1
|
Gagné D, Aramini JM, Aubin Y. Backbone and methyl side-chain resonance assignments of the single chain Fab fragment of trastuzumab. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:119-128. [PMID: 38717571 PMCID: PMC11511688 DOI: 10.1007/s12104-024-10177-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/30/2024] [Indexed: 10/27/2024]
Abstract
Trastuzumab is a therapeutic monoclonal antibody developed to target human epidermal growth factor receptor 2 (HER2) present at higher levels in early cancers. Here we report the near complete resonance assignment of trastuzumab-scFab fragment backbone and the methyl groups of isoleucine, leucine and valine residues, as well as their stereo-assignments. The antibody fragment was produced using a single chain approach in Escherichia coli.
Collapse
Affiliation(s)
- Donald Gagné
- Centre for Oncology, Radiopharmaceuticals and Research, Biologics and Radiotherapeutic Drugs Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - James M Aramini
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Yves Aubin
- Centre for Oncology, Radiopharmaceuticals and Research, Biologics and Radiotherapeutic Drugs Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
2
|
Sarker M, Aubin Y. Backbone and methyl side-chain resonance assignments of the Fab fragment of adalimumab. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:187-192. [PMID: 38926254 PMCID: PMC11511761 DOI: 10.1007/s12104-024-10187-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Adalimumab is a therapeutic monoclonal antibody developed to target human TNF an important mediator of immune-mediated inflammatory diseases such as rheumatoid arthritis, amongst others. The 48 kDa Fab fragment of adalimumab was produced in Escherichia coli using a single chain approach to allow complete isotopic incorporation of deuterium, carbon-13 and nitrogen-15 along with the protonated isoleucine-d, valine and leucine methyl groups. Here we report the near complete resonance assignment of the polypeptide backbone and the methyl groups of isoleucine, leucine and valine residues.
Collapse
Affiliation(s)
- Muzaddid Sarker
- Centre for Oncology, Radiopharmaceuticals and Research, Biologics and Radiotherapeutic Drugs Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON, K7L 3N6, Canada
| | - Yves Aubin
- Centre for Oncology, Radiopharmaceuticals and Research, Biologics and Radiotherapeutic Drugs Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
- Department of Chemistry, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
3
|
Iyer A, Frallicciardi J, le Paige UBA, Narasimhan S, Luo Y, Sieiro PA, Syga L, van den Brekel F, Tran BM, Tjioe R, Schuurman-Wolters G, Stuart MCA, Baldus M, van Ingen H, Poolman B. The Structure and Function of the Bacterial Osmotically Inducible Protein Y. J Mol Biol 2024; 436:168668. [PMID: 38908784 DOI: 10.1016/j.jmb.2024.168668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024]
Abstract
The ability to adapt to osmotically diverse and fluctuating environments is critical to the survival and resilience of bacteria that colonize the human gut and urinary tract. Environmental stress often provides cross-protection against other challenges and increases antibiotic tolerance of bacteria. Thus, it is critical to understand how E. coli and other microbes survive and adapt to stress conditions. The osmotically inducible protein Y (OsmY) is significantly upregulated in response to hypertonicity. Yet its function remains unknown for decades. We determined the solution structure and dynamics of OsmY by nuclear magnetic resonance spectroscopy, which revealed that the two Bacterial OsmY and Nodulation (BON) domains of the protein are flexibly linked under low- and high-salinity conditions. In-cell solid-state NMR further indicates that there are no gross structural changes in OsmY as a function of osmotic stress. Using cryo-electron and super-resolution fluorescence microscopy, we show that OsmY attenuates plasmolysis-induced structural changes in E. coli and improves the time to growth resumption after osmotic upshift. Structure-guided mutational and functional studies demonstrate that exposed hydrophobic residues in the BON1 domain are critical for the function of OsmY. We find no evidence for membrane interaction of the BON domains of OsmY, contrary to current assumptions. Instead, at high ionic strength, we observe an interaction with the water channel, AqpZ. Thus, OsmY does not play a simple structural role in E. coli but may influence a cascade of osmoregulatory functions of the cell.
