1
|
Bell D, Lindemann F, Gerland L, Aucharova H, Klein A, Friedrich D, Hiller M, Grohe K, Meier T, van Rossum B, Diehl A, Hughes J, Mueller LJ, Linser R, Miller AF, Oschkinat H. Sedimentation of large, soluble proteins up to 140 kDa for 1H-detected MAS NMR and 13C DNP NMR - practical aspects. JOURNAL OF BIOMOLECULAR NMR 2024; 78:179-192. [PMID: 38904893 PMCID: PMC7616530 DOI: 10.1007/s10858-024-00444-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/08/2024] [Indexed: 06/22/2024]
Abstract
Solution NMR is typically applied to biological systems with molecular weights < 40 kDa whereas magic-angle-spinning (MAS) solid-state NMR traditionally targets very large, oligomeric proteins and complexes exceeding 500 kDa in mass, including fibrils and crystalline protein preparations. Here, we propose that the gap between these size regimes can be filled by the approach presented that enables investigation of large, soluble and fully protonated proteins in the range of 40-140 kDa. As a key step, ultracentrifugation produces a highly concentrated, gel-like state, resembling a dense phase in spontaneous liquid-liquid phase separation (LLPS). By means of three examples, a Sulfolobus acidocaldarius bifurcating electron transfer flavoprotein (SaETF), tryptophan synthases from Salmonella typhimurium (StTS) and their dimeric β-subunits from Pyrococcus furiosus (PfTrpB), we show that such samples yield well-resolved proton-detected 2D and 3D NMR spectra at 100 kHz MAS without heterogeneous broadening, similar to diluted liquids. Herein, we provide practical guidance on centrifugation conditions and tools, sample behavior, and line widths expected. We demonstrate that the observed chemical shifts correspond to those obtained from µM/low mM solutions or crystalline samples, indicating structural integrity. Nitrogen line widths as low as 20-30 Hz are observed. The presented approach is advantageous for proteins or nucleic acids that cannot be deuterated due to the expression system used, or where relevant protons cannot be re-incorporated after expression in deuterated medium, and it circumvents crystallization. Importantly, it allows the use of low-glycerol buffers in dynamic nuclear polarization (DNP) NMR of proteins as demonstrated with the cyanobacterial phytochrome Cph1.
Collapse
Affiliation(s)
- Dallas Bell
- Faculty II-Mathematics and Natural Sciences, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Florian Lindemann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Lisa Gerland
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Hanna Aucharova
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Alexander Klein
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Daniel Friedrich
- Department of Chemistry and Biochemistry, University of Cologne, Greinstr. 4, 50939, Cologne, Germany
| | - Matthias Hiller
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Kristof Grohe
- Bruker BioSpin GmbH & Co. KG, Rudolf-Plank-Str. 23, 76275, Ettlingen, Germany
| | - Tobias Meier
- Bruker BioSpin GmbH & Co. KG, Rudolf-Plank-Str. 23, 76275, Ettlingen, Germany
| | - Barth van Rossum
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Anne Diehl
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Jon Hughes
- Institute for Plant Physiology, Justus Liebig University, Senckenbergstr. 3, 35360, Gießen, Germany
- Department of Physics, Free University of Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Leonard J Mueller
- Department of Chemistry, University of California - Riverside, Riverside, CA, 92521, USA
| | - Rasmus Linser
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Anne-Frances Miller
- Faculty II-Mathematics and Natural Sciences, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
- Department of Chemistry, University of Kentucky, Lexington, KY, 40506, USA.
| | - Hartmut Oschkinat
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany.
| |
Collapse
|
2
|
Shi F, Zhang T, Li J, Shi C, Xiang S. Studying large biomolecules as sedimented solutes with solid-state NMR. BIOPHYSICS REPORTS 2024; 10:201-212. [PMID: 39281198 PMCID: PMC11399891 DOI: 10.52601/bpr.2024.240014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/01/2024] [Indexed: 09/18/2024] Open
Abstract
Sedimentation solid-state NMR is a novel method for sample preparation in solid-state NMR (ssNMR) studies. It involves the sedimentation of soluble macromolecules such as large protein complexes. By utilizing ultra-high centrifugal forces, the molecules in solution are driven into a high-concentrated hydrogel, resulting in a sample suitable for solid-state NMR. This technique has the advantage of avoiding the need for chemical treatment, thus minimizing the loss of sample biological activity. Sediment ssNMR has been successfully applied to a variety of non-crystalline protein solids, significantly expanding the scope of solid-state NMR research. In theory, using this method, any biological macromolecule in solution can be transferred into a sedimented solute appropriate for solid-state NMR analysis. However, specialized equipment and careful handling are essential for effectively collecting and loading the sedimented solids to solid-state NMR rotors. To improve efficiency, we have designed a series of loading tools to achieve the loading process from the solution to the rotor in one step. In this paper, we illustrate the sample preparation process of sediment NMR using the H1.4-NCP167 complex, which consists of linker histone H1.4 and nucleosome core particle, as an example.
Collapse
Affiliation(s)
- Fan Shi
- MOE Key Lab for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Tong Zhang
- MOE Key Lab for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Juan Li
- MOE Key Lab for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Chaowei Shi
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Shengqi Xiang
- MOE Key Lab for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
3
|
Cerofolini L, Ramberg KO, Padilla LC, Antonik P, Ravera E, Luchinat C, Fragai M, Crowley PB. Solid-state NMR - a complementary technique for protein framework characterization. Chem Commun (Camb) 2023; 59:776-779. [PMID: 36546612 DOI: 10.1039/d2cc05725e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Protein frameworks are an emerging class of biomaterial with medical and technological applications. Frameworks are studied mainly by X-ray diffraction or scattering techniques. Complementary strategies are required. Here, we report solid-state NMR analyses of a microcrystalline protein-macrocycle framework and the rehydrated freeze-dried protein. This methodology may aid the characterization of low-crystallinity frameworks.
Collapse
Affiliation(s)
- Linda Cerofolini
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, Sesto Fiorentino 50019, Italy. .,Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Kiefer O Ramberg
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway H91 TK33, Ireland.
| | - Luis C Padilla
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, Sesto Fiorentino 50019, Italy. .,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Paweł Antonik
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway H91 TK33, Ireland.
| | - Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, Sesto Fiorentino 50019, Italy. .,Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, Sesto Fiorentino 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, Sesto Fiorentino 50019, Italy. .,Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, Sesto Fiorentino 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, Sesto Fiorentino 50019, Italy. .,Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, Sesto Fiorentino 50019, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Peter B Crowley
- School of Biological and Chemical Sciences, University of Galway, University Road, Galway H91 TK33, Ireland.
| |
Collapse
|
4
|
Cerofolini L, Parigi G, Ravera E, Fragai M, Luchinat C. Solid-state NMR methods for the characterization of bioconjugations and protein-material interactions. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 122:101828. [PMID: 36240720 DOI: 10.1016/j.ssnmr.2022.101828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Protein solid-state NMR has evolved dramatically over the last two decades, with the development of new hardware and sample preparation methodologies. This technique is now ripe for complex applications, among which one can count bioconjugation, protein chemistry and functional biomaterials. In this review, we provide our account on this aspect of protein solid-state NMR.
