1
|
Zhang XC, Xue K, Salvi M, Schomburg B, Mehrens J, Giller K, Stopp M, Weisenburger S, Böning D, Sandoghdar V, Unden G, Becker S, Andreas LB, Griesinger C. Mechanism of sensor kinase CitA transmembrane signaling. Nat Commun 2025; 16:935. [PMID: 39843904 PMCID: PMC11754779 DOI: 10.1038/s41467-024-55671-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
Membrane bound histidine kinases (HKs) are ubiquitous sensors of extracellular stimuli in bacteria. However, a uniform structural model is still missing for their transmembrane signaling mechanism. Here, we used solid-state NMR in conjunction with crystallography, solution NMR and distance measurements to investigate the transmembrane signaling mechanism of a paradigmatic citrate sensing membrane embedded HK, CitA. Citrate binding in the sensory extracytoplasmic PAS domain (PASp) causes the linker to transmembrane helix 2 (TM2) to adopt a helical conformation. This triggers a piston-like pulling of TM2 and a quaternary structure rearrangement in the cytosolic PAS domain (PASc). Crystal structures of PASc reveal both anti-parallel and parallel dimer conformations. An anti-parallel to parallel transition upon citrate binding agrees with interdimer distances measured in the lipid embedded protein using a site-specific 19F label in PASc. These data show how Angstrom scale structural changes in the sensor domain are transmitted across the membrane to be converted and amplified into a nm scale shift in the linker to the phosphorylation subdomain of the kinase.
Collapse
Affiliation(s)
- Xizhou Cecily Zhang
- NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Kai Xue
- NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Michele Salvi
- NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Benjamin Schomburg
- NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Jonas Mehrens
- NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Karin Giller
- NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Marius Stopp
- Institute for Molecular Physiology (imP), Microbiology and Biotechnology, Johannes Gutenberg University, Mainz, Germany
| | - Siegfried Weisenburger
- Department of Physics, Friedrich Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Department Nano-Optics, Plasmonics and Biophotonics, Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Daniel Böning
- Department of Physics, Friedrich Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Department Nano-Optics, Plasmonics and Biophotonics, Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Vahid Sandoghdar
- Department of Physics, Friedrich Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Department Nano-Optics, Plasmonics and Biophotonics, Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Gottfried Unden
- Institute for Molecular Physiology (imP), Microbiology and Biotechnology, Johannes Gutenberg University, Mainz, Germany
| | - Stefan Becker
- NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Loren B Andreas
- NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Christian Griesinger
- NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
2
|
Forster MC, Tekwani Movellan K, Najbauer EE, Becker S, Andreas LB. Magic-angle spinning NMR structure of Opa60 in lipid bilayers. J Struct Biol X 2024; 9:100098. [PMID: 39010882 PMCID: PMC11247266 DOI: 10.1016/j.yjsbx.2024.100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/30/2024] [Accepted: 02/19/2024] [Indexed: 07/17/2024] Open
Abstract
Here we report the structure of Opa60 in lipid bilayers using proton-detected magic-angle spinning nuclear magnetic resonance (MAS NMR). Preparations including near-native oligosaccharide lipids reveal a consistent picture of a stable transmembrane beta barrel with a minor increase in the structured region as compared with the previously reported detergent structure. The large variable loops known to interact with host proteins could not be detected, confirming their dynamic nature even in a lipid bilayer environment. The structure provides a starting point for investigation of the functional role of Opa60 in gonococcal infection, which is understood to involve interaction with host proteins. At the same time, it demonstrates the recent advances in proton-detected methodology for membrane protein structure determination at atomic resolution by MAS NMR.
Collapse
Affiliation(s)
- Marcel C. Forster
- Department of NMR-based Structural Biology, Max-Planck-Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| | - Kumar Tekwani Movellan
- Department of NMR-based Structural Biology, Max-Planck-Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| | - Eszter E. Najbauer
- Department of NMR-based Structural Biology, Max-Planck-Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| | - Stefan Becker
- Department of NMR-based Structural Biology, Max-Planck-Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| | - Loren B. Andreas
- Department of NMR-based Structural Biology, Max-Planck-Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| |
Collapse
|
3
|
Klein A, Vasa SK, Linser R. 5D solid-state NMR spectroscopy for facilitated resonance assignment. JOURNAL OF BIOMOLECULAR NMR 2023; 77:229-245. [PMID: 37943392 PMCID: PMC10687145 DOI: 10.1007/s10858-023-00424-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023]
Abstract
1H-detected solid-state NMR spectroscopy has been becoming increasingly popular for the characterization of protein structure, dynamics, and function. Recently, we showed that higher-dimensionality solid-state NMR spectroscopy can aid resonance assignments in large micro-crystalline protein targets to combat ambiguity (Klein et al., Proc. Natl. Acad. Sci. U.S.A. 2022). However, assignments represent both, a time-limiting factor and one of the major practical disadvantages within solid-state NMR studies compared to other structural-biology techniques from a very general perspective. Here, we show that 5D solid-state NMR spectroscopy is not only justified for high-molecular-weight targets but will also be a realistic and practicable method to streamline resonance assignment in small to medium-sized protein targets, which such methodology might not have been expected to be of advantage for. Using a combination of non-uniform sampling and the signal separating algorithm for spectral reconstruction on a deuterated and proton back-exchanged micro-crystalline protein at fast magic-angle spinning, direct amide-to-amide correlations in five dimensions are obtained with competitive sensitivity compatible with common hardware and measurement time commitments. The self-sufficient backbone walks enable efficient assignment with very high confidence and can be combined with higher-dimensionality sidechain-to-backbone correlations from protonated preparations into minimal sets of experiments to be acquired for simultaneous backbone and sidechain assignment. The strategies present themselves as potent alternatives for efficient assignment compared to the traditional assignment approaches in 3D, avoiding user misassignments derived from ambiguity or loss of overview and facilitating automation. This will ease future access to NMR-based characterization for the typical solid-state NMR targets at fast MAS.
Collapse
Affiliation(s)
- Alexander Klein
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Suresh K Vasa
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Rasmus Linser
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany.
| |
Collapse
|
4
|
Nishiyama Y, Hou G, Agarwal V, Su Y, Ramamoorthy A. Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy: Advances in Methodology and Applications. Chem Rev 2023; 123:918-988. [PMID: 36542732 PMCID: PMC10319395 DOI: 10.1021/acs.chemrev.2c00197] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Solid-state NMR spectroscopy is one of the most commonly used techniques to study the atomic-resolution structure and dynamics of various chemical, biological, material, and pharmaceutical systems spanning multiple forms, including crystalline, liquid crystalline, fibrous, and amorphous states. Despite the unique advantages of solid-state NMR spectroscopy, its poor spectral resolution and sensitivity have severely limited the scope of this technique. Fortunately, the recent developments in probe technology that mechanically rotate the sample fast (100 kHz and above) to obtain "solution-like" NMR spectra of solids with higher resolution and sensitivity have opened numerous avenues for the development of novel NMR techniques and their applications to study a plethora of solids including globular and membrane-associated proteins, self-assembled protein aggregates such as amyloid fibers, RNA, viral assemblies, polymorphic pharmaceuticals, metal-organic framework, bone materials, and inorganic materials. While the ultrafast-MAS continues to be developed, the minute sample quantity and radio frequency requirements, shorter recycle delays enabling fast data acquisition, the feasibility of employing proton detection, enhancement in proton spectral resolution and polarization transfer efficiency, and high sensitivity per unit sample are some of the remarkable benefits of the ultrafast-MAS technology as demonstrated by the reported studies in the literature. Although the very low sample volume and very high RF power could be limitations for some of the systems, the advantages have spurred solid-state NMR investigation into increasingly complex biological and material systems. As ultrafast-MAS NMR techniques are increasingly used in multidisciplinary research areas, further development of instrumentation, probes, and advanced methods are pursued in parallel to overcome the limitations and challenges for widespread applications. This review article is focused on providing timely comprehensive coverage of the major developments on instrumentation, theory, techniques, applications, limitations, and future scope of ultrafast-MAS technology.
Collapse
Affiliation(s)
- Yusuke Nishiyama
- JEOL Ltd., Akishima, Tokyo196-8558, Japan
- RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa230-0045, Japan
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian116023, China
| | - Vipin Agarwal
- Tata Institute of Fundamental Research, Sy. No. 36/P, Gopanpally, Hyderabad500 046, India
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey07065, United States
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan41809-1055, United States
| |
Collapse
|
5
|
Ahlawat S, Mopidevi SMV, Taware PP, Raran-Kurussi S, Mote KR, Agarwal V. Assignment of aromatic side-chain spins and characterization of their distance restraints at fast MAS. J Struct Biol X 2022; 7:100082. [PMID: 36618437 PMCID: PMC9817166 DOI: 10.1016/j.yjsbx.2022.100082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/18/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022] Open
Abstract
The assignment of aromatic side-chain spins has always been more challenging than assigning backbone and aliphatic spins. Selective labeling combined with mutagenesis has been the approach for assigning aromatic spins. This manuscript reports a method for assigning aromatic spins in a fully protonated protein by connecting them to the backbone atoms using a low-power TOBSY sequence. The pulse sequence employs residual polarization and sequential acquisitions techniques to record HN- and HC-detected spectra in a single experiment. The unambiguous assignment of aromatic spins also enables the characterization of 1H-1H distance restraints involving aromatic spins. Broadband (RFDR) and selective (BASS-SD) recoupling sequences were used to generate HN-ΗC, HC-HN and HC-HC restraints involving the side-chain proton spins of aromatic residues. This approach has been demonstrated on a fully protonated U-[13C,15N] labeled GB1 sample at 95-100 kHz MAS.