Collapse
Affiliation(s)
- Aditya Iyer
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| | - Jacopo Frallicciardi
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Ulric B A le Paige
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Siddarth Narasimhan
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Yanzhang Luo
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Patricia Alvarez Sieiro
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Lukasz Syga
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Floris van den Brekel
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Buu Minh Tran
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Rendy Tjioe
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Gea Schuurman-Wolters
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Marc C A Stuart
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Marc Baldus
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Hugo van Ingen
- NMR Spectroscopy, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
4
|
Dong Y, Bonin JP, Devant P, Liang Z, Sever AIM, Mintseris J, Aramini JM, Du G, Gygi SP, Kagan JC, Kay LE, Wu H. Structural transitions enable interleukin-18 maturation and signaling. Immunity 2024; 57:1533-1548.e10. [PMID: 38733997 PMCID: PMC11236505 DOI: 10.1016/j.immuni.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/28/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
Several interleukin-1 (IL-1) family members, including IL-1β and IL-18, require processing by inflammasome-associated caspases to unleash their activities. Here, we unveil, by cryoelectron microscopy (cryo-EM), two major conformations of the complex between caspase-1 and pro-IL-18. One conformation is similar to the complex of caspase-4 and pro-IL-18, with interactions at both the active site and an exosite (closed conformation), and the other only contains interactions at the active site (open conformation). Thus, pro-IL-18 recruitment and processing by caspase-1 is less dependent on the exosite than the active site, unlike caspase-4. Structure determination by nuclear magnetic resonance uncovers a compact fold of apo pro-IL-18, which is similar to caspase-1-bound pro-IL-18 but distinct from cleaved IL-18. Binding sites for IL-18 receptor and IL-18 binding protein are only formed upon conformational changes after pro-IL-18 cleavage. These studies show how pro-IL-18 is selected as a caspase-1 substrate, and why cleavage is necessary for its inflammatory activity.
Collapse
Affiliation(s)
- Ying Dong
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Jeffrey P Bonin
- Departments of Molecular Genetics and Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada; Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Pascal Devant
- Division of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhuoyi Liang
- Bioscience and Biomedical Engineering Thrust, Brain and Intelligence Research Institute, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
| | - Alexander I M Sever
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada; Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Julian Mintseris
- Department of Cell Biology, Harvard Medical School, Harvard University, Boston, MA, USA
| | - James M Aramini
- Departments of Molecular Genetics and Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada; Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Gang Du
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Stephen P Gygi
- Department of Cell Biology, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Lewis E Kay
- Departments of Molecular Genetics and Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada; Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada.
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
5
|
Saccuzzo EG, Mebrat MD, Scelsi HF, Kim M, Ma MT, Su X, Hill SE, Rheaume E, Li R, Torres MP, Gumbart JC, Van Horn WD, Lieberman RL. Competition between inside-out unfolding and pathogenic aggregation in an amyloid-forming β-propeller. Nat Commun 2024; 15:155. [PMID: 38168102 PMCID: PMC10762032 DOI: 10.1038/s41467-023-44479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Studies of folded-to-misfolded transitions using model protein systems reveal a range of unfolding needed for exposure of amyloid-prone regions for subsequent fibrillization. Here, we probe the relationship between unfolding and aggregation for glaucoma-associated myocilin. Mutations within the olfactomedin domain of myocilin (OLF) cause a gain-of-function, namely cytotoxic intracellular aggregation, which hastens disease progression. Aggregation by wild-type OLF (OLFWT) competes with its chemical unfolding, but only below the threshold where OLF loses tertiary structure. Representative moderate (OLFD380A) and severe (OLFI499F) disease variants aggregate differently, with rates comparable to OLFWT in initial stages of unfolding, and variants adopt distinct partially folded structures seen along the OLFWT urea-unfolding pathway. Whether initiated with mutation or chemical perturbation, unfolding propagates outward to the propeller surface. In sum, for this large protein prone to amyloid formation, the requirement for a conformational change to promote amyloid fibrillization leads to direct competition between unfolding and aggregation.
Collapse
Affiliation(s)
- Emily G Saccuzzo
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, USA
| | - Mubark D Mebrat
- Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, USA
- School of Molecular Sciences, Arizona State University, Tempe, USA
| | - Hailee F Scelsi
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, USA
| | - Minjoo Kim
- Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, USA
- School of Molecular Sciences, Arizona State University, Tempe, USA
| | - Minh Thu Ma
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, USA
| | - Xinya Su
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| | - Shannon E Hill
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, USA
| | - Elisa Rheaume
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, USA
| | - Renhao Li
- Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta and Department of Pediatrics, Emory University School of Medicine, Atlanta, USA
| | - Matthew P Torres
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
| | - James C Gumbart
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, USA
- School of Physics, Georgia Institute of Technology, Atlanta, USA
| | - Wade D Van Horn
- Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, USA.