Collapse
Affiliation(s)
- Linda Cerofolini
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Magnetic Resonance Center (CERM), Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Enrico Ravera
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Magnetic Resonance Center (CERM), Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy; Florence Data Science, Università degli Studi di Firenze, Italy.
| | - Marco Fragai
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Magnetic Resonance Center (CERM), Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
| | - Claudio Luchinat
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Magnetic Resonance Center (CERM), Università degli Studi di Firenze, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", Università degli Studi di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
5
|
Bruno F, Gigli L, Ferraro G, Cavallo A, Michaelis VK, Goobes G, Fratini E, Ravera E. Lysozyme is Sterically Trapped Within the Silica Cage in Bioinspired Silica-Lysozyme Composites: A Multi-Technique Understanding of Elusive Protein-Material Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8030-8037. [PMID: 35738569 PMCID: PMC9261187 DOI: 10.1021/acs.langmuir.2c00836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Lysozyme is widely known to promote the formation of condensed silica networks from solutions containing silicic acid, in a reproducible and cost-effective way. However, little is known about the fate of the protein after the formation of the silica particles. Also, the relative arrangement of the different components in the resulting material is a matter of debate. In this study, we investigate the nature of the protein-silica interactions by means of solid-state nuclear magnetic resonance spectroscopy, small-angle X-ray scattering, and electron microscopy. We find that lysozyme and silica are in intimate contact and strongly interacting, but their interaction is neither covalent nor electrostatic: lysozyme is mostly trapped inside the silica by steric effects.
Collapse
Affiliation(s)
- Francesco Bruno
- Magnetic
Resonance Center (CERM), University of Florence, via L. Sacconi 6, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Lucia Gigli
- Magnetic
Resonance Center (CERM), University of Florence, via L. Sacconi 6, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Giovanni Ferraro
- Department
of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy
- Consorzio
per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), via della Lastruccia, 3, Sesto Fiorentino 50019, Italy
| | - Andrea Cavallo
- CERTEMA
S.c.a.r.l., S.P. Del
Cipressino Km 10, Cinigiano 58044, Italy
| | | | - Gil Goobes
- Department
of Chemistry, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Emiliano Fratini
- Department
of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy
- Consorzio
per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), via della Lastruccia, 3, Sesto Fiorentino 50019, Italy
| | - Enrico Ravera
- Magnetic
Resonance Center (CERM), University of Florence, via L. Sacconi 6, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, via della Lastruccia 3, Sesto Fiorentino 50019, Italy
- Consorzio
Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), via L. Sacconi 6, Sesto Fiorentino 50019, Italy
| |
Collapse
|
6
|
Rizzo D, Cerofolini L, Giuntini S, Iozzino L, Pergola C, Sacco F, Palmese A, Ravera E, Luchinat C, Baroni F, Fragai M. Epitope Mapping and Binding Assessment by Solid-State NMR Provide a Way for the Development of Biologics under the Quality by Design Paradigm. J Am Chem Soc 2022; 144:10006-10016. [PMID: 35617699 PMCID: PMC9185746 DOI: 10.1021/jacs.2c03232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Multispecific biologics
are an emerging class of drugs, in which
antibodies and/or proteins designed to bind pharmacological targets
are covalently linked or expressed as fusion proteins to increase
both therapeutic efficacy and safety. Epitope mapping on the target
proteins provides key information to improve the affinity and also
to monitor the manufacturing process and drug stability. Solid-state
NMR has been here used to identify the pattern of the residues of
the programmed cell death ligand 1 (PD-L1) ectodomain that are involved
in the interaction with a new multispecific biological drug. This
is possible because the large size and the intrinsic flexibility of
the complexes are not limiting factors for solid-state NMR.
Collapse
Affiliation(s)
- Domenico Rizzo
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Stefano Giuntini
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Luisa Iozzino
- Analytical Development Biotech Department, Merck Serono S.p.a, Via Luigi Einaudi, 11, 00012 Guidonia, RM, Italy
| | - Carlo Pergola
- Analytical Development Biotech Department, Merck Serono S.p.a, Via Luigi Einaudi, 11, 00012 Guidonia, RM, Italy
| | - Francesca Sacco
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Analytical Development Biotech Department, Merck Serono S.p.a, Via Luigi Einaudi, 11, 00012 Guidonia, RM, Italy
| | - Angelo Palmese
- Analytical Development Biotech Department, Merck Serono S.p.a, Via Luigi Einaudi, 11, 00012 Guidonia, RM, Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Fabio Baroni
- Analytical Development Biotech Department, Merck Serono S.p.a, Via Luigi Einaudi, 11, 00012 Guidonia, RM, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
7
|
Abstract
In the last two decades, solid-state nuclear magnetic resonance (ssNMR) spectroscopy has transformed from a spectroscopic technique investigating small molecules and industrial polymers to a potent tool decrypting structure and underlying dynamics of complex biological systems, such as membrane proteins, fibrils, and assemblies, in near-physiological environments and temperatures. This transformation can be ascribed to improvements in hardware design, sample preparation, pulsed methods, isotope labeling strategies, resolution, and sensitivity. The fundamental engagement between nuclear spins and radio-frequency pulses in the presence of a strong static magnetic field is identical between solution and ssNMR, but the experimental procedures vastly differ because of the absence of molecular tumbling in solids. This review discusses routinely employed state-of-the-art static and MAS pulsed NMR methods relevant for biological samples with rotational correlation times exceeding 100's of nanoseconds. Recent developments in signal filtering approaches, proton methodologies, and multiple acquisition techniques to boost sensitivity and speed up data acquisition at fast MAS are also discussed. Several examples of protein structures (globular, membrane, fibrils, and assemblies) solved with ssNMR spectroscopy have been considered. We also discuss integrated approaches to structurally characterize challenging biological systems and some newly emanating subdisciplines in ssNMR spectroscopy.