Collapse
Affiliation(s)
- Sahil Ahlawat
- Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, India
| | - Subbarao Mohana Venkata Mopidevi
- Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, India
| | - Pravin P. Taware
- Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, India
| | - Sreejith Raran-Kurussi
- Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, India
| | - Kaustubh R. Mote
- Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, India
| | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, Sy. No. 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, India
| |
Collapse
|
6
|
Le Marchand T, Schubeis T, Bonaccorsi M, Paluch P, Lalli D, Pell AJ, Andreas LB, Jaudzems K, Stanek J, Pintacuda G. 1H-Detected Biomolecular NMR under Fast Magic-Angle Spinning. Chem Rev 2022; 122:9943-10018. [PMID: 35536915 PMCID: PMC9136936 DOI: 10.1021/acs.chemrev.1c00918] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Indexed: 02/08/2023]
Abstract
Since the first pioneering studies on small deuterated peptides dating more than 20 years ago, 1H detection has evolved into the most efficient approach for investigation of biomolecular structure, dynamics, and interactions by solid-state NMR. The development of faster and faster magic-angle spinning (MAS) rates (up to 150 kHz today) at ultrahigh magnetic fields has triggered a real revolution in the field. This new spinning regime reduces the 1H-1H dipolar couplings, so that a direct detection of 1H signals, for long impossible without proton dilution, has become possible at high resolution. The switch from the traditional MAS NMR approaches with 13C and 15N detection to 1H boosts the signal by more than an order of magnitude, accelerating the site-specific analysis and opening the way to more complex immobilized biological systems of higher molecular weight and available in limited amounts. This paper reviews the concepts underlying this recent leap forward in sensitivity and resolution, presents a detailed description of the experimental aspects of acquisition of multidimensional correlation spectra with fast MAS, and summarizes the most successful strategies for the assignment of the resonances and for the elucidation of protein structure and conformational dynamics. It finally outlines the many examples where 1H-detected MAS NMR has contributed to the detailed characterization of a variety of crystalline and noncrystalline biomolecular targets involved in biological processes ranging from catalysis through drug binding, viral infectivity, amyloid fibril formation, to transport across lipid membranes.
Collapse
Affiliation(s)
- Tanguy Le Marchand
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Tobias Schubeis
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Marta Bonaccorsi
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
- Department
of Biochemistry and Biophysics, Stockholm
University, Svante Arrhenius
väg 16C SE-106 91, Stockholm, Sweden
| | - Piotr Paluch
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Daniela Lalli
- Dipartimento
di Scienze e Innovazione Tecnologica, Università
del Piemonte Orientale “A. Avogadro”, Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Andrew J. Pell
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16 C, SE-106
91 Stockholm, Sweden
| | - Loren B. Andreas
- Department
for NMR-Based Structural Biology, Max-Planck-Institute
for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | - Kristaps Jaudzems
- Latvian
Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006 Latvia
- Faculty
of Chemistry, University of Latvia, Jelgavas 1, Riga LV-1004, Latvia
| | - Jan Stanek
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Guido Pintacuda
- Centre
de RMN à Très Hauts Champs de Lyon, UMR 5082 CNRS/ENS
Lyon/Université Claude Bernard Lyon 1, Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| |
Collapse
|
7
|
Taware PP, Raran-Kurussi S, Mote KR. CURD: a Single-Shot Strategy to Obtain Assignments and Distance Restraints for Proteins Using Solid-State MAS NMR Spectroscopy. J Phys Chem B 2022; 126:3269-3275. [PMID: 35473315 DOI: 10.1021/acs.jpcb.2c00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a strategy dubbed CURD (correlations using recycle delays) to acquire chemical-shift assignments and distance restraints for proteins in a single experimental block under slow-moderate magic-angle spinning conditions. This is done by concatenating the 3D-CCC and 3D-NNC experiments, both of which individually require long experimental times for sufficient resolution and sensitivity to be realized. Unlike previous approaches, the CURD strategy does not increase the amount of radio-frequency deposition on the sample and does not require lengthy procedures to optimize any of the pulse sequence elements. Instead, time savings is obtained by using the hitherto unused recycle delay of one of the experiments (2D-CC/3D-CCC) to establish inter-residue correlations for the second experiment (2D-NN/3D-NNC). Experiments are demonstrated on a model protein at the MAS frequency of 12.5 kHz and are shown to result in time savings of the order of days for most of the routine cases.
Collapse
Affiliation(s)
- Pravin P Taware
- Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, Telangana 500046, India
| | - Sreejith Raran-Kurussi
- Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, Telangana 500046, India
| | - Kaustubh R Mote
- Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, Telangana 500046, India
| |
Collapse
|
8
|
Abstract
In the last two decades, solid-state nuclear magnetic resonance (ssNMR) spectroscopy has transformed from a spectroscopic technique investigating small molecules and industrial polymers to a potent tool decrypting structure and underlying dynamics of complex biological systems, such as membrane proteins, fibrils, and assemblies, in near-physiological environments and temperatures. This transformation can be ascribed to improvements in hardware design, sample preparation, pulsed methods, isotope labeling strategies, resolution, and sensitivity. The fundamental engagement between nuclear spins and radio-frequency pulses in the presence of a strong static magnetic field is identical between solution and ssNMR, but the experimental procedures vastly differ because of the absence of molecular tumbling in solids. This review discusses routinely employed state-of-the-art static and MAS pulsed NMR methods relevant for biological samples with rotational correlation times exceeding 100's of nanoseconds. Recent developments in signal filtering approaches, proton methodologies, and multiple acquisition techniques to boost sensitivity and speed up data acquisition at fast MAS are also discussed. Several examples of protein structures (globular, membrane, fibrils, and assemblies) solved with ssNMR spectroscopy have been considered. We also discuss integrated approaches to structurally characterize challenging biological systems and some newly emanating subdisciplines in ssNMR spectroscopy.
Collapse
Affiliation(s)
- Sahil Ahlawat
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Kaustubh R Mote
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| | - Nils-Alexander Lakomek
- University of Düsseldorf, Institute for Physical Biology, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad 500046, Telangana, India
| |
Collapse
|
9
|
Najbauer EE, Tekwani Movellan K, Giller K, Benz R, Becker S, Griesinger C, Andreas LB. Structure and Gating Behavior of the Human Integral Membrane Protein VDAC1 in a Lipid Bilayer. J Am Chem Soc 2022; 144:2953-2967. [PMID: 35164499 PMCID: PMC8874904 DOI: 10.1021/jacs.1c09848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
The voltage-dependent
anion channel (VDAC), the most abundant protein
in the outer mitochondrial membrane, is responsible for the transport
of all ions and metabolites into and out of mitochondria. Larger than
any of the β-barrel structures determined to date by magic-angle
spinning (MAS) NMR, but smaller than the size limit of cryo-electron
microscopy (cryo-EM), VDAC1’s 31 kDa size has long been a bottleneck
in determining its structure in a near-native lipid bilayer environment.
Using a single two-dimensional (2D) crystalline sample of human VDAC1
in lipids, we applied proton-detected fast magic-angle spinning NMR
spectroscopy to determine the arrangement of β strands. Combining
these data with long-range restraints from a spin-labeled sample,
chemical shift-based secondary structure prediction, and previous
MAS NMR and atomic force microscopy (AFM) data, we determined the
channel’s structure at a 2.2 Å root-mean-square deviation
(RMSD). The structure, a 19-stranded β-barrel, with an N-terminal
α-helix in the pore is in agreement with previous data in detergent,
which was questioned due to the potential for the detergent to perturb
the protein’s functional structure. Using a quintuple mutant
implementing the channel’s closed state, we found that dynamics
are a key element in the protein’s gating behavior, as channel
closure leads to the destabilization of not only the C-terminal barrel
residues but also the α2 helix. We showed that cholesterol,
previously shown to reduce the frequency of channel closure, stabilizes
the barrel relative to the N-terminal helix. Furthermore, we observed
channel closure through steric blockage by a drug shown to selectively
bind to the channel, the Bcl2-antisense oligonucleotide G3139.
Collapse
Affiliation(s)
- Eszter E Najbauer
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| | - Kumar Tekwani Movellan
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| | - Karin Giller
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| | - Roland Benz
- Life Sciences and Chemistry, Jacobs University of Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Stefan Becker
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| | - Christian Griesinger
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| | - Loren B Andreas
- Department of NMR-Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| |
Collapse
|
10
|
Li M, Reichert P, Narasimhan C, Sorman B, Xu W, Cote A, Su Y. Investigating Crystalline Protein Suspension Formulations of Pembrolizumab from MAS NMR Spectroscopy. Mol Pharm 2022; 19:936-952. [PMID: 35107019 DOI: 10.1021/acs.molpharmaceut.1c00915] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Developing biological formulations to maintain the chemical and structural integrity of therapeutic antibodies remains a significant challenge. Monoclonal antibody (mAb) crystalline suspension formulation is a promising alternative for high concentration subcutaneous drug delivery. It demonstrates many merits compared to the solution formulation to reach a high concentration at the reduced viscosity and enhanced stability. One main challenge in drug development is the lack of high-resolution characterization of the crystallinity and stability of mAb microcrystals in the native formulations. Conventional analytical techniques often cannot evaluate structural details of mAb microcrystals in the native suspension due to the presence of visible particles, relatively small crystal size, high protein concentration, and multicomponent nature of a liquid formulation. This study demonstrates the first high-resolution characterization of mAb microcrystalline suspension using magic angle spinning (MAS) NMR spectroscopy. Crystalline suspension formulation of pembrolizumab (Keytruda, Merck & Co., Inc., Kenilworth, NJ 07033, U.S.) is utilized as a model system. Remarkably narrow 13C spectral linewidth of approximately 29 Hz suggests a high order of crystallinity and conformational homogeneity of pembrolizumab crystals. The impact of thermal stress and dehydration on the structure, dynamics, and stability of these mAb crystals in the formulation environment is evaluated. Moreover, isotopic labeling and heteronuclear 13C and 15N spectroscopies have been utilized to identify the binding of caffeine in the pembrolizumab crystal lattice, providing molecular insights into the cocrystallization of the protein and ligand. Our study provides valuable structural details for facilitating the design of crystalline suspension formulation of Keytruda and demonstrates the high potential of MAS NMR as an advanced tool for biophysical characterization of biological therapeutics.