- School of Molecular Sciences, Arizona State University, Tempe, USA.
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, USA.
| |
Collapse
|
6
|
Wayment-Steele HK, Ojoawo A, Otten R, Apitz JM, Pitsawong W, Hömberger M, Ovchinnikov S, Colwell L, Kern D. Predicting multiple conformations via sequence clustering and AlphaFold2. Nature 2024; 625:832-839. [PMID: 37956700 PMCID: PMC10808063 DOI: 10.1038/s41586-023-06832-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
AlphaFold2 (ref. 1) has revolutionized structural biology by accurately predicting single structures of proteins. However, a protein's biological function often depends on multiple conformational substates2, and disease-causing point mutations often cause population changes within these substates3,4. We demonstrate that clustering a multiple-sequence alignment by sequence similarity enables AlphaFold2 to sample alternative states of known metamorphic proteins with high confidence. Using this method, named AF-Cluster, we investigated the evolutionary distribution of predicted structures for the metamorphic protein KaiB5 and found that predictions of both conformations were distributed in clusters across the KaiB family. We used nuclear magnetic resonance spectroscopy to confirm an AF-Cluster prediction: a cyanobacteria KaiB variant is stabilized in the opposite state compared with the more widely studied variant. To test AF-Cluster's sensitivity to point mutations, we designed and experimentally verified a set of three mutations predicted to flip KaiB from Rhodobacter sphaeroides from the ground to the fold-switched state. Finally, screening for alternative states in protein families without known fold switching identified a putative alternative state for the oxidoreductase Mpt53 in Mycobacterium tuberculosis. Further development of such bioinformatic methods in tandem with experiments will probably have a considerable impact on predicting protein energy landscapes, essential for illuminating biological function.
Collapse
Affiliation(s)
- Hannah K Wayment-Steele
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA, USA
| | - Adedolapo Ojoawo
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA, USA
| | - Renee Otten
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA, USA
- Treeline Biosciences, Watertown, MA, USA
| | - Julia M Apitz
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA, USA
| | - Warintra Pitsawong
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA, USA
- Biomolecular Discovery, Relay Therapeutics, Cambridge, MA, USA
| | - Marc Hömberger
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA, USA
- Treeline Biosciences, Watertown, MA, USA
| | | | - Lucy Colwell
- Google Research, Cambridge, MA, USA
- Cambridge University, Cambridge, UK
| | - Dorothee Kern
- Department of Biochemistry, Brandeis University and Howard Hughes Medical Institute, Waltham, MA, USA.
| |
Collapse
|
7
|
Giraldo AEL, Werner Z, Rahimi M, Lee W. Breaking boundaries: TINTO in POKY for computer vision-based NMR walking strategies. JOURNAL OF BIOMOLECULAR NMR 2023; 77:217-228. [PMID: 37804349 DOI: 10.1007/s10858-023-00423-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/13/2023] [Indexed: 10/09/2023]
Abstract
Nuclear magnetic resonance is a crucial technique for studying biological complexes, as it provides precise structural and dynamic information at the atomic level. However, the process of assigning resonances can be time-consuming and challenging, particularly in cases where peaks overlap, or the data quality is poor. In this paper, we present TINTO (Two and three-dimensional Imaging for NMR sTrip Operation via CV/ML), an advanced semiautomatic toolset for NMR resonance assignment. TINTO comprises two separate tools, each tailored for either two-dimensional or three-dimensional imaging. The toolset utilizes a computer-vision approach and a machine learning approach, specifically structural similarity index and principal components analysis, to perform visual similarity searches of resonances and quickly locate similar strips, and in that way overcome the challenges associated with peak overlap without requiring peak picking. Our tool offers a user-friendly interface and has the potential to enhance the efficiency and accuracy of NMR resonance assignment, particularly in complex cases. This advancement holds promising implications for furthering our understanding of biological systems at the molecular level. TINTO is pre-installed in the POKY suite, which is available at https://poky.clas.ucdenver.edu .
