1
|
Wang K, Park S, Kamson DO, Li Y, Liu G, Xu J. Guanidinium and amide CEST mapping of human brain by high spectral resolution CEST at 3 T. Magn Reson Med 2023; 89:177-191. [PMID: 36063502 PMCID: PMC9617768 DOI: 10.1002/mrm.29440] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/01/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE To extract guanidinium (Guan) and amide CEST on the human brain at 3 T MRI with the high spectral resolution (HSR) CEST combined with the polynomial Lorentzian line-shape fitting (PLOF). METHODS Continuous wave (cw) turbo spin-echo (TSE) CEST was implemented to obtain the optimum saturation parameters. Both Guan and amide CEST peaks were extracted and quantified using the PLOF method. The NMR spectra on the egg white phantoms were acquired to reveal the fitting range and the contributions to the amide and GuanCEST. Two types of CEST approaches, including cw gradient- and spin-echo (cwGRASE) and steady state EPI (ssEPI), were implemented to acquire multi-slice HSR-CEST. RESULTS GuanCEST can be extracted with the PLOF method at 3 T, and the optimumB 1 = 0.6 μ T $$ {\mathrm{B}}_1=0.6\kern0.2em \upmu \mathrm{T} $$ was determined for GuanCEST in white matter (WM) and 1.0 μT in gray matter (GM). The optimum B1 = 0.8-1 μT was found for amideCEST. AmideCEST is lower in both WM and GM collected with ssEPI compared to those by cwGRASE (ssEPI = [1.27-1.63]%; cwGRASE = [2.19-2.25]%). The coefficients of variation (COV) of the amide and Guan CEST in both WM and GM for ssEPI (COV: 28.6-33.4%) are significantly higher than those of cwGRASE (COV: 8.6-18.8%). Completely different WM/GM contrasts for Guan and amide CEST were observed between ssEPI and cwGRASE. The amideCEST was found to have originated from the unstructured amide protons as suggested by the NMR spectrum of the unfolded proteins in egg white. CONCLUSION Guan and amide CEST mapping can be achieved by the HSR-CEST at 3 T combing with the PLOF method.
Collapse
Affiliation(s)
- Kexin Wang
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Sooyeon Park
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - David Olayinka Kamson
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, Maryland, USA
| | - Yuguo Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guanshu Liu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Abstract
Thanks to recent improvements in NMR spectrometer hardware and pulse sequence design, modern 13C NMR has become a useful tool for biomolecular applications. The complete assignment of a protein can be accomplished by using 13C detected multinuclear experiments and it can provide unique information relevant for the study of a variety of different biomolecules including paramagnetic proteins and intrinsically disordered proteins. A wide range of NMR observables can be measured, concurring to the structural and dynamic characterization of a protein in isolation, as part of a larger complex, or even inside a living cell. We present the different properties of 13C with respect to 1H, which provide the rationale for the experiments developed and their application, the technical aspects that need to be faced, and the many experimental variants designed to address different cases. Application areas where these experiments successfully complement proton NMR are also described.
Collapse
Affiliation(s)
- Isabella C. Felli
- Department of Chemistry “Ugo
Schiff” and Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Roberta Pierattelli
- Department of Chemistry “Ugo
Schiff” and Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (Florence), Italy
| |
Collapse
|
3
|
Hansen PE. Isotope Effects on Chemical Shifts in the Study of Hydrogen Bonds in Small Molecules. Molecules 2022; 27:2405. [PMID: 35458603 PMCID: PMC9026942 DOI: 10.3390/molecules27082405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/03/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022] Open
Abstract
This review is giving a short introduction to the techniques used to investigate isotope effects on NMR chemical shifts. The review is discussing how isotope effects on chemical shifts can be used to elucidate the importance of either intra- or intermolecular hydrogen bonding in ionic liquids, of ammonium ions in a confined space, how isotope effects can help define dimers, trimers, etc., how isotope effects can lead to structural parameters such as distances and give information about ion pairing. Tautomerism is by advantage investigated by isotope effects on chemical shifts both in symmetric and asymmetric systems. The relationship between hydrogen bond energies and two-bond deuterium isotope effects on chemical shifts is described. Finally, theoretical calculations to obtain isotope effects on chemical shifts are looked into.