Collapse
Affiliation(s)
- Sahil Ahlawat
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Kaustubh R Mote
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Nils-Alexander Lakomek
- University of Düsseldorf, Institute for Physical Biology, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| |
Collapse
|
8
|
Köhler L, Gärtner W, Matysik J, Song C. Long‐Term Preservation of Short‐Lived Photoproducts of Phytochromes at Room Temperature. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lisa Köhler
- Institut für Analytische Chemie Fakultät für Chemie und Mineralogie Universität Leipzig 04103 Leipzig Germany
| | - Wolfgang Gärtner
- Institut für Analytische Chemie Fakultät für Chemie und Mineralogie Universität Leipzig 04103 Leipzig Germany
| | - Jörg Matysik
- Institut für Analytische Chemie Fakultät für Chemie und Mineralogie Universität Leipzig 04103 Leipzig Germany
| | - Chen Song
- Institut für Analytische Chemie Fakultät für Chemie und Mineralogie Universität Leipzig 04103 Leipzig Germany
| |
Collapse
|
9
|
Ackermann BE, Debelouchina GT. Emerging Contributions of Solid-State NMR Spectroscopy to Chromatin Structural Biology. Front Mol Biosci 2021; 8:741581. [PMID: 34708075 PMCID: PMC8544521 DOI: 10.3389/fmolb.2021.741581] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
The eukaryotic genome is packaged into chromatin, a polymer of DNA and histone proteins that regulates gene expression and the spatial organization of nuclear content. The repetitive character of chromatin is diversified into rich layers of complexity that encompass DNA sequence, histone variants and post-translational modifications. Subtle molecular changes in these variables can often lead to global chromatin rearrangements that dictate entire gene programs with far reaching implications for development and disease. Decades of structural biology advances have revealed the complex relationship between chromatin structure, dynamics, interactions, and gene expression. Here, we focus on the emerging contributions of magic-angle spinning solid-state nuclear magnetic resonance spectroscopy (MAS NMR), a relative newcomer on the chromatin structural biology stage. Unique among structural biology techniques, MAS NMR is ideally suited to provide atomic level information regarding both the rigid and dynamic components of this complex and heterogenous biological polymer. In this review, we highlight the advantages MAS NMR can offer to chromatin structural biologists, discuss sample preparation strategies for structural analysis, summarize recent MAS NMR studies of chromatin structure and dynamics, and close by discussing how MAS NMR can be combined with state-of-the-art chemical biology tools to reconstitute and dissect complex chromatin environments.
Collapse
Affiliation(s)
| | - Galia T. Debelouchina
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
10
|
Rizzo D, Cerofolini L, Pérez-Ràfols A, Giuntini S, Baroni F, Ravera E, Luchinat C, Fragai M. Evaluation of the Higher Order Structure of Biotherapeutics Embedded in Hydrogels for Bioprinting and Drug Release. Anal Chem 2021; 93:11208-11214. [PMID: 34339178 PMCID: PMC8382223 DOI: 10.1021/acs.analchem.1c01850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/20/2021] [Indexed: 01/16/2023]
Abstract
Biocompatible hydrogels for tissue regeneration/replacement and drug release with specific architectures can be obtained by three-dimensional bioprinting techniques. The preservation of the higher order structure of the proteins embedded in the hydrogels as drugs or modulators is critical for their biological activity. Solution nuclear magnetic resonance (NMR) experiments are currently used to investigate the higher order structure of biotherapeutics in comparability, similarity, and stability studies. However, the size of pores in the gel, protein-matrix interactions, and the size of the embedded proteins often prevent the use of this methodology. The recent advancements of solid-state NMR allow for the comparison of the higher order structure of the matrix-embedded and free isotopically enriched proteins, allowing for the evaluation of the functionality of the material in several steps of hydrogel development. Moreover, the structural information at atomic detail on the matrix-protein interactions paves the way for a structure-based design of these biomaterials.
Collapse
Affiliation(s)
- Domenico Rizzo
- Magnetic
Resonance Center (CERM), University of Florence,
and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine
(CIRMMP), Via L. Sacconi 6, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Linda Cerofolini
- Magnetic
Resonance Center (CERM), University of Florence,
and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine
(CIRMMP), Via L. Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Anna Pérez-Ràfols
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
- Giotto
Biotech, S.R.L, Via Madonna
del piano 6, Sesto Fiorentino, Florence 50019, Italy
| | - Stefano Giuntini
- Magnetic
Resonance Center (CERM), University of Florence,
and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine
(CIRMMP), Via L. Sacconi 6, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Fabio Baroni
- Analytical
Development Biotech Department, Merck Serono
S.p.a, Merck KGaA, Guidonia, Rome 00012, Italy
| | - Enrico Ravera
- Magnetic
Resonance Center (CERM), University of Florence,
and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine
(CIRMMP), Via L. Sacconi 6, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Claudio Luchinat
- Magnetic
Resonance Center (CERM), University of Florence,
and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine
(CIRMMP), Via L. Sacconi 6, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| | - Marco Fragai
- Magnetic
Resonance Center (CERM), University of Florence,
and Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine
(CIRMMP), Via L. Sacconi 6, Sesto Fiorentino 50019, Italy
- Department
of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 3, Sesto Fiorentino 50019, Italy
| |
Collapse
|
11
|
Adiram-Filiba N, Ohaion E, Verner G, Schremer A, Nadav-Tsubery M, Lublin-Tennenbaum T, Keinan-Adamsky K, Lucci M, Luchinat C, Ravera E, Goobes G. Structure and Dynamics Perturbations in Ubiquitin Adsorbed or Entrapped in Silica Materials Are Related to Disparate Surface Chemistries Resolved by Solid-State NMR Spectroscopy. Biomacromolecules 2021; 22:3718-3730. [PMID: 34333966 DOI: 10.1021/acs.biomac.1c00495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protein immobilization on material surfaces is emerging as a powerful tool in the design of devices and active materials for biomedical and pharmaceutical applications as well as for catalysis. Preservation of the protein's biological functionality is crucial to the design process and is dependent on the ability to maintain its structural and dynamical integrity while removed from the natural surroundings. The scientific techniques to validate the structure of immobilized proteins are scarce and usually provide limited information as a result of poor resolution. In this work, we benchmarked the ability of standard solid-state NMR techniques to resolve the effects of binding to dissimilar silica materials on a model protein. In particular, the interactions between ubiquitin and the surfaces of MCM41, SBA15, and silica formed in situ were tested for their influence on the structure and dynamics of the protein. It is shown that the protein's globular fold in the free state is only slightly perturbed in the three silica materials. Local motions on a residue level that are quenched by immobilization or, conversely, that arise from the process are also detailed. NMR measurements show that these perturbations are unique to each silica material and can serve as reporters of the characteristic surface chemistry.