Collapse
Affiliation(s)
| | - Zowie Werner
- Department of Biology, University of Colorado Denver, Denver, CO, 80204, USA
| | - Mehdi Rahimi
- Department of Chemistry, University of Colorado Denver, Denver, CO, 80204, USA
| | - Woonghee Lee
- Department of Chemistry, University of Colorado Denver, Denver, CO, 80204, USA.
| |
Collapse
|
8
|
Klein A, Vasa SK, Linser R. 5D solid-state NMR spectroscopy for facilitated resonance assignment. JOURNAL OF BIOMOLECULAR NMR 2023; 77:229-245. [PMID: 37943392 PMCID: PMC10687145 DOI: 10.1007/s10858-023-00424-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023]
Abstract
1H-detected solid-state NMR spectroscopy has been becoming increasingly popular for the characterization of protein structure, dynamics, and function. Recently, we showed that higher-dimensionality solid-state NMR spectroscopy can aid resonance assignments in large micro-crystalline protein targets to combat ambiguity (Klein et al., Proc. Natl. Acad. Sci. U.S.A. 2022). However, assignments represent both, a time-limiting factor and one of the major practical disadvantages within solid-state NMR studies compared to other structural-biology techniques from a very general perspective. Here, we show that 5D solid-state NMR spectroscopy is not only justified for high-molecular-weight targets but will also be a realistic and practicable method to streamline resonance assignment in small to medium-sized protein targets, which such methodology might not have been expected to be of advantage for. Using a combination of non-uniform sampling and the signal separating algorithm for spectral reconstruction on a deuterated and proton back-exchanged micro-crystalline protein at fast magic-angle spinning, direct amide-to-amide correlations in five dimensions are obtained with competitive sensitivity compatible with common hardware and measurement time commitments. The self-sufficient backbone walks enable efficient assignment with very high confidence and can be combined with higher-dimensionality sidechain-to-backbone correlations from protonated preparations into minimal sets of experiments to be acquired for simultaneous backbone and sidechain assignment. The strategies present themselves as potent alternatives for efficient assignment compared to the traditional assignment approaches in 3D, avoiding user misassignments derived from ambiguity or loss of overview and facilitating automation. This will ease future access to NMR-based characterization for the typical solid-state NMR targets at fast MAS.
Collapse
Affiliation(s)
- Alexander Klein
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Suresh K Vasa
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Rasmus Linser
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany.
| |
Collapse
|
9
|
Hutchins GH, Noble CEM, Bunzel HA, Williams C, Dubiel P, Yadav SKN, Molinaro PM, Barringer R, Blackburn H, Hardy BJ, Parnell AE, Landau C, Race PR, Oliver TAA, Koder RL, Crump MP, Schaffitzel C, Oliveira ASF, Mulholland AJ, Anderson JLR. An expandable, modular de novo protein platform for precision redox engineering. Proc Natl Acad Sci U S A 2023; 120:e2306046120. [PMID: 37487099 PMCID: PMC10400981 DOI: 10.1073/pnas.2306046120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/20/2023] [Indexed: 07/26/2023] Open
Abstract
The electron-conducting circuitry of life represents an as-yet untapped resource of exquisite, nanoscale biomolecular engineering. Here, we report the characterization and structure of a de novo diheme "maquette" protein, 4D2, which we subsequently use to create an expanded, modular platform for heme protein design. A well-folded monoheme variant was created by computational redesign, which was then utilized for the experimental validation of continuum electrostatic redox potential calculations. This demonstrates how fundamental biophysical properties can be predicted and fine-tuned. 4D2 was then extended into a tetraheme helical bundle, representing a 7 nm molecular wire. Despite a molecular weight of only 24 kDa, electron cryomicroscopy illustrated a remarkable level of detail, indicating the positioning of the secondary structure and the heme cofactors. This robust, expressible, highly thermostable and readily designable modular platform presents a valuable resource for redox protein design and the future construction of artificial electron-conducting circuitry.