Collapse
Affiliation(s)
- Mingyue Li
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Paul Reichert
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | | | - Bradley Sorman
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Wei Xu
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Aaron Cote
- Biologics Process Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
11
|
Klein A, Rovó P, Sakhrani VV, Wang Y, Holmes JB, Liu V, Skowronek P, Kukuk L, Vasa SK, Güntert P, Mueller LJ, Linser R. Atomic-resolution chemical characterization of (2x)72-kDa tryptophan synthase via four- and five-dimensional 1H-detected solid-state NMR. Proc Natl Acad Sci U S A 2022; 119:e2114690119. [PMID: 35058365 PMCID: PMC8795498 DOI: 10.1073/pnas.2114690119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/13/2021] [Indexed: 02/07/2023] Open
Abstract
NMR chemical shifts provide detailed information on the chemical properties of molecules, thereby complementing structural data from techniques like X-ray crystallography and electron microscopy. Detailed analysis of protein NMR data, however, often hinges on comprehensive, site-specific assignment of backbone resonances, which becomes a bottleneck for molecular weights beyond 40 to 45 kDa. Here, we show that assignments for the (2x)72-kDa protein tryptophan synthase (665 amino acids per asymmetric unit) can be achieved via higher-dimensional, proton-detected, solid-state NMR using a single, 1-mg, uniformly labeled, microcrystalline sample. This framework grants access to atom-specific characterization of chemical properties and relaxation for the backbone and side chains, including those residues important for the catalytic turnover. Combined with first-principles calculations, the chemical shifts in the β-subunit active site suggest a connection between active-site chemistry, the electrostatic environment, and catalytically important dynamics of the portal to the β-subunit from solution.
Collapse
Affiliation(s)
- Alexander Klein
- Department of Chemistry and Pharmacy, Ludwig Maximilians University, 81377 Munich, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Petra Rovó
- Department of Chemistry and Pharmacy, Ludwig Maximilians University, 81377 Munich, Germany
| | - Varun V Sakhrani
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Yangyang Wang
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Jacob B Holmes
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Viktoriia Liu
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Patricia Skowronek
- Department of Chemistry and Pharmacy, Ludwig Maximilians University, 81377 Munich, Germany
| | - Laura Kukuk
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Suresh K Vasa
- Department of Chemistry and Pharmacy, Ludwig Maximilians University, 81377 Munich, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Peter Güntert
- Institute of Biophysical Chemistry, Goethe University, 60438 Frankfurt am Main, Germany
- Laboratory of Physical Chemistry, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
- Department of Chemistry, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Leonard J Mueller
- Department of Chemistry, University of California, Riverside, CA 92521
| | - Rasmus Linser
- Department of Chemistry and Pharmacy, Ludwig Maximilians University, 81377 Munich, Germany;
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| |
Collapse
|
12
|
Reif B. Deuteration for High-Resolution Detection of Protons in Protein Magic Angle Spinning (MAS) Solid-State NMR. Chem Rev 2021; 122:10019-10035. [PMID: 34870415 DOI: 10.1021/acs.chemrev.1c00681] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proton detection developed in the last 20 years as the method of choice to study biomolecules in the solid state. In perdeuterated proteins, proton dipolar interactions are strongly attenuated, which allows yielding of high-resolution proton spectra. Perdeuteration and backsubstitution of exchangeable protons is essential if samples are rotated with MAS rotation frequencies below 60 kHz. Protonated samples can be investigated directly without spin dilution using proton detection methods in case the MAS frequency exceeds 110 kHz. This review summarizes labeling strategies and the spectroscopic methods to perform experiments that yield assignments, quantitative information on structure, and dynamics using perdeuterated samples. Techniques for solvent suppression, H/D exchange, and deuterium spectroscopy are discussed. Finally, experimental and theoretical results that allow estimation of the sensitivity of proton detected experiments as a function of the MAS frequency and the external B0 field in a perdeuterated environment are compiled.
Collapse
Affiliation(s)
- Bernd Reif
- Bayerisches NMR Zentrum (BNMRZ) at the Department of Chemistry, Technische Universität München (TUM), Lichtenbergstr. 4, 85747 Garching, Germany.,Helmholtz-Zentrum München (HMGU), Deutsches Forschungszentrum für Gesundheit und Umwelt, Institute of Structural Biology (STB), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
13
|
Lends A, Berbon M, Habenstein B, Nishiyama Y, Loquet A. Protein resonance assignment by solid-state NMR based on 1H-detected 13C double-quantum spectroscopy at fast MAS. JOURNAL OF BIOMOLECULAR NMR 2021; 75:417-427. [PMID: 34813018 DOI: 10.1007/s10858-021-00386-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Solid-state NMR spectroscopy is a powerful technique to study insoluble and non-crystalline proteins and protein complexes at atomic resolution. The development of proton (1H) detection at fast magic-angle spinning (MAS) has considerably increased the analytical capabilities of the technique, enabling the acquisition of 1H-detected fingerprint experiments in few hours. Here an approach based on double-quantum (DQ) 13C spectroscopy, detected on 1H, is proposed for fast MAS regime (> 60 kHz) to perform the sequential assignment of insoluble proteins of small size, without any specific deuteration requirement. By combining two three-dimensional 1H detected experiments correlating a 13C DQ dimension respectively to its intra-residue and sequential 15 N-1H pairs, a sequential walk through DQ (Ca + CO) resonance is obtained. The approach takes advantage of fast MAS to achieve an efficient sensitivity and the addition of a DQ dimension provides spectral features useful for the resonance assignment process.
Collapse
Affiliation(s)
- Alons Lends
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), UMR 5348, Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, 33600, Pessac, France.
| | - Mélanie Berbon
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), UMR 5348, Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, 33600, Pessac, France
| | - Birgit Habenstein
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), UMR 5348, Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, 33600, Pessac, France
| | - Yusuke Nishiyama
- RIKEN-JEOL Collaboration Center, RIKEN, Yokohama, Kanagawa, 230-0045, Japan.
- JEOL RESONANCE Inc., 3-1-2 Musashino, Akishima, Tokyo, 196-8558, Japan.
| | - Antoine Loquet
- CNRS, Chemistry and Biology of Membranes and Nanoobjects (CBMN), UMR 5348, Institut Europeen de Chimie et Biologie (IECB), University of Bordeaux, 33600, Pessac, France.
| |
Collapse
|
14
|
Kupče Ē, Mote KR, Webb A, Madhu PK, Claridge TDW. Multiplexing experiments in NMR and multi-nuclear MRI. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 124-125:1-56. [PMID: 34479710 DOI: 10.1016/j.pnmrs.2021.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 05/22/2023]
Abstract
Multiplexing NMR experiments by direct detection of multiple free induction decays (FIDs) in a single experiment offers a dramatic increase in the spectral information content and often yields significant improvement in sensitivity per unit time. Experiments with multi-FID detection have been designed with both homonuclear and multinuclear acquisition, and the advent of multiple receivers on commercial spectrometers opens up new possibilities for recording spectra from different nuclear species in parallel. Here we provide an extensive overview of such techniques, designed for applications in liquid- and solid-state NMR as well as in hyperpolarized samples. A brief overview of multinuclear MRI is also provided, to stimulate cross fertilization of ideas between the two areas of research (NMR and MRI). It is shown how such techniques enable the design of experiments that allow structure elucidation of small molecules from a single measurement. Likewise, in biomolecular NMR experiments multi-FID detection allows complete resonance assignment in proteins. Probes with multiple RF microcoils routed to multiple NMR receivers provide an alternative way of increasing the throughput of modern NMR systems, effectively reducing the cost of NMR analysis and increasing the information content at the same time. Solid-state NMR experiments have also benefited immensely from both parallel and sequential multi-FID detection in a variety of multi-dimensional pulse schemes. We are confident that multi-FID detection will become an essential component of future NMR methodologies, effectively increasing the sensitivity and information content of NMR measurements.
Collapse
Affiliation(s)
- Ēriks Kupče
- Bruker UK Ltd., Banner Lane, Coventry CV4 9GH, United Kingdom.
| | - Kaustubh R Mote
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research-Hyderabad, 36/P Gopanpally Village, Ranga Reddy District, Hyderabad 500 046, Telangana, India
| | - Andrew Webb
- Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Perunthiruthy K Madhu
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research-Hyderabad, 36/P Gopanpally Village, Ranga Reddy District, Hyderabad 500 046, Telangana, India
| | - Tim D W Claridge
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford OX1 3TA, UK
| |
Collapse
|
15
|
Jirasko V, Lakomek N, Penzel S, Fogeron M, Bartenschlager R, Meier BH, Böckmann A. Proton-Detected Solid-State NMR of the Cell-Free Synthesized α-Helical Transmembrane Protein NS4B from Hepatitis C Virus. Chembiochem 2020; 21:1453-1460. [PMID: 31850615 PMCID: PMC7318649 DOI: 10.1002/cbic.201900765] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Indexed: 01/01/2023]
Abstract
Proton-detected 100 kHz magic-angle-spinning (MAS) solid-state NMR is an emerging analysis method for proteins with only hundreds of microgram quantities, and thus allows structural investigation of eukaryotic membrane proteins. This is the case for the cell-free synthesized hepatitis C virus (HCV) nonstructural membrane protein 4B (NS4B). We demonstrate NS4B sample optimization using fast reconstitution schemes that enable lipid-environment screening directly by NMR. 2D spectra and relaxation properties guide the choice of the best sample preparation to record 2D 1 H-detected 1 H,15 N and 3D 1 H,13 C,15 N correlation experiments with linewidths and sensitivity suitable to initiate sequential assignments. Amino-acid-selectively labeled NS4B can be readily obtained using cell-free synthesis, opening the door to combinatorial labeling approaches which should enable structural studies.