Collapse
Affiliation(s)
- Poul Erik Hansen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| |
Collapse
|
4
|
Karunanithy G, Shukla VK, Hansen DF. Methodological advancements for characterising protein side chains by NMR spectroscopy. Curr Opin Struct Biol 2021; 70:61-69. [PMID: 33989947 DOI: 10.1016/j.sbi.2021.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/18/2022]
Abstract
The surface of proteins is covered by side chains of polar amino acids that are imperative for modulating protein functionality through the formation of noncovalent intermolecular interactions. However, despite their tremendous importance, the unique structures of protein side chains require tailored approaches for investigation by nuclear magnetic resonance spectroscopy and so have traditionally been understudied compared with the protein backbone. Here, we review substantial recent methodological advancements within nuclear magnetic resonance spectroscopy to address this issue. Specifically, we consider advancements that provide new insight into methyl-bearing side chains, show the potential of using non-natural amino acids and reveal the actions of charged side chains. Combined, the new methods promise unprecedented characterisations of side chains that will further elucidate protein function.
Collapse
Affiliation(s)
- Gogulan Karunanithy
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Vaibhav Kumar Shukla
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - D Flemming Hansen
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom.
| |
Collapse
|
5
|
Hansen PE. Isotope effects on chemical shifts in the study of hydrogen bonded biological systems. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 120-121:109-117. [PMID: 33198966 DOI: 10.1016/j.pnmrs.2020.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
This review deals with biological systems and with deuterium isotope effects on chemical shifts caused by the replacement of OH, NH or SH protons by deuterons. Hydrogen bonding is clearly of central importance. Isotope effects on chemical shifts seems very suitable for use in studies of structures and reactions in the interior of proteins, as exchange of the label can be expected to be slow. One-bond deuterium isotope effects on 15N chemical shifts, and two-bond effects on 1H chemical shifts for N(D)Hx systems can be used to gauge hydrogen bond strength in proteins as well as in salt bridges. Solvent isotope effects on 19F chemical shifts show promise in monitoring solvent access. Equilibrium isotope effects need in some cases to be taken into account. Schemes for calculation of deuterium isotope effects on chemical shifts are discussed and it is demonstrated how calculations may be used in the study of complex biological systems.
Collapse
Affiliation(s)
- Poul Erik Hansen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark.
| |
Collapse
|
6
|
Karunanithy G, Reinstein J, Hansen DF. Multiquantum Chemical Exchange Saturation Transfer NMR to Quantify Symmetrical Exchange: Application to Rotational Dynamics of the Guanidinium Group in Arginine Side Chains. J Phys Chem Lett 2020; 11:5649-5654. [PMID: 32543198 PMCID: PMC7370295 DOI: 10.1021/acs.jpclett.0c01322] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Chemical exchange saturation transfer (CEST) NMR experiments have emerged as a powerful tool for characterizing dynamics in proteins. We show here that the CEST approach can be extended to systems with symmetrical exchange, where the NMR signals of all exchanging species are severely broadened. To achieve this, multiquantum CEST (MQ-CEST) is introduced, where the CEST pulse is applied to a longitudinal multispin order density element and the CEST profiles are encoded onto nonbroadened nuclei. The MQ-CEST approach is demonstrated on the restricted rotation of guanidinium groups in arginine residues within proteins. These groups and their dynamics are essential for many enzymes and for noncovalent interactions through the formation of hydrogen bonds, salt-bridges, and π-stacking interactions, and their rate of rotation is highly indicative of the extent of interactions formed. The MQ-CEST method is successfully applied to guanidinium groups in the 19 kDa L99A mutant of T4 lysozyme.