Collapse
Affiliation(s)
- George H. Hutchins
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - Claire E. M. Noble
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, BristolBS8 1TQ, United Kingdom
| | - H. Adrian Bunzel
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | | | - Paulina Dubiel
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - Sathish K. N. Yadav
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - Paul M. Molinaro
- Department of Physics, The City College of New York, New York, NY10031
- Graduate Programs of Physics, Biology, Chemistry and Biochemistry, The Graduate Center of The City University of New York, New York, NY10016
| | - Rob Barringer
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - Hector Blackburn
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - Benjamin J. Hardy
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - Alice E. Parnell
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, BristolBS8 1TQ, United Kingdom
| | - Charles Landau
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - Paul R. Race
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, BristolBS8 1TQ, United Kingdom
| | | | - Ronald L. Koder
- Department of Physics, The City College of New York, New York, NY10031
- Graduate Programs of Physics, Biology, Chemistry and Biochemistry, The Graduate Center of The City University of New York, New York, NY10016
| | - Matthew P. Crump
- School of Chemistry, University of Bristol, BristolBS8 1TS, United Kingdom
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
| | - A. Sofia F. Oliveira
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
- School of Chemistry, University of Bristol, BristolBS8 1TS, United Kingdom
| | - Adrian J. Mulholland
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, BristolBS8 1TQ, United Kingdom
- School of Chemistry, University of Bristol, BristolBS8 1TS, United Kingdom
| | - J. L. Ross Anderson
- School of Biochemistry, University of Bristol, University Walk, BristolBS8 1TD, United Kingdom
- BrisSynBio Synthetic Biology Research Centre, Life Sciences Building, University of Bristol, BristolBS8 1TQ, United Kingdom
| |
Collapse
|
10
|
Moschidi D, Cantrelle FX, Boll E, Hanoulle X. Backbone NMR resonance assignment of the apo human Tsg101-UEV domain. BIOMOLECULAR NMR ASSIGNMENTS 2023; 17:49-54. [PMID: 36740661 DOI: 10.1007/s12104-023-10119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/24/2023] [Indexed: 06/02/2023]
Abstract
The Endosomal Sorting Complex Required for Transport (ESCRT) pathway, through inverse topology membrane remodeling, is involved in many biological functions, such as ubiquitinated membrane receptor trafficking and degradation, multivesicular bodies (MVB) formation and cytokinesis. Dysfunctions in ESCRT pathway have been associated to several human pathologies, such as cancers and neurodegenerative diseases. The ESCRT machinery is also hijacked by many enveloped viruses to bud away from the plasma membrane of infected cells. Human tumor susceptibility gene 101 (Tsg101) protein is an important ESCRT-I complex component. The structure of the N-terminal ubiquitin E2 variant (UEV) domain of Tsg101 (Tsg101-UEV) comprises an ubiquitin binding pocket next to a late domain [P(S/T)AP] binding groove. These two binding sites have been shown to be involved both in the physiological roles of ESCRT-I and in the release of the viral particles, and thus are attractive targets for antivirals. The structure of the Tsg101-UEV domain has been characterized, using X-ray crystallography or NMR spectroscopy, either in its apo-state or bound to ubiquitin or late domains. In this study, we report the backbone NMR resonance assignments, including the proline signals, of the apo human Tsg101-UEV domain, that so far was not publicly available. These data, that are in good agreement with the crystallographic structure of Tsg101-UEV domain, can therefore be used for further NMR studies, including protein-protein interaction studies and drug discovery.
Collapse
Affiliation(s)
- Danai Moschidi
- CNRS EMR9002 Integrative Structural Biology, F-59000, Lille, France
| | | | - Emmanuelle Boll
- CNRS EMR9002 Integrative Structural Biology, F-59000, Lille, France
| | - Xavier Hanoulle
- CNRS EMR9002 Integrative Structural Biology, F-59000, Lille, France.
- Determinants of Aging-Related Diseases, Univ. Lille, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular, F-59000, Inserm, Lille, France.
| |
Collapse
|
11
|
Bishop AC, Torres-Montalvo G, Kotaru S, Mimun K, Wand AJ. Robust automated backbone triple resonance NMR assignments of proteins using Bayesian-based simulated annealing. Nat Commun 2023; 14:1556. [PMID: 36944645 PMCID: PMC10030768 DOI: 10.1038/s41467-023-37219-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
Assignment of resonances of nuclear magnetic resonance (NMR) spectra to specific atoms within a protein remains a labor-intensive and challenging task. Automation of the assignment process often remains a bottleneck in the exploitation of solution NMR spectroscopy for the study of protein structure-dynamics-function relationships. We present an approach to the assignment of backbone triple resonance spectra of proteins. A Bayesian statistical analysis of predicted and observed chemical shifts is used in conjunction with inter-spin connectivities provided by triple resonance spectroscopy to calculate a pseudo-energy potential that drives a simulated annealing search for the most optimal set of resonance assignments. Termed Bayesian Assisted Assignments by Simulated Annealing (BARASA), a C++ program implementation is tested against systems ranging in size to over 450 amino acids including examples of intrinsically disordered proteins. BARASA is fast, robust, accommodates incomplete and incorrect information, and outperforms current algorithms - especially in cases of sparse data and is sufficiently fast to allow for real-time evaluation during data acquisition.