Collapse
Affiliation(s)
- Vlastimil Jirasko
- ETH ZürichPhysical ChemistryVladimir-Prelog Weg 28093ZürichSwitzerland
| | | | - Susanne Penzel
- ETH ZürichPhysical ChemistryVladimir-Prelog Weg 28093ZürichSwitzerland
| | - Marie‐Laure Fogeron
- Institut de Biologie et Chimie des ProteinesMMSBLabex EcofectUMR 5086 CNRSUniversité de Lyon7 passage du Vercors69367LyonFrance
| | - Ralf Bartenschlager
- Department of Infectious DiseasesMolecular VirologyHeidelberg UniversityIm Neuenheimer Feld 34569120HeidelbergGermany
- Division of Virus-Associated Carcinogenesis (Germany)Cancer Research Center (DKFZ)Im Neuenheimer Feld 24269120HeidelbergGermany
| | - Beat H. Meier
- ETH ZürichPhysical ChemistryVladimir-Prelog Weg 28093ZürichSwitzerland
| | - Anja Böckmann
- Institut de Biologie et Chimie des ProteinesMMSBLabex EcofectUMR 5086 CNRSUniversité de Lyon7 passage du Vercors69367LyonFrance
| |
Collapse
|
16
|
Sharma K, Madhu PK, Agarwal V, Mote KR. Simultaneous recording of intra- and inter-residue linking experiments for backbone assignments in proteins at MAS frequencies higher than 60 kHz. JOURNAL OF BIOMOLECULAR NMR 2020; 74:229-237. [PMID: 31894471 DOI: 10.1007/s10858-019-00292-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/09/2019] [Indexed: 06/10/2023]
Abstract
Obtaining site-specific assignments for the NMR spectra of proteins in the solid state is a significant bottleneck in deciphering their biophysics. This is primarily due to the time-intensive nature of the experiments. Additionally, the low resolution in the [Formula: see text]-dimension requires multiple complementary experiments to be recorded to lift degeneracies in assignments. We present here an approach, gleaned from the techniques used in multiple-acquisition experiments, which allows the recording of forward and backward residue-linking experiments in a single experimental block. Spectra from six additional pathways are also recovered from the same experimental block, without increasing the probe duty cycle. These experiments give intra- and inter residue connectivities for the backbone [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] resonances and should alone be sufficient to assign these nuclei in proteins at MAS frequencies > 60 kHz. The validity of this approach is tested with experiments on a standard tripeptide N-formyl methionyl-leucine-phenylalanine (f-MLF) at a MAS frequency of 62.5 kHz, which is also used as a test-case for determining the sensitivity of each of the experiments. We expect this approach to have an immediate impact on the way assignments are obtained at MAS frequencies [Formula: see text].
Collapse
Affiliation(s)
- Kshama Sharma
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally, Serlingampally Mandal, Rangareddy District, Hyderabad, 500107, India
| | - P K Madhu
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally, Serlingampally Mandal, Rangareddy District, Hyderabad, 500107, India
| | - Vipin Agarwal
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally, Serlingampally Mandal, Rangareddy District, Hyderabad, 500107, India.
| | - Kaustubh R Mote
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally, Serlingampally Mandal, Rangareddy District, Hyderabad, 500107, India.
| |
Collapse
|
17
|
Stanek J, Schubeis T, Paluch P, Güntert P, Andreas LB, Pintacuda G. Automated Backbone NMR Resonance Assignment of Large Proteins Using Redundant Linking from a Single Simultaneous Acquisition. J Am Chem Soc 2020; 142:5793-5799. [DOI: 10.1021/jacs.0c00251] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jan Stanek
- Centre de RMN à Très Hauts Champs (FRE 2034 CNRS, UCB Lyon 1, ENS Lyon), Université de Lyon, 5 rue de la Doua, Villeurbanne 69100, France
- Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warsaw 02089, Poland
| | - Tobias Schubeis
- Centre de RMN à Très Hauts Champs (FRE 2034 CNRS, UCB Lyon 1, ENS Lyon), Université de Lyon, 5 rue de la Doua, Villeurbanne 69100, France
| | - Piotr Paluch
- Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warsaw 02089, Poland
| | - Peter Güntert
- Physical Chemistry, Eidgenössische Technische Hochschule Zurich, Hochschule Zürich, Vladimir-Prelog-Weg 2, Zurich 8093, Switzerland
- Center for Biomolecular Magnetic Resonance, Institute of Biophysical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, Frankfurt am Main 60438, Germany
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji 192-0397, Japan
| | - Loren B. Andreas
- Centre de RMN à Très Hauts Champs (FRE 2034 CNRS, UCB Lyon 1, ENS Lyon), Université de Lyon, 5 rue de la Doua, Villeurbanne 69100, France
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen D-37077, Germany
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs (FRE 2034 CNRS, UCB Lyon 1, ENS Lyon), Université de Lyon, 5 rue de la Doua, Villeurbanne 69100, France
| |
Collapse
|
18
|
Orton HW, Stanek J, Schubeis T, Foucaudeau D, Ollier C, Draney AW, Le Marchand T, Cala‐De Paepe D, Felli IC, Pierattelli R, Hiller S, Bermel W, Pintacuda G. Protein‐NMR‐Resonanzzuordnung ohne Spektralanalyse: automatisierte Festkörper‐Projektionsspektroskopie in 5D (SO‐APSY). Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Henry W. Orton
- Research School of ChemistryAustralian National University Canberra ACT 2601 Australien
| | - Jan Stanek
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs (FRE 2034 CNRS, UCBL, ENS Lyon)Université de Lyon 69100 Villeurbanne Frankreich
- Faculty of ChemistryUniversity of Warsaw 02089 Warsaw Polen
| | - Tobias Schubeis
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs (FRE 2034 CNRS, UCBL, ENS Lyon)Université de Lyon 69100 Villeurbanne Frankreich
| | - Dylan Foucaudeau
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs (FRE 2034 CNRS, UCBL, ENS Lyon)Université de Lyon 69100 Villeurbanne Frankreich
| | - Claire Ollier
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs (FRE 2034 CNRS, UCBL, ENS Lyon)Université de Lyon 69100 Villeurbanne Frankreich
| | - Adrian W. Draney
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs (FRE 2034 CNRS, UCBL, ENS Lyon)Université de Lyon 69100 Villeurbanne Frankreich
| | - Tanguy Le Marchand
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs (FRE 2034 CNRS, UCBL, ENS Lyon)Université de Lyon 69100 Villeurbanne Frankreich
| | - Diane Cala‐De Paepe
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs (FRE 2034 CNRS, UCBL, ENS Lyon)Université de Lyon 69100 Villeurbanne Frankreich
| | - Isabella C. Felli
- CERM and Department of ChemistryUniversity of Florence 50019 Sesto Fiorentino Italien
| | - Roberta Pierattelli
- CERM and Department of ChemistryUniversity of Florence 50019 Sesto Fiorentino Italien
| | | | - Wolfgang Bermel
- Bruker BioSpin GmbH Silberstreifen 76287 Rheinstetten Deutschland
| | - Guido Pintacuda
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs (FRE 2034 CNRS, UCBL, ENS Lyon)Université de Lyon 69100 Villeurbanne Frankreich
| |
Collapse
|
19
|
Orton HW, Stanek J, Schubeis T, Foucaudeau D, Ollier C, Draney AW, Le Marchand T, Cala‐De Paepe D, Felli IC, Pierattelli R, Hiller S, Bermel W, Pintacuda G. Protein NMR Resonance Assignment without Spectral Analysis: 5D SOlid‐State Automated Projection SpectroscopY (SO‐APSY). Angew Chem Int Ed Engl 2020; 59:2380-2384. [DOI: 10.1002/anie.201912211] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Henry W. Orton
- Research School of ChemistryAustralian National University Canberra ACT 2601 Australia
| | - Jan Stanek
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs (FRE 2034 CNRS, UCBL, ENS Lyon)Université de Lyon 69100 Villeurbanne France
- Faculty of ChemistryUniversity of Warsaw 02089 Warsaw Poland
| | - Tobias Schubeis
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs (FRE 2034 CNRS, UCBL, ENS Lyon)Université de Lyon 69100 Villeurbanne France
| | - Dylan Foucaudeau
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs (FRE 2034 CNRS, UCBL, ENS Lyon)Université de Lyon 69100 Villeurbanne France
| | - Claire Ollier
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs (FRE 2034 CNRS, UCBL, ENS Lyon)Université de Lyon 69100 Villeurbanne France
| | - Adrian W. Draney
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs (FRE 2034 CNRS, UCBL, ENS Lyon)Université de Lyon 69100 Villeurbanne France
| | - Tanguy Le Marchand
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs (FRE 2034 CNRS, UCBL, ENS Lyon)Université de Lyon 69100 Villeurbanne France
| | - Diane Cala‐De Paepe
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs (FRE 2034 CNRS, UCBL, ENS Lyon)Université de Lyon 69100 Villeurbanne France
| | - Isabella C. Felli
- CERM and Department of ChemistryUniversity of Florence 50019 Sesto Fiorentino Italy
| | - Roberta Pierattelli
- CERM and Department of ChemistryUniversity of Florence 50019 Sesto Fiorentino Italy
| | | | - Wolfgang Bermel
- Bruker BioSpin GmbH Silberstreifen 76287 Rheinstetten Germany
| | - Guido Pintacuda
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs (FRE 2034 CNRS, UCBL, ENS Lyon)Université de Lyon 69100 Villeurbanne France
| |
Collapse
|
20
|
Pell AJ, Pintacuda G, Grey CP. Paramagnetic NMR in solution and the solid state. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 111:1-271. [PMID: 31146806 DOI: 10.1016/j.pnmrs.2018.05.001] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 05/22/2023]
Abstract
The field of paramagnetic NMR has expanded considerably in recent years. This review addresses both the theoretical description of paramagnetic NMR, and the way in which it is currently practised. We provide a review of the theory of the NMR parameters of systems in both solution and the solid state. Here we unify the different languages used by the NMR, EPR, quantum chemistry/DFT, and magnetism communities to provide a comprehensive and coherent theoretical description. We cover the theory of the paramagnetic shift and shift anisotropy in solution both in the traditional formalism in terms of the magnetic susceptibility tensor, and using a more modern formalism employing the relevant EPR parameters, such as are used in first-principles calculations. In addition we examine the theory first in the simple non-relativistic picture, and then in the presence of spin-orbit coupling. These ideas are then extended to a description of the paramagnetic shift in periodic solids, where it is necessary to include the bulk magnetic properties, such as magnetic ordering at low temperatures. The description of the paramagnetic shift is completed by describing the current understanding of such shifts due to lanthanide and actinide ions. We then examine the paramagnetic relaxation enhancement, using a simple model employing a phenomenological picture of the electronic relaxation, and again using a more complex state-of-the-art theory which incorporates electronic relaxation explicitly. An additional important consideration in the solid state is the impact of bulk magnetic susceptibility effects on the form of the spectrum, where we include some ideas from the field of classical electrodynamics. We then continue by describing in detail the solution and solid-state NMR methods that have been deployed in the study of paramagnetic systems in chemistry, biology, and the materials sciences. Finally we describe a number of case studies in paramagnetic NMR that have been specifically chosen to highlight how the theory in part one, and the methods in part two, can be used in practice. The systems chosen include small organometallic complexes in solution, solid battery electrode materials, metalloproteins in both solution and the solid state, systems containing lanthanide ions, and multi-component materials used in pharmaceutical controlled-release formulations that have been doped with paramagnetic species to measure the component domain sizes.