Collapse
Affiliation(s)
- Gogulan Karunanithy
- Institute
of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Jochen Reinstein
- Department
of Biomolecular Mechanisms, Max Planck Institute
for Medical Research, Jahnstrasse 29, D-69120 Heidelberg, Germany
| | - D. Flemming Hansen
- Institute
of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
7
|
Altincekic N, Löhr F, Meier-Credo J, Langer JD, Hengesbach M, Richter C, Schwalbe H. Site-Specific Detection of Arginine Methylation in Highly Repetitive Protein Motifs of Low Sequence Complexity by NMR. J Am Chem Soc 2020; 142:7647-7654. [PMID: 32233470 DOI: 10.1021/jacs.0c02308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Post-translational modifications of proteins are widespread in eukaryotes. To elucidate the functional role of these modifications, detection methods need to be developed that provide information at atomic resolution. Here, we report on the development of a novel Arg-specific NMR experiment that detects the methylation status and symmetry of each arginine side chain even in highly repetitive RGG amino acid sequence motifs found in numerous proteins within intrinsically disordered regions. The experiment relies on the excellent resolution of the backbone H,N correlation spectra even in these low complexity sequences. It requires 13C, 15N labeled samples.
Collapse
Affiliation(s)
- Nadide Altincekic
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt am Main, Frankfurt 60438, Germany.,Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt am Main, Frankfurt 60438, Germany
| | - Frank Löhr
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt am Main, Frankfurt 60438, Germany.,Institute of Biophysical Chemistry, Goethe University Frankfurt am Main, Frankfurt 60438, Germany
| | - Jakob Meier-Credo
- Max Planck Institute of Biophysics, Frankfurt am Main, 60438, Germany
| | - Julian D Langer
- Max Planck Institute of Biophysics, Frankfurt am Main, 60438, Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt am Main, Frankfurt 60438, Germany
| | - Christian Richter
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt am Main, Frankfurt 60438, Germany.,Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt am Main, Frankfurt 60438, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt am Main, Frankfurt 60438, Germany.,Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt am Main, Frankfurt 60438, Germany
| |
Collapse
|
8
|
Wiegand T. A solid-state NMR tool box for the investigation of ATP-fueled protein engines. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 117:1-32. [PMID: 32471533 DOI: 10.1016/j.pnmrs.2020.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 06/11/2023]
Abstract
Motor proteins are involved in a variety of cellular processes. Their main purpose is to convert the chemical energy released during adenosine triphosphate (ATP) hydrolysis into mechanical work. In this review, solid-state Nuclear Magnetic Resonance (NMR) approaches are discussed allowing studies of structures, conformational events and dynamic features of motor proteins during a variety of enzymatic reactions. Solid-state NMR benefits from straightforward sample preparation based on sedimentation of the proteins directly into the Magic-Angle Spinning (MAS) rotor. Protein resonance assignment is the crucial and often time-limiting step in interpreting the wealth of information encoded in the NMR spectra. Herein, potentials, challenges and limitations in resonance assignment for large motor proteins are presented, focussing on both biochemical and spectroscopic approaches. This work highlights NMR tools available to study the action of the motor domain and its coupling to functional processes, as well as to identify protein-nucleotide interactions during events such as DNA replication. Arrested protein states of reaction coordinates such as ATP hydrolysis can be trapped for NMR studies by using stable, non-hydrolysable ATP analogues that mimic the physiological relevant states as accurately as possible. Recent advances in solid-state NMR techniques ranging from Dynamic Nuclear Polarization (DNP), 31P-based heteronuclear correlation experiments, 1H-detected spectra at fast MAS frequencies >100 kHz to paramagnetic NMR are summarized and their applications to the bacterial DnaB helicase from Helicobacter pylori are discussed.