Collapse
Affiliation(s)
- Anthony C Bishop
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Glorisé Torres-Montalvo
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Sravya Kotaru
- Graduate Group in Biochemistry & Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19014, USA
| | - Kyle Mimun
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - A Joshua Wand
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, 77843, USA.
- Graduate Group in Biochemistry & Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19014, USA.
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA.
- Department of Molecular & Cellular Medicine, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
12
|
Nguyen H, Jing T, Wang X. The Q163C/Q309C mutant of αMI-domain is an active variant suitable for NMR characterization. PLoS One 2023; 18:e0280778. [PMID: 36696377 PMCID: PMC9876370 DOI: 10.1371/journal.pone.0280778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Integrin αMβ2 (Mac-1, CD11b/CD18, CR3) is an important adhesion receptor expressed on monocytes. Mac-1 is responsible for mediating cell migration, phagocytosis, degranulation as well as cell-cell fusion. It is also the most promiscuous integrin in terms of ligand specificity with over 100 ligands, most of which use the αMI-domain as their binding site. Despite the importance of αMI-domain in defining ligand interactions of Mac-1, structural studies of αMI-domain's interactions with ligands are lacking. In particular, solution NMR studies of αMI-domain's interaction with ligands have not been possible because the most commonly used active αMI-domain mutants (I316G and ΔK315) are not sufficiently stable and soluble to be used in solution NMR. The goal of this study is to identify an αMI-domain active mutant that's amenable to NMR characterization. By screening known activating mutations of αMI-domain, we determined that the Q163C/Q309C mutant, which converts the αMI-domain into its active form through the formation of an intramolecular disulfide bond, can be produced with a high yield and is more stable than other active mutants. In addition, the Q163C/Q309C mutant has better NMR spectral quality than other active mutants and its affinity for ligands is comparable to other active mutants. Analysis of the Co2+-induced pseudocontact shifts in the Q163C/Q309C mutant showed the structure of the mutant is consistent with the active conformation. Finally, we show that the minor fraction of the Q163C/Q309C mutant without the disulfide bond can be removed through the use of carboxymethyl sepharose chromatography. We think the availability of this mutant for NMR study will significantly enhance structural characterizations of αMI-domain-ligand interactions.
Collapse
Affiliation(s)
- Hoa Nguyen
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Tianwei Jing
- Biosensing Instrument Inc., Tempe, Arizona, United States of America
| | - Xu Wang
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
13
|
Zerio CJ, Sivinski J, Wijeratne EMK, Xu YM, Ngo DT, Ambrose AJ, Villa-Celis L, Ghadirian N, Clarkson MW, Zhang DD, Horton NC, Gunatilaka AAL, Fromme R, Chapman E. Physachenolide C is a Potent, Selective BET Inhibitor. J Med Chem 2023; 66:913-933. [PMID: 36577036 DOI: 10.1021/acs.jmedchem.2c01770] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A pulldown using a biotinylated natural product of interest in the 17β-hydroxywithanolide (17-BHW) class, physachenolide C (PCC), identified the bromodomain and extra-terminal domain (BET) family of proteins (BRD2, BRD3, and BRD4), readers of acetyl-lysine modifications and regulators of gene transcription, as potential cellular targets. BROMOscan bromodomain profiling and biochemical assays support PCC as a BET inhibitor with increased selectivity for bromodomain (BD)-1 of BRD3 and BRD4, and X-ray crystallography and NMR studies uncovered specific contacts that underlie the potency and selectivity of PCC toward BRD3-BD1 over BRD3-BD2. PCC also displays characteristics of a molecular glue, facilitating proteasome-mediated degradation of BRD3 and BRD4. Finally, PCC is more potent than other withanolide analogues and gold-standard pan-BET inhibitor (+)-JQ1 in cytotoxicity assays across five prostate cancer (PC) cell lines regardless of androgen receptor (AR)-signaling status.