Collapse
Affiliation(s)
| | - Eli Ohaion
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Gilit Verner
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Avital Schremer
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
| | | | | | | | - Massimo Lucci
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Enrico Ravera
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Gil Goobes
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
12
|
Parigi G, Ravera E, Fragai M, Luchinat C. Unveiling protein dynamics in solution with field-cycling NMR relaxometry. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 124-125:85-98. [PMID: 34479712 DOI: 10.1016/j.pnmrs.2021.05.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/04/2021] [Accepted: 05/04/2021] [Indexed: 06/13/2023]
Abstract
Field-cycling NMR relaxometry is a well-established technique that can give information on molecular structure and dynamics of biological systems. It provides the nuclear relaxation rates as a function of the applied magnetic field, starting from fields as low as ~ 10-4 T up to about 1-3 T. The profiles so collected, called nuclear magnetic relaxation dispersion (NMRD) profiles, can be extended to include the relaxation rates at the largest fields achievable with high resolution NMR spectrometers. By exploiting this wide range of frequencies, the NMRD profiles can provide information on motions occurring on time scales from 10-6 to 10-9 s. 1H NMRD measurements have proved very useful also for the characterization of paramagnetic proteins, because they can help characterise a number of parameters including the number, distance and residence time of water molecules coordinated to the paramagnetic center, the reorientation correlation times and the electron spin relaxation time, and the electronic structure at the metal site.
Collapse
Affiliation(s)
- Giacomo Parigi
- Magnetic Resonance Center (CERM) University of Florence, via Sacconi 6, Sesto Fiorentino, Italy; Department of Chemistry, "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, Italy.
| | - Enrico Ravera
- Magnetic Resonance Center (CERM) University of Florence, via Sacconi 6, Sesto Fiorentino, Italy; Department of Chemistry, "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM) University of Florence, via Sacconi 6, Sesto Fiorentino, Italy; Department of Chemistry, "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) University of Florence, via Sacconi 6, Sesto Fiorentino, Italy; Department of Chemistry, "Ugo Schiff", University of Florence, via della Lastruccia 3, Sesto Fiorentino, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), via Sacconi 6, Sesto Fiorentino, Italy
| |
Collapse
|
13
|
Van Stappen C, Decamps L, DeBeer S. Preparation and spectroscopic characterization of lyophilized Mo nitrogenase. J Biol Inorg Chem 2021; 26:81-91. [PMID: 33381859 PMCID: PMC8038959 DOI: 10.1007/s00775-020-01838-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/22/2020] [Indexed: 11/30/2022]
Abstract
Mo nitrogenase is the primary source of biologically fixed nitrogen, making this system highly interesting for developing new, energy efficient ways of ammonia production. Although heavily investigated, studies of the active site of this enzyme have generally been limited to spectroscopic methods that are compatible with the presence of water and relatively low protein concentrations. One method of overcoming this limitation is through lyophilization, which allows for measurements to be performed on solvent free, high concentration samples. This method also has the potential for allowing efficient protein storage and solvent exchange. To investigate the viability of this preparatory method with Mo nitrogenase, we employ a combination of electron paramagnetic resonance, Mo and Fe K-edge X-ray absorption spectroscopy, and acetylene reduction assays. Our results show that while some small distortions in the metallocofactors occur, oxidation and spin states are maintained through the lyophilization process and that reconstitution of either lyophilized protein component into buffer restores acetylene reducing activity.
Collapse
Affiliation(s)
- Casey Van Stappen
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany.
| | - Laure Decamps
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
14
|
le Paige UB, Xiang S, Hendrix MMRM, Zhang Y, Folkers GE, Weingarth M, Bonvin AMJJ, Kutateladze TG, Voets IK, Baldus M, van Ingen H. Characterization of nucleosome sediments for protein interaction studies by solid-state NMR spectroscopy. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:187-202. [PMID: 35647606 PMCID: PMC9135053 DOI: 10.5194/mr-2-187-2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Regulation of DNA-templated processes such as gene transcription and DNA repair depend on the interaction of a wide range of proteins with the nucleosome, the fundamental building block of chromatin. Both solution and solid-state NMR spectroscopy have become an attractive approach to study the dynamics and interactions of nucleosomes, despite their high molecular weight of ~ 200 kDa. For solid-state NMR (ssNMR) studies, dilute solutions of nucleosomes are converted to a dense phase by sedimentation or precipitation. Since nucleosomes are known to self-associate, these dense phases may induce extensive interactions between nucleosomes, which could interfere with protein-binding studies. Here, we characterized the packing of nucleosomes in the dense phase created by sedimentation using NMR and small-angle X-ray scattering (SAXS) experiments. We found that nucleosome sediments are gels with variable degrees of solidity, have nucleosome concentration close to that found in crystals, and are stable for weeks under high-speed magic angle spinning (MAS). Furthermore, SAXS data recorded on recovered sediments indicate that there is no pronounced long-range ordering of nucleosomes in the sediment. Finally, we show that the sedimentation approach can also be used to study low-affinity protein interactions with the nucleosome. Together, our results give new insights into the sample characteristics of nucleosome sediments for ssNMR studies and illustrate the broad applicability of sedimentation-based NMR studies.
Collapse
Affiliation(s)
- Ulric B. le Paige
- Utrecht NMR Group, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - ShengQi Xiang
- Utrecht NMR Group, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Marco M. R. M. Hendrix
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry & Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Yi Zhang
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Gert E. Folkers
- Utrecht NMR Group, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Markus Weingarth
- Utrecht NMR Group, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Alexandre M. J. J. Bonvin
- Utrecht NMR Group, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Tatiana G. Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Ilja K. Voets
- Laboratory of Self-Organizing Soft Matter, Department of Chemical Engineering and Chemistry & Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Marc Baldus
- Utrecht NMR Group, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH, Utrecht, the Netherlands
| | - Hugo van Ingen
- Utrecht NMR Group, Bijvoet Centre for Biomolecular Research, Utrecht University, 3584 CH, Utrecht, the Netherlands
| |
Collapse
|
15
|
Wiegand T. A solid-state NMR tool box for the investigation of ATP-fueled protein engines. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 117:1-32. [PMID: 32471533 DOI: 10.1016/j.pnmrs.2020.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 06/11/2023]
Abstract
Motor proteins are involved in a variety of cellular processes. Their main purpose is to convert the chemical energy released during adenosine triphosphate (ATP) hydrolysis into mechanical work. In this review, solid-state Nuclear Magnetic Resonance (NMR) approaches are discussed allowing studies of structures, conformational events and dynamic features of motor proteins during a variety of enzymatic reactions. Solid-state NMR benefits from straightforward sample preparation based on sedimentation of the proteins directly into the Magic-Angle Spinning (MAS) rotor. Protein resonance assignment is the crucial and often time-limiting step in interpreting the wealth of information encoded in the NMR spectra. Herein, potentials, challenges and limitations in resonance assignment for large motor proteins are presented, focussing on both biochemical and spectroscopic approaches. This work highlights NMR tools available to study the action of the motor domain and its coupling to functional processes, as well as to identify protein-nucleotide interactions during events such as DNA replication. Arrested protein states of reaction coordinates such as ATP hydrolysis can be trapped for NMR studies by using stable, non-hydrolysable ATP analogues that mimic the physiological relevant states as accurately as possible. Recent advances in solid-state NMR techniques ranging from Dynamic Nuclear Polarization (DNP), 31P-based heteronuclear correlation experiments, 1H-detected spectra at fast MAS frequencies >100 kHz to paramagnetic NMR are summarized and their applications to the bacterial DnaB helicase from Helicobacter pylori are discussed.