Collapse
Affiliation(s)
- Thomas Wiegand
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
9
|
Wiegand T, Schledorn M, Malär AA, Cadalbert R, Däpp A, Terradot L, Meier BH, Böckmann A. Nucleotide Binding Modes in a Motor Protein Revealed by 31 P- and 1 H-Detected MAS Solid-State NMR Spectroscopy. Chembiochem 2020; 21:324-330. [PMID: 31310428 PMCID: PMC7318265 DOI: 10.1002/cbic.201900439] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Indexed: 12/16/2022]
Abstract
Protein-nucleic acid interactions play important roles not only in energy-providing reactions, such as ATP hydrolysis, but also in reading, extending, packaging, or repairing genomes. Although they can often be analyzed in detail with X-ray crystallography, complementary methods are needed to visualize them in complexes, which are not crystalline. Here, we show how solid-state NMR spectroscopy can detect and classify protein-nucleic interactions through site-specific 1 H- and 31 P-detected spectroscopic methods. The sensitivity of 1 H chemical-shift values on noncovalent interactions involved in these molecular recognition processes is exploited allowing us to probe directly the chemical bonding state, an information, which is not directly accessible from an X-ray structure. We show that these methods can characterize interactions in easy-to-prepare sediments of the 708 kDa dodecameric DnaB helicase in complex with ADP:AlF4- :DNA, and this despite the very challenging size of the complex.
Collapse
Affiliation(s)
- Thomas Wiegand
- Physical ChemistryETH ZurichVladimir-Prelog-Weg 1-5/108093ZürichSwitzerland
| | - Maarten Schledorn
- Physical ChemistryETH ZurichVladimir-Prelog-Weg 1-5/108093ZürichSwitzerland
| | - Alexander A. Malär
- Physical ChemistryETH ZurichVladimir-Prelog-Weg 1-5/108093ZürichSwitzerland
| | - Riccardo Cadalbert
- Physical ChemistryETH ZurichVladimir-Prelog-Weg 1-5/108093ZürichSwitzerland
| | - Alexander Däpp
- Physical ChemistryETH ZurichVladimir-Prelog-Weg 1-5/108093ZürichSwitzerland
| | - Laurent Terradot
- Physical ChemistryETH ZurichVladimir-Prelog-Weg 1-5/108093ZürichSwitzerland
| | - Beat H. Meier
- Physical ChemistryETH ZurichVladimir-Prelog-Weg 1-5/108093ZürichSwitzerland
| | - Anja Böckmann
- Molecular Microbiology and Structural BiochemistryLabex EcofectUMR 5086 CNRS/Université de Lyon7 Passage du vercors69367LyonFrance
| |
Collapse
|
10
|
Wong LE, Kim TH, Muhandiram DR, Forman-Kay JD, Kay LE. NMR Experiments for Studies of Dilute and Condensed Protein Phases: Application to the Phase-Separating Protein CAPRIN1. J Am Chem Soc 2020; 142:2471-2489. [DOI: 10.1021/jacs.9b12208] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Leo E. Wong
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Tae Hun Kim
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Hospital for Sick Children, Program in Molecular Medicine, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | - D. Ranjith Muhandiram
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Julie D. Forman-Kay
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Hospital for Sick Children, Program in Molecular Medicine, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | - Lewis E. Kay
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Hospital for Sick Children, Program in Molecular Medicine, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
11
|
Schnieders R, Keyhani S, Schwalbe H, Fürtig B. More than Proton Detection-New Avenues for NMR Spectroscopy of RNA. Chemistry 2020; 26:102-113. [PMID: 31454110 PMCID: PMC6973061 DOI: 10.1002/chem.201903355] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Indexed: 12/16/2022]
Abstract
Ribonucleic acid oligonucleotides (RNAs) play pivotal roles in cellular function (riboswitches), chemical biology applications (SELEX-derived aptamers), cell biology and biomedical applications (transcriptomics). Furthermore, a growing number of RNA forms (long non-coding RNAs, circular RNAs) but also RNA modifications are identified, showing the ever increasing functional diversity of RNAs. To describe and understand this functional diversity, structural studies of RNA are increasingly important. However, they are often more challenging than protein structural studies as RNAs are substantially more dynamic and their function is often linked to their structural transitions between alternative conformations. NMR is a prime technique to characterize these structural dynamics with atomic resolution. To extend the NMR size limitation and to characterize large RNAs and their complexes above 200 nucleotides, new NMR techniques have been developed. This Minireview reports on the development of NMR methods that utilize detection on low-γ nuclei (heteronuclei like 13 C or 15 N with lower gyromagnetic ratio than 1 H) to obtain unique structural and dynamic information for large RNA molecules in solution. Experiments involve through-bond correlations of nucleobases and the phosphodiester backbone of RNA for chemical shift assignment and make information on hydrogen bonding uniquely accessible. Previously unobservable NMR resonances of amino groups in RNA nucleobases are now detected in experiments involving conformational exchange-resistant double-quantum 1 H coherences, detected by 13 C NMR spectroscopy. Furthermore, 13 C and 15 N chemical shifts provide valuable information on conformations. All the covered aspects point to the advantages of low-γ nuclei detection experiments in RNA.