Collapse
Affiliation(s)
- Andrew J Pell
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16 C, SE-106 91 Stockholm, Sweden.
| | - Guido Pintacuda
- Institut des Sciences Analytiques (CNRS UMR 5280, ENS de Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Clare P Grey
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| |
Collapse
|
21
|
Klein A, Vasa SK, Linser R. Automated projection spectroscopy in solid-state NMR. JOURNAL OF BIOMOLECULAR NMR 2018; 72:163-170. [PMID: 30430291 DOI: 10.1007/s10858-018-0215-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/06/2018] [Indexed: 06/09/2023]
Abstract
Given that solid-state NMR is being used for protein samples of increasing molecular weight and complexity, higher-dimensionality methods are likely to be more and more indispensable for unambiguous chemical shift assignments in the near future. In addition, solid-state NMR spectral properties are increasingly comparable with solution NMR, allowing adaptation of more sophisticated solution NMR strategies for the solid state in addition to the conventional methodology. Assessing first principles, here we demonstrate the application of automated projection spectroscopy for a micro-crystalline protein in the solid state.
Collapse
Affiliation(s)
- Alexander Klein
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
- Center for Integrated Protein Science (CiPSM), Munich, Germany
| | - Suresh K Vasa
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany
- Center for Integrated Protein Science (CiPSM), Munich, Germany
| | - Rasmus Linser
- Department of Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377, Munich, Germany.
- Center for Integrated Protein Science (CiPSM), Munich, Germany.
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany.
| |
Collapse
|
22
|
Penzel S, Smith AA, Ernst M, Meier BH. Setting the magic angle for fast magic-angle spinning probes. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 293:115-122. [PMID: 29929181 DOI: 10.1016/j.jmr.2018.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
Fast magic-angle spinning, coupled with 1H detection is a powerful method to improve spectral resolution and signal to noise in solid-state NMR spectra. Commercial probes now provide spinning frequencies in excess of 100 kHz. Then, one has sufficient resolution in the 1H dimension to directly detect protons, which have a gyromagnetic ratio approximately four times larger than 13C spins. However, the gains in sensitivity can quickly be lost if the rotation angle is not set precisely. The most common method of magic-angle calibration is to optimize the number of rotary echoes, or sideband intensity, observed on a sample of KBr. However, this typically uses relatively low spinning frequencies, where the spinning of fast-MAS probes is often unstable, and detection on the 13C channel, for which fast-MAS probes are typically not optimized. Therefore, we compare the KBr-based optimization of the magic angle with two alternative approaches: optimization of the splitting observed in 13C-labeled glycine-ethylester on the carbonyl due to the Cα-C' J-coupling, or optimization of the H-N J-coupling spin echo in the protein sample itself. The latter method has the particular advantage that no separate sample is necessary for the magic-angle optimization.
Collapse
Affiliation(s)
- Susanne Penzel
- ETH Zurich, Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Albert A Smith
- ETH Zurich, Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Matthias Ernst
- ETH Zurich, Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
| | - Beat H Meier
- ETH Zurich, Physical Chemistry, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland.
| |
Collapse
|
23
|
Higman VA. Solid-state MAS NMR resonance assignment methods for proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 106-107:37-65. [PMID: 31047601 DOI: 10.1016/j.pnmrs.2018.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/19/2018] [Accepted: 04/24/2018] [Indexed: 06/09/2023]
Abstract
The prerequisite to structural or functional studies of proteins by NMR is generally the assignment of resonances. Since the first assignment of proteins by solid-state MAS NMR was conducted almost two decades ago, a wide variety of different pulse sequences and methods have been proposed and continue to be developed. Traditionally, a variety of 2D and 3D 13C-detected experiments have been used for the assignment of backbone and side-chain 13C and 15N resonances. These methods have found widespread use across the field. But as the hardware has changed and higher spinning frequencies and magnetic fields are becoming available, the ability to use direct proton detection is opening up a new set of assignment methods based on triple-resonance experiments. This review describes solid-state MAS NMR assignment methods using carbon detection and proton detection at different deuteration levels. The use of different isotopic labelling schemes as an aid to assignment in difficult cases is discussed as well as the increasing number of software packages that support manual and automated resonance assignment.
Collapse
Affiliation(s)
- Victoria A Higman
- Department of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TU, UK.
| |
Collapse
|
24
|
3D structure determination of amyloid fibrils using solid-state NMR spectroscopy. Methods 2018; 138-139:26-38. [DOI: 10.1016/j.ymeth.2018.03.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/28/2018] [Accepted: 03/30/2018] [Indexed: 01/08/2023] Open
|
25
|
Tolchard J, Pandey MK, Berbon M, Noubhani A, Saupe SJ, Nishiyama Y, Habenstein B, Loquet A. Detection of side-chain proton resonances of fully protonated biosolids in nano-litre volumes by magic angle spinning solid-state NMR. JOURNAL OF BIOMOLECULAR NMR 2018; 70:177-185. [PMID: 29502224 DOI: 10.1007/s10858-018-0168-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 02/16/2018] [Indexed: 06/08/2023]
Abstract
We present a new solid-state NMR proton-detected three-dimensional experiment dedicated to the observation of protein proton side chain resonances in nano-liter volumes. The experiment takes advantage of very fast magic angle spinning and double quantum 13C-13C transfer to establish efficient (H)CCH correlations detected on side chain protons. Our approach is demonstrated on the HET-s prion domain in its functional amyloid fibrillar form, fully protonated, with a sample amount of less than 500 µg using a MAS frequency of 70 kHz. The majority of aliphatic and aromatic side chain protons (70%) are observable, in addition to Hα resonances, in a single experiment providing a complementary approach to the established proton-detected amide-based multidimensional solid-state NMR experiments for the study and resonance assignment of biosolid samples, in particular for aromatic side chain resonances.
Collapse
Affiliation(s)
- James Tolchard
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600, Pessac, France
| | - Manoj Kumar Pandey
- JEOL RESONANCE Inc., Musashino, Akishima, Tokyo, 196-8558, Japan
- RIKEN CLST-JEOL Collaboration Center, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, India
| | - Mélanie Berbon
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600, Pessac, France
| | - Abdelmajid Noubhani
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600, Pessac, France
| | - Sven J Saupe
- Institut de Biochimie et de Génétique Cellulaire, (UMR 5095 IBGC), CNRS, Université Bordeaux, 33077, Bordeaux, France
| | - Yusuke Nishiyama
- JEOL RESONANCE Inc., Musashino, Akishima, Tokyo, 196-8558, Japan.
- RIKEN CLST-JEOL Collaboration Center, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600, Pessac, France.