Collapse
Affiliation(s)
- Thomas Wiegand
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
16
|
Wiegand T, Lacabanne D, Torosyan A, Boudet J, Cadalbert R, Allain FHT, Meier BH, Böckmann A. Sedimentation Yields Long-Term Stable Protein Samples as Shown by Solid-State NMR. Front Mol Biosci 2020; 7:17. [PMID: 32154263 PMCID: PMC7047159 DOI: 10.3389/fmolb.2020.00017] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/30/2020] [Indexed: 01/02/2023] Open
Abstract
Today, the sedimentation of proteins into a magic-angle spinning (MAS) rotor gives access to fast and reliable sample preparation for solid-state Nuclear Magnetic Resonance (NMR), and this has allowed for the investigation of a variety of non-crystalline protein samples. High protein concentrations on the order of 400 mg/mL can be achieved, meaning that around 50–60% of the NMR rotor content is protein; the rest is a buffer solution, which includes counter ions to compensate for the charge of the protein. We have demonstrated herein the long-term stability of four sedimented proteins and complexes thereof with nucleotides, comprising a bacterial DnaB helicase, an ABC transporter, an archaeal primase, and an RNA polymerase subunit. Solid-state NMR spectra recorded directly after sample filling and up to 5 years later indicated no spectral differences and no loss in signal intensity, allowing us to conclude that protein sediments in the rotor can be stable over many years. We have illustrated, using an example of an ABC transporter, that not only the structure is maintained, but that the protein is still functional after long-term storage in the sedimented state.
Collapse
Affiliation(s)
| | | | | | - Julien Boudet
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zurich, Switzerland
| | | | - Frédéric H-T Allain
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zurich, Switzerland
| | - Beat H Meier
- Physical Chemistry, ETH Zürich, Zurich, Switzerland
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/Université de Lyon, Labex Ecofect, Lyon, France
| |
Collapse
|
17
|
Cerofolini L, Ravera E, Fragai M, Luchinat C. NMR of Immobilized Enzymes. Methods Mol Biol 2020; 2100:363-383. [PMID: 31939136 DOI: 10.1007/978-1-0716-0215-7_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Solid-state NMR has become the method of choice for the assessment of protein structure for insoluble objects lacking long-range order. In this context, it is apparent that solid-state NMR is also perfectly poised toward the characterization of immobilized proteins. For these systems, it is possible to understand at the atomic level which perturbations, if any, are occurring as a result of the functionalization. Here we describe how it is possible to accomplish the NMR characterization of enzymes that have been immobilized through different approaches, and we introduce the reader to the choice of the experimental strategy that can be useful in different cases. An outlook on the level of information that can be attained is also given, in view of recent methodological advancements.
Collapse
Affiliation(s)
- Linda Cerofolini
- Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario, Risonanze Magnetiche di Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario, Risonanze Magnetiche di Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy.
- Department of Chemistry, University of Florence, Sesto Fiorentino, Italy.
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario, Risonanze Magnetiche di Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario, Risonanze Magnetiche di Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
18
|
Demers JP, Fricke P, Shi C, Chevelkov V, Lange A. Structure determination of supra-molecular assemblies by solid-state NMR: Practical considerations. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:51-78. [PMID: 30527136 DOI: 10.1016/j.pnmrs.2018.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 05/26/2023]
Abstract
In the cellular environment, biomolecules assemble in large complexes which can act as molecular machines. Determining the structure of intact assemblies can reveal conformations and inter-molecular interactions that are only present in the context of the full assembly. Solid-state NMR (ssNMR) spectroscopy is a technique suitable for the study of samples with high molecular weight that allows the atomic structure determination of such large protein assemblies under nearly physiological conditions. This review provides a practical guide for the first steps of studying biological supra-molecular assemblies using ssNMR. The production of isotope-labeled samples is achievable via several means, which include recombinant expression, cell-free protein synthesis, extraction of assemblies directly from cells, or even the study of assemblies in whole cells in situ. Specialized isotope labeling schemes greatly facilitate the assignment of chemical shifts and the collection of structural data. Advanced strategies such as mixed, diluted, or segmental subunit labeling offer the possibility to study inter-molecular interfaces. Detailed and practical considerations are presented with respect to first setting up magic-angle spinning (MAS) ssNMR experiments, including the selection of the ssNMR rotor, different methods to best transfer the sample and prepare the rotor, as well as common and robust procedures for the calibration of the instrument. Diagnostic spectra to evaluate the resolution and sensitivity of the sample are presented. Possible improvements that can reduce sample heterogeneity and improve the quality of ssNMR spectra are reviewed.
Collapse
Affiliation(s)
- Jean-Philippe Demers
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; Laboratory of Cell Biology, Center for Cancer Research (CCR), National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Pascal Fricke
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Chaowei Shi
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Veniamin Chevelkov
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Adam Lange
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
| |
Collapse
|
19
|
Metal centers in biomolecular solid-state NMR. J Struct Biol 2018; 206:99-109. [PMID: 30502494 DOI: 10.1016/j.jsb.2018.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/25/2018] [Accepted: 11/27/2018] [Indexed: 01/03/2023]
Abstract
Solid state NMR (SSNMR) has earned a substantial success in the characterization of paramagnetic systems over the last decades. Nowadays, the resolution and sensitivity of solid state NMR in biological molecules has improved significantly and these advancements can be translated into the study of paramagnetic biomolecules. However, the electronic properties of different metal centers affect the quality of their SSNMR spectra differently, and not all systems turn out to be equally easy to approach by this technique. In this review we will try to give an overview of the properties of different paramagnetic centers and how they can be used to increase the chances of experimental success.