Collapse
Affiliation(s)
- Robbin Schnieders
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-Universität FrankfurtMax-von-Laue-Str. 760438FrankfurtGermany
| | - Sara Keyhani
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-Universität FrankfurtMax-von-Laue-Str. 760438FrankfurtGermany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-Universität FrankfurtMax-von-Laue-Str. 760438FrankfurtGermany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-Universität FrankfurtMax-von-Laue-Str. 760438FrankfurtGermany
| |
Collapse
|
12
|
Gräfenstein J. Efficient calculation of NMR isotopic shifts: Difference-dedicated vibrational perturbation theory. J Chem Phys 2019; 151:244120. [PMID: 31893883 DOI: 10.1063/1.5134538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We present difference-dedicated second-order vibrational perturbation theory (VPT2) as an efficient method for the computation of nuclear magnetic resonance (NMR) isotopic shifts, which reflect the geometry dependence of the NMR property in combination with different vibration patterns of two isotopologues. Conventional calculations of isotopic shifts, e.g., by standard VPT2, require scanning the geometry dependence over the whole molecule, which becomes expensive rapidly as the molecule size increases. In DD-VPT2, this scan can be restricted to a small region around the substitution site. At the heart of DD-VPT2 is a set of localized vibration modes common to the two isotopologues and designed such that the difference between the vibration patterns is caught by a small subset of them (usually fewer than 10). We tested the DD-VPT2 method for a series of molecules with increasing size and found that this method provides results with the same quality as VPT2 and in good agreement with the experiment, with computational savings up to 95% and less numerical instabilities. The method is easy to automatize and straightforward to generalize to other molecular properties.
Collapse
Affiliation(s)
- Jürgen Gräfenstein
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Göteborg, Sweden
| |
Collapse
|
13
|
Schnieders R, Wolter AC, Richter C, Wöhnert J, Schwalbe H, Fürtig B. Novel
13
C‐detected NMR Experiments for the Precise Detection of RNA Structure. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Robbin Schnieders
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-Universität Frankfurt Max-von-Laue-Str. 7 60438 Frankfurt Germany
| | - Antje C. Wolter
- Institute for Molecular BiosciencesCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-Universität Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt Germany
| | - Christian Richter
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-Universität Frankfurt Max-von-Laue-Str. 7 60438 Frankfurt Germany
| | - Jens Wöhnert
- Institute for Molecular BiosciencesCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-Universität Frankfurt Max-von-Laue-Str. 9 60438 Frankfurt Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-Universität Frankfurt Max-von-Laue-Str. 7 60438 Frankfurt Germany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-Universität Frankfurt Max-von-Laue-Str. 7 60438 Frankfurt Germany
| |
Collapse
|
14
|
Schnieders R, Wolter AC, Richter C, Wöhnert J, Schwalbe H, Fürtig B. Novel 13 C-detected NMR Experiments for the Precise Detection of RNA Structure. Angew Chem Int Ed Engl 2019; 58:9140-9144. [PMID: 31131949 PMCID: PMC6617721 DOI: 10.1002/anie.201904057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Indexed: 12/20/2022]
Abstract
Up to now, NMR spectroscopic investigations of RNA have utilized imino proton resonances as reporters for base pairing and RNA structure. The nucleobase amino groups are often neglected, since most of their resonances are broadened beyond detection due to rotational motion around the C-NH2 bond. Here, we present 13 C-detected NMR experiments for the characterization of all RNA amino groups irrespective of their motional behavior. We have developed a C(N)H-HDQC experiment that enables the observation of a complete set of sharp amino resonances through the detection of proton-NH2 double quantum coherences. Further, we present an "amino"-NOESY experiment to detect NOEs to amino protons, which are undetectable by any other conventional NOESY experiment. Together, these experiments allow the exploration of additional chemical shift information and inter-residual proton distances important for high-resolution RNA secondary and tertiary structure determination.
