneous acquisition of these experiments, reducing the experimental time by approximately half. Importantly, the 3D DUMAS-NCACX-CANCO experiment alone makes it possible to obtain the majority of the backbone sequential resonance assignments for microcrystalline U-(13)C,(15)N ubiquitin. The DUMAS approach is general and applicable to many 3D experiments, nearly doubling the performance of NMR spectrometers.
Collapse
Affiliation(s)
- T. Gopinath
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|