Collapse
|
20
|
Yang Y, Wang S. RNA Characterization by Solid-State NMR Spectroscopy. Chemistry 2018; 24:8698-8707. [DOI: 10.1002/chem.201705583] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Yufei Yang
- College of Chemistry and Molecular Engineering and Beijing NMR Center; Peking University; No.5 Yiheyuan Road, Haidian District Beijing 100871 P. R. China
| | - Shenlin Wang
- College of Chemistry and Molecular Engineering and Beijing NMR Center; Peking University; No.5 Yiheyuan Road, Haidian District Beijing 100871 P. R. China
| |
Collapse
|
21
|
Giuntini S, Balducci E, Cerofolini L, Ravera E, Fragai M, Berti F, Luchinat C. Characterization of the Conjugation Pattern in Large Polysaccharide-Protein Conjugates by NMR Spectroscopy. Angew Chem Int Ed Engl 2017; 56:14997-15001. [PMID: 29024352 PMCID: PMC5813213 DOI: 10.1002/anie.201709274] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Indexed: 11/08/2022]
Abstract
Carbohydrate-based vaccines are among the safest and most effective vaccines and represent potent tools for prevention of life-threatening bacterial infectious diseases, like meningitis and pneumonia. The chemical conjugation of a weak antigen to protein as a source of T-cell epitopes generates a glycoconjugate vaccine that results more immunogenic. Several methods have been used so far to characterize the resulting polysaccharide-protein conjugates. However, a reduced number of methodologies has been proposed for measuring the degree of saccharide conjugation at the possible protein sites. Here we show that detailed information on large proteins conjugated with large polysaccharides can be achieved by a combination of solution and solid-state NMR spectroscopy. As a test case, a large protein assembly, l-asparaginase II, has been conjugated with Neisseria meningitidis serogroup C capsular polysaccharide and the pattern and degree of conjugation were determined.
Collapse
Affiliation(s)
- Stefano Giuntini
- Department of ChemistryUniversity of FlorenceVia della Lastruccia 350019Sesto FiorentinoItaly
- Magnetic Resonance Center (CERM)University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP)Via L. Sacconi 650019Sesto FiorentinoItaly
| | - Evita Balducci
- GSK VaccinesPreclinical R&DVia Fiorentina 153100SienaItaly
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM)University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP)Via L. Sacconi 650019Sesto FiorentinoItaly
| | - Enrico Ravera
- Department of ChemistryUniversity of FlorenceVia della Lastruccia 350019Sesto FiorentinoItaly
- Magnetic Resonance Center (CERM)University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP)Via L. Sacconi 650019Sesto FiorentinoItaly
| | - Marco Fragai
- Department of ChemistryUniversity of FlorenceVia della Lastruccia 350019Sesto FiorentinoItaly
- Magnetic Resonance Center (CERM)University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP)Via L. Sacconi 650019Sesto FiorentinoItaly
| | | | - Claudio Luchinat
- Department of ChemistryUniversity of FlorenceVia della Lastruccia 350019Sesto FiorentinoItaly
- Magnetic Resonance Center (CERM)University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP)Via L. Sacconi 650019Sesto FiorentinoItaly
| |
Collapse
|
22
|
Giuntini S, Balducci E, Cerofolini L, Ravera E, Fragai M, Berti F, Luchinat C. Characterization of the Conjugation Pattern in Large Polysaccharide-Protein Conjugates by NMR Spectroscopy. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201709274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Stefano Giuntini
- Department of Chemistry; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino Italy
- Magnetic Resonance Center (CERM); University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino Italy
| | - Evita Balducci
- GSK Vaccines; Preclinical R&D; Via Fiorentina 1 53100 Siena Italy
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM); University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino Italy
| | - Enrico Ravera
- Department of Chemistry; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino Italy
- Magnetic Resonance Center (CERM); University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino Italy
| | - Marco Fragai
- Department of Chemistry; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino Italy
- Magnetic Resonance Center (CERM); University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino Italy
| | - Francesco Berti
- GSK Vaccines; Preclinical R&D; Via Fiorentina 1 53100 Siena Italy
| | - Claudio Luchinat
- Department of Chemistry; University of Florence; Via della Lastruccia 3 50019 Sesto Fiorentino Italy
- Magnetic Resonance Center (CERM); University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino Italy
| |
Collapse
|
23
|
Cerofolini L, Giuntini S, Louka A, Ravera E, Fragai M, Luchinat C. High-Resolution Solid-State NMR Characterization of Ligand Binding to a Protein Immobilized in a Silica Matrix. J Phys Chem B 2017; 121:8094-8101. [PMID: 28762736 DOI: 10.1021/acs.jpcb.7b05679] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Solid-state NMR is becoming a powerful tool to detect atomic-level structural features of biomolecules even when they are bound to (or trapped in) solid systems that lack long-range three-dimensional order. We here demonstrate that it is possible to probe protein-ligand interactions from a protein-based perspective also when the protein is entrapped in silica, thus translating into biomolecular solid-state NMR all of the considerations that are usually made to understand the chemical nature of the interaction of a protein with its ligands. This work provides a proof of concept that also immobilized enzymes can be used for protein-based NMR protein-ligand interactions for drug discovery.