Collapse
Affiliation(s)
- Robbin Schnieders
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Antje C Wolter
- Institute for Molecular Biosciences, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Christian Richter
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Jens Wöhnert
- Institute for Molecular Biosciences, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| |
Collapse
|
15
|
Craig HC, Blamires SJ, Sani MA, Kasumovic MM, Rawal A, Hook JM. DNP NMR spectroscopy reveals new structures, residues and interactions in wild spider silks. Chem Commun (Camb) 2019; 55:4687-4690. [PMID: 30938741 DOI: 10.1039/c9cc01045a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
DNP solid state NMR spectroscopy allows non-targeted analysis of wild spider silk in unprecedented detail at natural abundance, revealing hitherto unreported features across several species. A >50-fold signal enhancement for each silk, enables the detection of novel H-bonding networks and arginine conformations, and the post-translational modified amino acid, hydroxyproline.
Collapse
Affiliation(s)
- Hamish C Craig
- School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, 2052, Australia.
| | | | | | | | | | | |
Collapse
|
16
|
Batchelor M, Wolny M, Baker EG, Paci E, Kalverda AP, Peckham M. Dynamic ion pair behavior stabilizes single α-helices in proteins. J Biol Chem 2019; 294:3219-3234. [PMID: 30593502 PMCID: PMC6398138 DOI: 10.1074/jbc.ra118.006752] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/17/2018] [Indexed: 11/06/2022] Open
Abstract
Ion pairs are key stabilizing interactions between oppositely charged amino acid side chains in proteins. They are often depicted as single conformer salt bridges (hydrogen-bonded ion pairs) in crystal structures, but it is unclear how dynamic they are in solution. Ion pairs are thought to be particularly important in stabilizing single α-helix (SAH) domains in solution. These highly stable domains are rich in charged residues (such as Arg, Lys, and Glu) with potential ion pairs across adjacent turns of the helix. They provide a good model system to investigate how ion pairs can contribute to protein stability. Using NMR spectroscopy, small-angle X-ray light scattering (SAXS), and molecular dynamics simulations, we provide here experimental evidence that ion pairs exist in a SAH in murine myosin 7a (residues 858-935), but that they are not fixed or long lasting. In silico modeling revealed that the ion pairs within this α-helix exhibit dynamic behavior, rapidly forming and breaking and alternating between different partner residues. The low-energy helical state was compatible with a great variety of ion pair combinations. Flexible ion pair formation utilizing a subset of those available at any one time avoided the entropic penalty of fixing side chain conformations, which likely contributed to helix stability overall. These results indicate the dynamic nature of ion pairs in SAHs. More broadly, thermodynamic stability in other proteins is likely to benefit from the dynamic behavior of multi-option solvent-exposed ion pairs.