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects, (UMR5248 CBMN), CNRS, Université Bordeaux, Institut Européen de Chimie et Biologie, 33600, Pessac, France.
| |
Collapse
|
26
|
Wong LE, Maier J, Wienands J, Becker S, Griesinger C. Sensitivity-Enhanced Four-Dimensional Amide–Amide Correlation NMR Experiments for Sequential Assignment of Proline-Rich Disordered Proteins. J Am Chem Soc 2018; 140:3518-3522. [DOI: 10.1021/jacs.8b00215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Leo E. Wong
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Joachim Maier
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Jürgen Wienands
- Institute of Cellular and Molecular Immunology, Georg August University of Göttingen, Humboldtallee 34, 37073 Göttingen, Germany
| | - Stefan Becker
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| | - Christian Griesinger
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Göttingen, Germany
| |
Collapse
|
27
|
Schubeis T, Le Marchand T, Andreas LB, Pintacuda G. 1H magic-angle spinning NMR evolves as a powerful new tool for membrane proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 287:140-152. [PMID: 29413327 DOI: 10.1016/j.jmr.2017.11.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 06/08/2023]
Abstract
Building on a decade of continuous advances of the community, the recent development of very fast (60 kHz and above) magic-angle spinning (MAS) probes has revolutionised the field of solid-state NMR. This new spinning regime reduces the 1H-1H dipolar couplings, so that direct detection of the larger magnetic moment available from 1H is now possible at high resolution, not only in deuterated molecules but also in fully-protonated substrates. Such capabilities allow rapid "fingerprinting" of samples with a ten-fold reduction of the required sample amounts with respect to conventional approaches, and permit extensive, robust and expeditious assignment of small-to-medium sized proteins (up to ca. 300 residues), and the determination of inter-nuclear proximities, relative orientations of secondary structural elements, protein-cofactor interactions, local and global dynamics. Fast MAS and 1H detection techniques have nowadays been shown to be applicable to membrane-bound systems. This paper reviews the strategies underlying this recent leap forward in sensitivity and resolution, describing its potential for the detailed characterization of membrane proteins.
Collapse
Affiliation(s)
- Tobias Schubeis
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Tanguy Le Marchand
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Loren B Andreas
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France.
| |
Collapse
|
28
|
Fraga H, Arnaud CA, Gauto DF, Audin M, Kurauskas V, Macek P, Krichel C, Guan JY, Boisbouvier J, Sprangers R, Breyton C, Schanda P. Solid-State NMR H-N-(C)-H and H-N-C-C 3D/4D Correlation Experiments for Resonance Assignment of Large Proteins. Chemphyschem 2017; 18:2697-2703. [PMID: 28792111 PMCID: PMC5632560 DOI: 10.1002/cphc.201700572] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/08/2017] [Indexed: 12/16/2022]
Abstract
Solid-state NMR spectroscopy can provide insight into protein structure and dynamics at the atomic level without inherent protein size limitations. However, a major hurdle to studying large proteins by solid-state NMR spectroscopy is related to spectral complexity and resonance overlap, which increase with molecular weight and severely hamper the assignment process. Here the use of two sets of experiments is shown to expand the tool kit of 1 H-detected assignment approaches, which correlate a given amide pair either to the two adjacent CO-CA pairs (4D hCOCANH/hCOCAcoNH), or to the amide 1 H of the neighboring residue (3D HcocaNH/HcacoNH, which can be extended to 5D). The experiments are based on efficient coherence transfers between backbone atoms using INEPT transfers between carbons and cross-polarization for heteronuclear transfers. The utility of these experiments is exemplified with application to assemblies of deuterated, fully amide-protonated proteins from approximately 20 to 60 kDa monomer, at magic-angle spinning (MAS) frequencies from approximately 40 to 55 kHz. These experiments will also be applicable to protonated proteins at higher MAS frequencies. The resonance assignment of a domain within the 50.4 kDa bacteriophage T5 tube protein pb6 is reported, and this is compared to NMR assignments of the isolated domain in solution. This comparison reveals contacts of this domain to the core of the polymeric tail tube assembly.
Collapse
Affiliation(s)
- Hugo Fraga
- Univ. Grenoble Alpes, CEA, CNRS, Institute for Structural Biology (IBS), 71 avenue des martyrs, F-38044 Grenoble (France)
- Departamento de Bioquimica, Faculdade de Medicina da Universidade do Porto, Portugal
| | - Charles-Adrien Arnaud
- Univ. Grenoble Alpes, CEA, CNRS, Institute for Structural Biology (IBS), 71 avenue des martyrs, F-38044 Grenoble (France)
| | - Diego F. Gauto
- Univ. Grenoble Alpes, CEA, CNRS, Institute for Structural Biology (IBS), 71 avenue des martyrs, F-38044 Grenoble (France)
| | - Maxime Audin
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen (Germany)
| | - Vilius Kurauskas
- Univ. Grenoble Alpes, CEA, CNRS, Institute for Structural Biology (IBS), 71 avenue des martyrs, F-38044 Grenoble (France)
| | - Pavel Macek
- Univ. Grenoble Alpes, CEA, CNRS, Institute for Structural Biology (IBS), 71 avenue des martyrs, F-38044 Grenoble (France)
| | - Carsten Krichel
- Univ. Grenoble Alpes, CEA, CNRS, Institute for Structural Biology (IBS), 71 avenue des martyrs, F-38044 Grenoble (France)
| | - Jia-Ying Guan
- Univ. Grenoble Alpes, CEA, CNRS, Institute for Structural Biology (IBS), 71 avenue des martyrs, F-38044 Grenoble (France)
| | - Jerome Boisbouvier
- Univ. Grenoble Alpes, CEA, CNRS, Institute for Structural Biology (IBS), 71 avenue des martyrs, F-38044 Grenoble (France)
| | - Remco Sprangers
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen (Germany)
- Department of Biophysics I, University of Regensburg, 93053, Regensburg (Germany)
| | - Cécile Breyton
- Univ. Grenoble Alpes, CEA, CNRS, Institute for Structural Biology (IBS), 71 avenue des martyrs, F-38044 Grenoble (France)
| | - Paul Schanda
- Univ. Grenoble Alpes, CEA, CNRS, Institute for Structural Biology (IBS), 71 avenue des martyrs, F-38044 Grenoble (France)
| |
Collapse
|
29
|
Cala-De Paepe D, Stanek J, Jaudzems K, Tars K, Andreas LB, Pintacuda G. Is protein deuteration beneficial for proton detected solid-state NMR at and above 100 kHz magic-angle spinning? SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 87:126-136. [PMID: 28802890 DOI: 10.1016/j.ssnmr.2017.07.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/14/2017] [Accepted: 07/24/2017] [Indexed: 06/07/2023]
Abstract
1H-detection in solid-state NMR of proteins has been traditionally combined with deuteration for both resolution and sensitivity reasons, with the optimal level of proton dilution being dependent on MAS rate. Here we present 1H-detected 15N and 13C CP-HSQC spectra on two microcrystalline samples acquired at 60 and 111 kHz MAS and at ultra-high field. We critically compare the benefits of three labeling schemes yielding different levels of proton content in terms of resolution, coherence lifetimes and feasibility of scalar-based 2D correlations under these experimental conditions. We observe unexpectedly high resolution and sensitivity of aromatic resonances in 2D 13C-1H correlation spectra of protonated samples. Ultrafast MAS reduces or even removes the necessity of 1H dilution for high-resolution 1H-detection in biomolecular solid-state NMR. It yields 15N,1H and 13C,1H fingerprint spectra of exceptional resolution for fully protonated samples, with notably superior 1H and 13C lineshapes for side-chain resonances.
Collapse
Affiliation(s)
- Diane Cala-De Paepe
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Jan Stanek
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Kristaps Jaudzems
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France
| | - Kaspars Tars
- Biomedical Research and Study Centre, Rātsupītes 1, LV1067, Riga, Latvia
| | - Loren B Andreas
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France; Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077, Göttingen, Germany
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1), Université de Lyon, 5 rue de la Doua, 69100 Villeurbanne, France.
| |
Collapse
|
30
|
Linser R. Solid-state NMR spectroscopic trends for supramolecular assemblies and protein aggregates. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 87:45-53. [PMID: 28869877 DOI: 10.1016/j.ssnmr.2017.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
Solid-state NMR is able to generate structural data on sample preparations that are explicitly non-crystalline. In particular, for amyloid fibril samples, which can comprise significant degrees of sample disorder, solid-state NMR has been used very successfully. But also solid-state NMR studies of other supramolecular assemblies that have resisted assessment by more standard methods are being performed with increasing ease and biological impact, many of which are briefly reviewed here. New technical trends with respect to structure calculation, protein dynamics and smaller sample amounts have reshaped the field of solid-state NMR recently. In particular, proton-detected approaches based on fast Magic-Angle Spinning (MAS) were demonstrated for crystalline systems initially. Currently, such approaches are being expanded to the above-mentioned non-crystalline targets, the characterization of which can now be pursued with sample amounts on the order of a milligram. In this Trends article, I am giving a brief overview about achievements of the last years as well as the directions that the field has been heading into and delineate some satisfactory perspectives for solid-state NMR's future striving.
Collapse
Affiliation(s)
- Rasmus Linser
- Department Chemistry, Ludwig-Maximilians-University Munich, Butenandtstr. 5-13, 81377 Munich, Germany.
| |
Collapse
|
31
|
Donovan KJ, Silvers R, Linse S, Griffin RG. 3D MAS NMR Experiment Utilizing Through-Space 15N- 15N Correlations. J Am Chem Soc 2017; 139:6518-6521. [PMID: 28447786 DOI: 10.1021/jacs.7b01159] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We demonstrate a novel 3D NNC magic angle spinning NMR experiment that generates 15N-15N internuclear contacts in protein systems using an optimized 15N-15N proton assisted recoupling (PAR) mixing period and a 13C dimension for improved resolution. The optimized PAR condition permits the acquisition of high signal-to-noise 3D data that enables backbone chemical shift assignments using a strategy that is complementary to current schemes. The spectra can also provide distance constraints. The utility of the experiment is demonstrated on an M0Aβ1-42 fibril sample that yields high-quality data that is readily assigned and interpreted. The 3D NNC experiment therefore provides a powerful platform for solid-state protein studies and is broadly applicable to a variety of systems and experimental conditions.