Collapse
Affiliation(s)
- Linda Cerofolini
- Magnetic Resonance Center (CERM), University of Florence, and Interuniversity Consortium for Magnetic Resonance of Metalloproteins (CIRMMP) , Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy
| | - Stefano Giuntini
- Magnetic Resonance Center (CERM), University of Florence, and Interuniversity Consortium for Magnetic Resonance of Metalloproteins (CIRMMP) , Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy.,Department of Chemistry "Ugo Schiff", University of Florence , Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Alexandra Louka
- Magnetic Resonance Center (CERM), University of Florence, and Interuniversity Consortium for Magnetic Resonance of Metalloproteins (CIRMMP) , Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy.,Department of Chemistry "Ugo Schiff", University of Florence , Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence, and Interuniversity Consortium for Magnetic Resonance of Metalloproteins (CIRMMP) , Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy.,Department of Chemistry "Ugo Schiff", University of Florence , Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence, and Interuniversity Consortium for Magnetic Resonance of Metalloproteins (CIRMMP) , Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy.,Department of Chemistry "Ugo Schiff", University of Florence , Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy.,GiottoBiotech S.R.L. , Via Madonna del Piano 6, 50019 Sesto Fiorentino (FI), Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, and Interuniversity Consortium for Magnetic Resonance of Metalloproteins (CIRMMP) , Via L. Sacconi 6, 50019 Sesto Fiorentino (FI), Italy.,Department of Chemistry "Ugo Schiff", University of Florence , Via della Lastruccia 3, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
24
|
Mandal A, Boatz JC, Wheeler TB, van der Wel PCA. On the use of ultracentrifugal devices for routine sample preparation in biomolecular magic-angle-spinning NMR. JOURNAL OF BIOMOLECULAR NMR 2017; 67:165-178. [PMID: 28229262 PMCID: PMC5445385 DOI: 10.1007/s10858-017-0089-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/19/2017] [Indexed: 05/07/2023]
Abstract
A number of recent advances in the field of magic-angle-spinning (MAS) solid-state NMR have enabled its application to a range of biological systems of ever increasing complexity. To retain biological relevance, these samples are increasingly studied in a hydrated state. At the same time, experimental feasibility requires the sample preparation process to attain a high sample concentration within the final MAS rotor. We discuss these considerations, and how they have led to a number of different approaches to MAS NMR sample preparation. We describe our experience of how custom-made (or commercially available) ultracentrifugal devices can facilitate a simple, fast and reliable sample preparation process. A number of groups have since adopted such tools, in some cases to prepare samples for sedimentation-style MAS NMR experiments. Here we argue for a more widespread adoption of their use for routine MAS NMR sample preparation.
Collapse
Affiliation(s)
- Abhishek Mandal
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Jennifer C Boatz
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Travis B Wheeler
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15260, USA
| | - Patrick C A van der Wel
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
25
|
Ravera E, Martelli T, Geiger Y, Fragai M, Goobes G, Luchinat C. Biosilica and bioinspired silica studied by solid-state NMR. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Ravera E, Ciambellotti S, Cerofolini L, Martelli T, Kozyreva T, Bernacchioni C, Giuntini S, Fragai M, Turano P, Luchinat C. Solid-State NMR of PEGylated Proteins. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201510148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Enrico Ravera
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”; University of Florence, and Magnetic Resonance Consortium (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino FI Italy
| | - Silvia Ciambellotti
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”; University of Florence, and Magnetic Resonance Consortium (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino FI Italy
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”; University of Florence, and Magnetic Resonance Consortium (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino FI Italy
| | - Tommaso Martelli
- Giotto Biotech S.r.l. Via Madonna del Piano 6; 50019 Sesto Fiorentino FI Italy
| | - Tatiana Kozyreva
- Giotto Biotech S.r.l. Via Madonna del Piano 6; 50019 Sesto Fiorentino FI Italy
| | - Caterina Bernacchioni
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”; University of Florence, and Magnetic Resonance Consortium (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino FI Italy
| | - Stefano Giuntini
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”; University of Florence, and Magnetic Resonance Consortium (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino FI Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”; University of Florence, and Magnetic Resonance Consortium (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino FI Italy
| | - Paola Turano
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”; University of Florence, and Magnetic Resonance Consortium (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino FI Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”; University of Florence, and Magnetic Resonance Consortium (CIRMMP); Via L. Sacconi 6 50019 Sesto Fiorentino FI Italy
- Giotto Biotech S.r.l. Via Madonna del Piano 6; 50019 Sesto Fiorentino FI Italy
| |
Collapse
|
27
|
Ravera E, Ciambellotti S, Cerofolini L, Martelli T, Kozyreva T, Bernacchioni C, Giuntini S, Fragai M, Turano P, Luchinat C. Solid-State NMR of PEGylated Proteins. Angew Chem Int Ed Engl 2016; 55:2446-9. [PMID: 26756539 DOI: 10.1002/anie.201510148] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Indexed: 11/10/2022]
Abstract
PEGylated proteins are widely used in biomedicine but, in spite of their importance, no atomic-level information is available since they are generally resistant to structural characterization approaches. PEGylated proteins are shown here to yield highly resolved solid-state NMR spectra, which allows assessment of the structural integrity of proteins when PEGylated for therapeutic or diagnostic use.
Collapse
Affiliation(s)
- Enrico Ravera
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, and Magnetic Resonance Consortium (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy
| | - Silvia Ciambellotti
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, and Magnetic Resonance Consortium (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, and Magnetic Resonance Consortium (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy
| | - Tommaso Martelli
- Giotto Biotech S.r.l. Via Madonna del Piano 6, 50019, Sesto Fiorentino, FI, Italy
| | - Tatiana Kozyreva
- Giotto Biotech S.r.l. Via Madonna del Piano 6, 50019, Sesto Fiorentino, FI, Italy
| | - Caterina Bernacchioni
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, and Magnetic Resonance Consortium (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy
| | - Stefano Giuntini
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, and Magnetic Resonance Consortium (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, and Magnetic Resonance Consortium (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy
| | - Paola Turano
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, and Magnetic Resonance Consortium (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, and Magnetic Resonance Consortium (CIRMMP), Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy. .,Giotto Biotech S.r.l. Via Madonna del Piano 6, 50019, Sesto Fiorentino, FI, Italy.
| |
Collapse
|
28
|
Martelli T, Ravera E, Louka A, Cerofolini L, Hafner M, Fragai M, Becker CFW, Luchinat C. Atomic-Level Quality Assessment of Enzymes Encapsulated in Bioinspired Silica. Chemistry 2015; 22:425-32. [DOI: 10.1002/chem.201503613] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Indexed: 12/23/2022]
|
29
|
Ravera E, Schubeis T, Martelli T, Fragai M, Parigi G, Luchinat C. NMR of sedimented, fibrillized, silica-entrapped and microcrystalline (metallo)proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 253:60-70. [PMID: 25797005 DOI: 10.1016/j.jmr.2014.12.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/06/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
Resolution and sensitivity in solid state NMR (SSNMR) can rival the results achieved by solution NMR, and even outperform them in the case of large systems. However, several factors affect the spectral quality in SSNMR samples, and not all systems turn out to be equally amenable for this methodology. In this review we attempt at analyzing the causes of this variable behavior and at providing hints to increase the chances of experimental success.