Collapse
Affiliation(s)
- Matthew Batchelor
- From the School of Molecular and Cellular Biology and the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Marcin Wolny
- From the School of Molecular and Cellular Biology and the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Emily G Baker
- the School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Emanuele Paci
- From the School of Molecular and Cellular Biology and the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Arnout P Kalverda
- From the School of Molecular and Cellular Biology and the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Michelle Peckham
- From the School of Molecular and Cellular Biology and the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom and
| |
Collapse
|
17
|
Mackenzie HW, Hansen DF. Arginine Side-Chain Hydrogen Exchange: Quantifying Arginine Side-Chain Interactions in Solution. Chemphyschem 2019; 20:252-259. [PMID: 30085401 PMCID: PMC6391956 DOI: 10.1002/cphc.201800598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Indexed: 02/03/2023]
Abstract
The rate with which labile backbone hydrogen atoms in proteins exchange with the solvent has long been used to probe protein interactions in aqueous solutions. Arginine, an essential amino acid found in many interaction interfaces, is capable of an impressive range of interactions via its guanidinium group. The hydrogen exchange rate of the guanidinium hydrogens therefore becomes an important measure to quantify side-chain interactions. Herein we present an NMR method to quantify the hydrogen exchange rates of arginine side-chain 1 Hϵ protons and thus present a method to gauge the strength of arginine side-chain interactions. The method employs 13 C-detection and the one-bond deuterium isotope shift observed for 15 Nϵ to generate two exchanging species in 1 H2 O/2 H2 O mixtures. An application to the protein T4 Lysozyme is shown, where protection factors calculated from the obtained exchange rates correlate well with the interactions observed in the crystal structure. The methodology presented provides an important step towards characterising interactions of arginine side-chains in enzymes, in phase separation, and in protein interaction interfaces in general.
Collapse
Affiliation(s)
- Harold W. Mackenzie
- Institute of Structural and Molecular Biology Division of BiosciencesUniversity College LondonLondon WC1E 6BTUnited Kingdom
| | - D. Flemming Hansen
- Institute of Structural and Molecular Biology Division of BiosciencesUniversity College LondonLondon WC1E 6BTUnited Kingdom
| |
Collapse
|
18
|
Brockerman JA, Okon M, Withers SG, McIntosh LP. The pK a values of the catalytic residues in the retaining glycoside hydrolase T26H mutant of T4 lysozyme. Protein Sci 2018; 28:620-632. [PMID: 30537432 DOI: 10.1002/pro.3562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 12/24/2022]
Abstract
T4 phage lysozyme (T4L) is an enzyme that cleaves bacterial cell wall peptidoglycan. Remarkably, the single substitution of the active site Thr26 to a His (T26H) converts T4L from an inverting to a retaining glycoside hydrolase with transglycosylase activity. It has been proposed that T26H-T4L follows a double displacement mechanism with His26 serving as a nucleophile to form a covalent glycosyl-enzyme intermediate (Kuroki et al., PNAS 1999; 96:8949-8954). To gain further insights into this or alternative mechanisms, we used NMR spectroscopy to measure the acid dissociation constants (pKa values) and/or define the ionization states of the Asp, Glu, His, and Arg residues in the T4L mutant. Most notably, the pKa value of the putative nucleophile His26 is 6.8 ± 0.1, whereas that of the general acid Glu11 is 4.7 ± 0.1. If the proposed mechanism holds true, then T26H-T4L follows a reverse protonation pathway in which only a minor population of the free enzyme is in its catalytically competent ionization state with His26 deprotonated and Glu11 protonated. Our studies also confirm that all arginines in T26H-T4L, including the active site Arg145, are positively charged under neutral pH conditions. BRIEF STATEMENT: The replacement of a single amino acid changes T4 lysozyme from an inverting to a retaining glycoside hydrolase. Using NMR spectroscopy, we measured the pKa values of the ionizable residues in the active site of this mutant enzyme. Along with previously reported data, these results provide important constraints for understanding the catalytic mechanisms by which the wild-type and mutant form of T4 lysozyme cleave bacterial peptidoglycan.