Collapse
Affiliation(s)
- Kevin J Donovan
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Robert Silvers
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Sara Linse
- Department of Biochemistry and Structural Biology, Lund University , Lund 221 00, Sweden
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
32
|
Stanek J, Andreas LB, Jaudzems K, Cala D, Lalli D, Bertarello A, Schubeis T, Akopjana I, Kotelovica S, Tars K, Pica A, Leone S, Picone D, Xu ZQ, Dixon NE, Martinez D, Berbon M, Mammeri NE, Noubhani A, Saupe S, Habenstein B, Loquet A, Pintacuda G. Zuordnung der Rückgrat- und Seitenketten-Protonen in vollständig protonierten Proteinen durch Festkörper-NMR-Spektroskopie: Mikrokristalle, Sedimente und Amyloidfibrillen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607084] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jan Stanek
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1); Université de Lyon; 5 rue de la Doua 69100 Villeurbanne Frankreich
| | - Loren B. Andreas
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1); Université de Lyon; 5 rue de la Doua 69100 Villeurbanne Frankreich
| | - Kristaps Jaudzems
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1); Université de Lyon; 5 rue de la Doua 69100 Villeurbanne Frankreich
| | - Diane Cala
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1); Université de Lyon; 5 rue de la Doua 69100 Villeurbanne Frankreich
| | - Daniela Lalli
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1); Université de Lyon; 5 rue de la Doua 69100 Villeurbanne Frankreich
| | - Andrea Bertarello
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1); Université de Lyon; 5 rue de la Doua 69100 Villeurbanne Frankreich
| | - Tobias Schubeis
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1); Université de Lyon; 5 rue de la Doua 69100 Villeurbanne Frankreich
| | - Inara Akopjana
- Biomedical Research and Study Centre; Rātsupītes 1 LV1067 Riga Lettland
| | | | - Kaspars Tars
- Biomedical Research and Study Centre; Rātsupītes 1 LV1067 Riga Lettland
| | - Andrea Pica
- Department of Chemical Sciences; University of Naples Federico II; Via Cintia 80126 Naples Italien
| | - Serena Leone
- Department of Chemical Sciences; University of Naples Federico II; Via Cintia 80126 Naples Italien
| | - Delia Picone
- Department of Chemical Sciences; University of Naples Federico II; Via Cintia 80126 Naples Italien
| | - Zhi-Qiang Xu
- School of Chemistry; University of Wollongong; NSW 2522 Australien
| | | | - Denis Martinez
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR 5248 CBMN - CNRS; University of Bordeaux, Bordeaux INP), All. Geoffroy Saint-Hillaire; 33600 Pessac Frankreich
| | - Mélanie Berbon
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR 5248 CBMN - CNRS; University of Bordeaux, Bordeaux INP), All. Geoffroy Saint-Hillaire; 33600 Pessac Frankreich
| | - Nadia El Mammeri
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR 5248 CBMN - CNRS; University of Bordeaux, Bordeaux INP), All. Geoffroy Saint-Hillaire; 33600 Pessac Frankreich
| | - Abdelmajid Noubhani
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR 5248 CBMN - CNRS; University of Bordeaux, Bordeaux INP), All. Geoffroy Saint-Hillaire; 33600 Pessac Frankreich
| | - Sven Saupe
- Institut de Biochimie et de Génétique Cellulaire (UMR 5095, CNRS -; Université de Bordeaux); 33077 Bordeaux Frankreich
| | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR 5248 CBMN - CNRS; University of Bordeaux, Bordeaux INP), All. Geoffroy Saint-Hillaire; 33600 Pessac Frankreich
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR 5248 CBMN - CNRS; University of Bordeaux, Bordeaux INP), All. Geoffroy Saint-Hillaire; 33600 Pessac Frankreich
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1); Université de Lyon; 5 rue de la Doua 69100 Villeurbanne Frankreich
| |
Collapse
|
33
|
Stanek J, Andreas LB, Jaudzems K, Cala D, Lalli D, Bertarello A, Schubeis T, Akopjana I, Kotelovica S, Tars K, Pica A, Leone S, Picone D, Xu ZQ, Dixon NE, Martinez D, Berbon M, El Mammeri N, Noubhani A, Saupe S, Habenstein B, Loquet A, Pintacuda G. NMR Spectroscopic Assignment of Backbone and Side-Chain Protons in Fully Protonated Proteins: Microcrystals, Sedimented Assemblies, and Amyloid Fibrils. Angew Chem Int Ed Engl 2016; 55:15504-15509. [DOI: 10.1002/anie.201607084] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/05/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Jan Stanek
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1); Université de Lyon; 5 rue de la Doua 69100 Villeurbanne France
| | - Loren B. Andreas
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1); Université de Lyon; 5 rue de la Doua 69100 Villeurbanne France
| | - Kristaps Jaudzems
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1); Université de Lyon; 5 rue de la Doua 69100 Villeurbanne France
| | - Diane Cala
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1); Université de Lyon; 5 rue de la Doua 69100 Villeurbanne France
| | - Daniela Lalli
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1); Université de Lyon; 5 rue de la Doua 69100 Villeurbanne France
| | - Andrea Bertarello
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1); Université de Lyon; 5 rue de la Doua 69100 Villeurbanne France
| | - Tobias Schubeis
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1); Université de Lyon; 5 rue de la Doua 69100 Villeurbanne France
| | - Inara Akopjana
- Biomedical Research and Study Centre; Rātsupītes 1 LV1067 Riga Latvia
| | | | - Kaspars Tars
- Biomedical Research and Study Centre; Rātsupītes 1 LV1067 Riga Latvia
| | - Andrea Pica
- Department of Chemical Sciences; University of Naples Federico II; Via Cintia 80126 Naples Italy
| | - Serena Leone
- Department of Chemical Sciences; University of Naples Federico II; Via Cintia 80126 Naples Italy
| | - Delia Picone
- Department of Chemical Sciences; University of Naples Federico II; Via Cintia 80126 Naples Italy
| | - Zhi-Qiang Xu
- School of Chemistry; University of Wollongong; NSW 2522 Australia
| | | | - Denis Martinez
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR 5248 CBMN - CNRS; University of Bordeaux, Bordeaux INP), All. Geoffroy Saint-Hillaire; 33600 Pessac France
| | - Mélanie Berbon
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR 5248 CBMN - CNRS; University of Bordeaux, Bordeaux INP), All. Geoffroy Saint-Hillaire; 33600 Pessac France
| | - Nadia El Mammeri
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR 5248 CBMN - CNRS; University of Bordeaux, Bordeaux INP), All. Geoffroy Saint-Hillaire; 33600 Pessac France
| | - Abdelmajid Noubhani
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR 5248 CBMN - CNRS; University of Bordeaux, Bordeaux INP), All. Geoffroy Saint-Hillaire; 33600 Pessac France
| | - Sven Saupe
- Institut de Biochimie et de Génétique Cellulaire (UMR 5095, CNRS -; Université de Bordeaux); 33077 Bordeaux France
| | - Birgit Habenstein
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR 5248 CBMN - CNRS; University of Bordeaux, Bordeaux INP), All. Geoffroy Saint-Hillaire; 33600 Pessac France
| | - Antoine Loquet
- Institute of Chemistry & Biology of Membranes & Nanoobjects (UMR 5248 CBMN - CNRS; University of Bordeaux, Bordeaux INP), All. Geoffroy Saint-Hillaire; 33600 Pessac France
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques (UMR 5280 - CNRS, ENS Lyon, UCB Lyon 1); Université de Lyon; 5 rue de la Doua 69100 Villeurbanne France
| |
Collapse
|
34
|
Mote KR, Agarwal V, Madhu PK. Five decades of homonuclear dipolar decoupling in solid-state NMR: Status and outlook. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2016; 97:1-39. [PMID: 27888838 DOI: 10.1016/j.pnmrs.2016.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 07/11/2016] [Accepted: 08/02/2016] [Indexed: 06/06/2023]
Abstract
It has been slightly more than fifty years since the first homonuclear spin decoupling scheme, Lee-Goldburg decoupling, was proposed for removing homonuclear dipolar interactions in solid-state nuclear magnetic resonance. A family of such schemes has made observation of high-resolution NMR spectra of abundant spins possible in various applications in solid state. This review outlines the strategies used in this field and the future prospects of homonuclear spin decoupling in solid-state NMR.
Collapse
Affiliation(s)
- Kaustubh R Mote
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| | - Vipin Agarwal
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| | - P K Madhu
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India; Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| |
Collapse
|
35
|
Structure of fully protonated proteins by proton-detected magic-angle spinning NMR. Proc Natl Acad Sci U S A 2016; 113:9187-92. [PMID: 27489348 DOI: 10.1073/pnas.1602248113] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Protein structure determination by proton-detected magic-angle spinning (MAS) NMR has focused on highly deuterated samples, in which only a small number of protons are introduced and observation of signals from side chains is extremely limited. Here, we show in two fully protonated proteins that, at 100-kHz MAS and above, spectral resolution is high enough to detect resolved correlations from amide and side-chain protons of all residue types, and to reliably measure a dense network of (1)H-(1)H proximities that define a protein structure. The high data quality allowed the correct identification of internuclear distance restraints encoded in 3D spectra with automated data analysis, resulting in accurate, unbiased, and fast structure determination. Additionally, we find that narrower proton resonance lines, longer coherence lifetimes, and improved magnetization transfer offset the reduced sample size at 100-kHz spinning and above. Less than 2 weeks of experiment time and a single 0.5-mg sample was sufficient for the acquisition of all data necessary for backbone and side-chain resonance assignment and unsupervised structure determination. We expect the technique to pave the way for atomic-resolution structure analysis applicable to a wide range of proteins.