Collapse
Affiliation(s)
- Enrico Ravera
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Tobias Schubeis
- Giotto Biotech, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy
| | - Tommaso Martelli
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Marco Fragai
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy; Giotto Biotech, Via Madonna del Piano 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
30
|
Corzilius B, Michaelis VK, Penzel SA, Ravera E, Smith AA, Luchinat C, Griffin RG. Dynamic nuclear polarization of (1)H, (13)C, and (59)Co in a tris(ethylenediamine)cobalt(III) crystalline lattice doped with Cr(III). J Am Chem Soc 2014; 136:11716-27. [PMID: 25069794 PMCID: PMC4140501 DOI: 10.1021/ja5044374] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The study of inorganic crystalline materials by solid-state NMR spectroscopy is often complicated by the low sensitivity of heavy nuclei. However, these materials often contain or can be prepared with paramagnetic dopants without significantly affecting the structure of the crystalline host. Dynamic nuclear polarization (DNP) is generally capable of enhancing NMR signals by transferring the magnetization of unpaired electrons to the nuclei. Therefore, the NMR sensitivity in these paramagnetically doped crystals might be increased by DNP. In this paper we demonstrate the possibility of efficient DNP transfer in polycrystalline samples of [Co(en)3Cl3]2·NaCl·6H2O (en = ethylenediamine, C2H8N2) doped with Cr(III) in varying concentrations between 0.1 and 3 mol %. We demonstrate that (1)H, (13)C, and (59)Co can be polarized by irradiation of Cr(III) with 140 GHz microwaves at a magnetic field of 5 T. We further explain our findings on the basis of electron paramagnetic resonance spectroscopy of the Cr(III) site and analysis of its temperature-dependent zero-field splitting, as well as the dependence of the DNP enhancement factor on the external magnetic field and microwave power. This first demonstration of DNP transfer from one paramagnetic metal ion to its diamagnetic host metal ion will pave the way for future applications of DNP in paramagnetically doped materials or metalloproteins.
Collapse
Affiliation(s)
- Björn Corzilius
- Francis Bitter Magnet Laboratory and Department of Chemistry, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | | | | | | | | | | | |
Collapse
|
31
|
Michaelis VK, Ong TC, Kiesewetter MK, Frantz DK, Walish JJ, Ravera E, Luchinat C, Swager TM, Griffin RG. Topical Developments in High-Field Dynamic Nuclear Polarization. Isr J Chem 2014; 54:207-221. [PMID: 25977588 DOI: 10.1002/ijch.201300126] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We report our recent efforts directed at improving high-field DNP experiments. We investigated a series of thiourea nitroxide radicals and the associated DNP enhancements ranging from ε = 25 to 82 that demonstrate the impact of molecular structure on performance. We directly polarized low-gamma nuclei including 13C, 2H, and 17O using trityl via the cross effect. We discuss a variety of sample preparation techniques for DNP with emphasis on the benefit of methods that do not use a glass-forming cryoprotecting matrix. Lastly, we describe a corrugated waveguide for use in a 700 MHz / 460 GHz DNP system that improves microwave delivery and increases enhancements up to 50%.
Collapse
Affiliation(s)
- Vladimir K Michaelis
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA.,Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Ta-Chung Ong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA.,Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Matthew K Kiesewetter
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Derik K Frantz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Joseph J Walish
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Enrico Ravera
- Department of Chemistry "Ugo Schiff" and Magnetic Resonance Center (CERM) University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Claudio Luchinat
- Department of Chemistry "Ugo Schiff" and Magnetic Resonance Center (CERM) University of Florence, 50019 Sesto Fiorentino (FI), Italy
| | - Timothy M Swager
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Robert G Griffin
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA.,Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| |
Collapse
|
32
|
Ravera E, Corzilius B, Michaelis VK, Luchinat C, Griffin RG, Bertini I. DNP-enhanced MAS NMR of bovine serum albumin sediments and solutions. J Phys Chem B 2014; 118:2957-65. [PMID: 24460530 PMCID: PMC3983357 DOI: 10.1021/jp500016f] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
![]()
Protein
sedimentation sans cryoprotection is a new approach to
magic angle spinning (MAS) and dynamic nuclear polarization (DNP)
nuclear magnetic resonance (NMR) spectroscopy of proteins. It increases
the sensitivity of the experiments by a factor of ∼4.5 in comparison
to the conventional DNP sample preparation and circumvents intense
background signals from the cryoprotectant. In this paper, we investigate
sedimented samples and concentrated frozen solutions of natural abundance
bovine serum albumin (BSA) in the absence of a glycerol-based cryoprotectant.
We observe DNP signal enhancements of ε ∼ 66 at 140 GHz
in a BSA pellet sedimented from an aqueous solution containing the
biradical polarizing agent TOTAPOL and compare this with samples prepared
using the conventional protocol (i.e., dissolution of BSA in a glycerol/water
cryoprotecting mixture). The dependence of DNP parameters on the radical
concentration points to the presence of an interaction between TOTAPOL
and BSA, so much so that a frozen solution sans cryoprotectant still
gives ε ∼ 50. We have studied the interaction of BSA
with another biradical, SPIROPOL, that is more rigid than TOTAPOL
and has been reported to give higher enhancements. SPIROPOL was also
found to interact with BSA, and to give ε ∼ 26 close
to its maximum achievable concentration. Under the same conditions,
TOTAPOL gives ε ∼ 31, suggesting a lesser affinity of
BSA for SPIROPOL with respect to TOTAPOL. Altogether, these results
demonstrate that DNP is feasible in self-cryoprotecting samples.
Collapse
Affiliation(s)
- Enrico Ravera
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence , 50019 Sesto Fiorentino (FI), Italy
| | | | | | | | | | | |
Collapse
|
33
|
Fragai M, Luchinat C, Martelli T, Ravera E, Sagi I, Solomonov I, Udi Y. SSNMR of biosilica-entrapped enzymes permits an easy assessment of preservation of native conformation in atomic detail. Chem Commun (Camb) 2014; 50:421-3. [DOI: 10.1039/c3cc46896h] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Ferella L, Luchinat C, Ravera E, Rosato A. SedNMR: a web tool for optimizing sedimentation of macromolecular solutes for SSNMR. JOURNAL OF BIOMOLECULAR NMR 2013; 57:319-26. [PMID: 24243317 DOI: 10.1007/s10858-013-9795-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 11/11/2013] [Indexed: 05/09/2023]
Abstract
We have proposed solid state NMR (SSNMR) of sedimented solutes as a novel approach to sample preparation for biomolecular SSNMR without crystallization or other sample manipulations. The biomolecules are confined by high gravity--obtained by centrifugal forces either directly in a SSNMR rotor or in a ultracentrifugal device--into a hydrated non-crystalline solid suitable for SSNMR investigations. When gravity is removed, the sample reverts to solution and can be treated as any solution NMR sample. We here describe a simple web tool to calculate the relevant parameters for the success of the experiment.
Collapse
Affiliation(s)
- Lucio Ferella
- Center for Magnetic Resonance (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, FI, Italy
| | | | | | | |
Collapse
|