Collapse
Affiliation(s)
- Jacob A Brockerman
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada
| | - Mark Okon
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada
| | - Stephen G Withers
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Lawrence P McIntosh
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.,Department of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| |
Collapse
|
19
|
Ahmed MC, Papaleo E, Lindorff-Larsen K. How well do force fields capture the strength of salt bridges in proteins? PeerJ 2018; 6:e4967. [PMID: 29910983 PMCID: PMC6001725 DOI: 10.7717/peerj.4967] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 05/23/2018] [Indexed: 12/21/2022] Open
Abstract
Salt bridges form between pairs of ionisable residues in close proximity and are important interactions in proteins. While salt bridges are known to be important both for protein stability, recognition and regulation, we still do not have fully accurate predictive models to assess the energetic contributions of salt bridges. Molecular dynamics simulation is one technique that may be used study the complex relationship between structure, solvation and energetics of salt bridges, but the accuracy of such simulations depends on the force field used. We have used NMR data on the B1 domain of protein G (GB1) to benchmark molecular dynamics simulations. Using enhanced sampling simulations, we calculated the free energy of forming a salt bridge for three possible lysine-carboxylate ionic interactions in GB1. The NMR experiments showed that these interactions are either not formed, or only very weakly formed, in solution. In contrast, we show that the stability of the salt bridges is overestimated, to different extents, in simulations of GB1 using seven out of eight commonly used combinations of fixed charge force fields and water models. We also find that the Amber ff15ipq force field gives rise to weaker salt bridges in good agreement with the NMR experiments. We conclude that many force fields appear to overstabilize these ionic interactions, and that further work may be needed to refine our ability to model quantitatively the stability of salt bridges through simulations. We also suggest that comparisons between NMR experiments and simulations will play a crucial role in furthering our understanding of this important interaction.
Collapse
Affiliation(s)
- Mustapha Carab Ahmed
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Elena Papaleo
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Gopalan AB, Vallurupalli P. Measuring the signs of the methyl 1H chemical shift differences between major and 'invisible' minor protein conformational states using methyl 1H multi-quantum spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2018; 70:187-202. [PMID: 29564579 DOI: 10.1007/s10858-018-0171-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 02/21/2018] [Indexed: 06/08/2023]
Abstract
Carr-Purcell-Meiboom-Gill (CPMG) type relaxation dispersion experiments are now routinely used to characterise protein conformational dynamics that occurs on the μs to millisecond (ms) timescale between a visible major state and 'invisible' minor states. The exchange rate(s) ([Formula: see text]), population(s) of the minor state(s) and the absolute value of the chemical shift difference [Formula: see text] (ppm) between different exchanging states can be extracted from the CPMG data. However the sign of [Formula: see text] that is required to reconstruct the spectrum of the 'invisible' minor state(s) cannot be obtained from CPMG data alone. Building upon the recently developed triple quantum (TQ) methyl [Formula: see text] CPMG experiment (Yuwen in Angew Chem 55:11490-11494, 2016) we have developed pulse sequences that use carbon detection to generate and evolve single quantum (SQ), double quantum (DQ) and TQ coherences from methyl protons in the indirect dimension to measure the chemical exchange-induced shifts of the SQ, DQ and TQ coherences from which the sign of [Formula: see text] is readily obtained for two state exchange. Further a combined analysis of the CPMG data and the difference in exchange induced shifts between the SQ and DQ resonances and between the SQ and TQ resonances improves the estimates of exchange parameters like the population of the minor state. We demonstrate the use of these experiments on two proteins undergoing exchange: (1) the ~ 18 kDa cavity mutant of T4 Lysozyme ([Formula: see text]) and (2) the [Formula: see text] kDa Peripheral Sub-unit Binding Domain (PSBD) from the acetyl transferase of Bacillus stearothermophilus ([Formula: see text]).
Collapse
Affiliation(s)
- Anusha B Gopalan
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal Ranga Reddy District, Hyderabad, Telangana, 500107, India
| | - Pramodh Vallurupalli
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal Ranga Reddy District, Hyderabad, Telangana, 500107, India.
| |
Collapse
|