Collapse
|
36
|
Sharma K, Madhu PK, Mote KR. A suite of pulse sequences based on multiple sequential acquisitions at one and two radiofrequency channels for solid-state magic-angle spinning NMR studies of proteins. JOURNAL OF BIOMOLECULAR NMR 2016; 65:127-141. [PMID: 27364976 DOI: 10.1007/s10858-016-0043-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/14/2016] [Indexed: 05/04/2023]
Abstract
One of the fundamental challenges in the application of solid-state NMR is its limited sensitivity, yet a majority of experiments do not make efficient use of the limited polarization available. The loss in polarization in a single acquisition experiment is mandated by the need to select out a single coherence pathway. In contrast, sequential acquisition strategies can encode more than one pathway in the same experiment or recover unused polarization to supplement a standard experiment. In this article, we present pulse sequences that implement sequential acquisition strategies on one and two radiofrequency channels with a combination of proton and carbon detection to record multiple experiments under magic-angle spinning. We show that complementary 2D experiments such as [Formula: see text] and [Formula: see text] or DARR and [Formula: see text], and 3D experiments such as [Formula: see text] and [Formula: see text], or [Formula: see text] and [Formula: see text] can be combined in a single experiment to ensure time savings of at least 40 %. These experiments can be done under fast or slow-moderate magic-angle spinning frequencies aided by windowed [Formula: see text] acquisition and homonulcear decoupling. The pulse sequence suite is further expanded by including pathways that allow the recovery of residual polarization, the so-called 'afterglow' pathways, to encode a number of pulse sequences to aid in assignments and chemical-shift mapping.
Collapse
Affiliation(s)
- Kshama Sharma
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, 21, Brundavan Colony, Narsingi, Hyderabad, 500 075, India
| | - Perunthiruthy K Madhu
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, 21, Brundavan Colony, Narsingi, Hyderabad, 500 075, India.
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai, 400 005, India.
| | - Kaustubh R Mote
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, 21, Brundavan Colony, Narsingi, Hyderabad, 500 075, India.
| |
Collapse
|
37
|
Dannatt HRW, Felletti M, Jehle S, Wang Y, Emsley L, Dixon NE, Lesage A, Pintacuda G. Weak and Transient Protein Interactions Determined by Solid‐State NMR. Angew Chem Int Ed Engl 2016; 55:6638-41. [DOI: 10.1002/anie.201511609] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Hugh R. W. Dannatt
- Centre de RMN à Très Hauts Champs— Université de Lyon Institut de Sciences Analytiques (CNRS/ ENS-Lyon/ UCB Lyon 1) 69100 Villeurbanne France
| | - Michele Felletti
- Centre de RMN à Très Hauts Champs— Université de Lyon Institut de Sciences Analytiques (CNRS/ ENS-Lyon/ UCB Lyon 1) 69100 Villeurbanne France
| | - Stefan Jehle
- Centre de RMN à Très Hauts Champs— Université de Lyon Institut de Sciences Analytiques (CNRS/ ENS-Lyon/ UCB Lyon 1) 69100 Villeurbanne France
| | - Yao Wang
- Centre for Medical and Molecular Bioscience School of Chemistry University of Wollongong Wollongong New South Wales 2522 Australia
| | - Lyndon Emsley
- Centre de RMN à Très Hauts Champs— Université de Lyon Institut de Sciences Analytiques (CNRS/ ENS-Lyon/ UCB Lyon 1) 69100 Villeurbanne France
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Nicholas E. Dixon
- Centre for Medical and Molecular Bioscience School of Chemistry University of Wollongong Wollongong New South Wales 2522 Australia
| | - Anne Lesage
- Centre de RMN à Très Hauts Champs— Université de Lyon Institut de Sciences Analytiques (CNRS/ ENS-Lyon/ UCB Lyon 1) 69100 Villeurbanne France
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs— Université de Lyon Institut de Sciences Analytiques (CNRS/ ENS-Lyon/ UCB Lyon 1) 69100 Villeurbanne France
| |
Collapse
|
38
|
Dannatt HRW, Felletti M, Jehle S, Wang Y, Emsley L, Dixon NE, Lesage A, Pintacuda G. Weak and Transient Protein Interactions Determined by Solid‐State NMR. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511609] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hugh R. W. Dannatt
- Centre de RMN à Très Hauts Champs— Université de Lyon Institut de Sciences Analytiques (CNRS/ ENS-Lyon/ UCB Lyon 1) 69100 Villeurbanne France
| | - Michele Felletti
- Centre de RMN à Très Hauts Champs— Université de Lyon Institut de Sciences Analytiques (CNRS/ ENS-Lyon/ UCB Lyon 1) 69100 Villeurbanne France
| | - Stefan Jehle
- Centre de RMN à Très Hauts Champs— Université de Lyon Institut de Sciences Analytiques (CNRS/ ENS-Lyon/ UCB Lyon 1) 69100 Villeurbanne France
| | - Yao Wang
- Centre for Medical and Molecular Bioscience School of Chemistry University of Wollongong Wollongong New South Wales 2522 Australia
| | - Lyndon Emsley
- Centre de RMN à Très Hauts Champs— Université de Lyon Institut de Sciences Analytiques (CNRS/ ENS-Lyon/ UCB Lyon 1) 69100 Villeurbanne France
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Nicholas E. Dixon
- Centre for Medical and Molecular Bioscience School of Chemistry University of Wollongong Wollongong New South Wales 2522 Australia
| | - Anne Lesage
- Centre de RMN à Très Hauts Champs— Université de Lyon Institut de Sciences Analytiques (CNRS/ ENS-Lyon/ UCB Lyon 1) 69100 Villeurbanne France
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs— Université de Lyon Institut de Sciences Analytiques (CNRS/ ENS-Lyon/ UCB Lyon 1) 69100 Villeurbanne France
| |
Collapse
|
39
|
Xiang S, Biernat J, Mandelkow E, Becker S, Linser R. Backbone assignment for minimal protein amounts of low structural homogeneity in the absence of deuteration. Chem Commun (Camb) 2016; 52:4002-5. [DOI: 10.1039/c5cc09160h] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A set of higher-dimensionality 1H-detected experiments is introduced for assigning non-deuterated proteins with low sample homogeneity at fast MAS.
Collapse
Affiliation(s)
- ShengQi Xiang
- Max-Planck Institute for Biophysical Chemistry
- Department NMR-Based Structural Biology
- 37077 Göttingen
- Germany
| | - Jacek Biernat
- DZNE
- German Center for Neurodegenerative Diseases
- 53175 Bonn
- Germany
- CAESAR Research Center
| | - Eckhard Mandelkow
- DZNE
- German Center for Neurodegenerative Diseases
- 53175 Bonn
- Germany
- CAESAR Research Center
| | - Stefan Becker
- Max-Planck Institute for Biophysical Chemistry
- Department NMR-Based Structural Biology
- 37077 Göttingen
- Germany
| | - Rasmus Linser
- Max-Planck Institute for Biophysical Chemistry
- Department NMR-Based Structural Biology
- 37077 Göttingen
- Germany
| |
Collapse
|
40
|
Mote KR, Madhu PK. Proton-detected solid-state NMR spectroscopy of fully protonated proteins at slow to moderate magic-angle spinning frequencies. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 261:149-56. [PMID: 26580064 DOI: 10.1016/j.jmr.2015.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/11/2015] [Accepted: 10/20/2015] [Indexed: 06/05/2023]
Abstract
(1)H-detection offers a substitute to the sensitivity-starved experiments often used to characterize biomolecular samples using magic-angle spinning solid-state NMR spectroscopy (MAS-ssNMR). To mitigate the effects of the strong (1)H-(1)H dipolar coupled network that would otherwise severely broaden resonances, high MAS frequencies (>40kHz) are often employed. Here, we have explored the alternative of stroboscopic (1)H-detection at moderate MAS frequencies of 5-30kHz using windowed version of supercycled-phase-modulated Lee-Goldburg homonuclear decoupling. We show that improved resolution in the (1)H dimension, comparable to that obtainable at high spinning frequencies of 40-60kHz without homonuclear decoupling, can be obtained in these experiments for fully protonated proteins. Along with detailed analysis of the performance of the method on the standard tri-peptide f-MLF, experiments on micro-crystalline GB1 and amyloid-β aggregates are used to demonstrate the applicability of these pulse-sequences to challenging biomolecular systems. With only two parameters to optimize, broadbanded performance of the homonuclear decoupling sequence, linear dependence of the chemical-shift scaling factor on resonance offset and a straightforward implementation under experimental conditions currently used for many biomolecular studies (viz. spinning frequencies and radio-frequency amplitudes), we expect these experiments to complement the current (13)C-detection based methods in assignments and characterization through chemical-shift mapping.
Collapse
Affiliation(s)
- Kaustubh R Mote
- TIFR Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 21 Brundavan Colony, Narsingi, Hyderabad 500075, India.
| | - Perunthiruthy K Madhu
- TIFR Center for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 21 Brundavan Colony, Narsingi, Hyderabad 500075, India; Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India.
| |
Collapse
|