Collapse
Affiliation(s)
- Christopher J Zerio
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| | - Jared Sivinski
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| | - E M Kithsiri Wijeratne
- College of Agriculture and Life Sciences, School of Natural Resources and the Environment, Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Ya-Ming Xu
- College of Agriculture and Life Sciences, School of Natural Resources and the Environment, Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Duc T Ngo
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| | - Andrew J Ambrose
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| | - Luis Villa-Celis
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| | - Niloofar Ghadirian
- Department of Molecular and Cellular Biology, University of Arizona, 1007 E. Lowell Street, Tucson, Arizona 85721, United States
| | - Michael W Clarkson
- Department of Chemistry and Biochemistry, University of Arizona, 1041 E. Lowell Street, Tucson, Arizona 85719, United States
| | - Donna D Zhang
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| | - Nancy C Horton
- Department of Molecular and Cellular Biology, University of Arizona, 1007 E. Lowell Street, Tucson, Arizona 85721, United States
| | - A A Leslie Gunatilaka
- College of Agriculture and Life Sciences, School of Natural Resources and the Environment, Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Raimund Fromme
- School of Molecular Sciences, Biodesign Institute, Arizona State University, 1001 S. McAllister Avenue, Tempe, Arizona 85287, United States
| | - Eli Chapman
- College of Pharmacy, Department of Pharmacology and Toxicology, University of Arizona, 1703 E. Mabel Street, PO Box 210207, Tucson, Arizona 85721, United States
| |
Collapse
|
14
|
Kishimoto H, Azai C, Yamamoto T, Mutoh R, Nakaniwa T, Tanaka H, Miyanoiri Y, Kurisu G, Oh-oka H. Soluble domains of cytochrome c-556 and Rieske iron-sulfur protein from Chlorobaculum tepidum: Crystal structures and interaction analysis. Curr Res Struct Biol 2023; 5:100101. [PMID: 37180033 PMCID: PMC10172866 DOI: 10.1016/j.crstbi.2023.100101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
In photosynthetic green sulfur bacteria, the electron transfer reaction from menaquinol:cytochrome c oxidoreductase to the P840 reaction center (RC) complex occurs directly without any involvement of soluble electron carrier protein(s). X-ray crystallography has determined the three-dimensional structures of the soluble domains of the CT0073 gene product and Rieske iron-sulfur protein (ISP). The former is a mono-heme cytochrome c with an α-absorption peak at 556 nm. The overall fold of the soluble domain of cytochrome c-556 (designated as cyt c-556sol) consists of four α-helices and is very similar to that of water-soluble cyt c-554 that independently functions as an electron donor to the P840 RC complex. However, the latter's remarkably long and flexible loop between the α3 and α4 helices seems to make it impossible to be a substitute for the former. The structure of the soluble domain of the Rieske ISP (Rieskesol protein) shows a typical β-sheets-dominated fold with a small cluster-binding and a large subdomain. The architecture of the Rieskesol protein is bilobal and belongs to those of b6f-type Rieske ISPs. Nuclear magnetic resonance (NMR) measurements revealed weak non-polar but specific interaction sites on Rieskesol protein when mixed with cyt c-556sol. Therefore, menaquinol:cytochrome c oxidoreductase in green sulfur bacteria features a Rieske/cytb complex tightly associated with membrane-anchored cyt c-556.
Collapse
Affiliation(s)
- Hiraku Kishimoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Chihiro Azai
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Tomoya Yamamoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Risa Mutoh
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tetsuko Nakaniwa
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hideaki Tanaka
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yohei Miyanoiri
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
- Corresponding author.
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
- Corresponding author.
| | - Hirozo Oh-oka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
- Center for Education in Liberal Arts and Sciences, Osaka University, Toyonaka, Osaka, 560-0043, Japan
- Corresponding author. Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan.
| |
Collapse
|
15
|
Williams RV, Rogals MJ, Eletsky A, Huang C, Morris LC, Moremen KW, Prestegard JH. AssignSLP_GUI, a software tool exploiting AI for NMR resonance assignment of sparsely labeled proteins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 345:107336. [PMID: 36442299 PMCID: PMC9742323 DOI: 10.1016/j.jmr.2022.107336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 05/06/2023]
Abstract
Not all proteins are amenable to uniform isotopic labeling with 13C and 15N, something needed for the widely used, and largely deductive, triple resonance assignment process. Among them are proteins expressed in mammalian cell culture where native glycosylation can be maintained, and proper formation of disulfide bonds facilitated. Uniform labeling in mammalian cells is prohibitively expensive, but sparse labeling with one or a few isotopically enriched amino acid types is an option for these proteins. However, assignment then relies on accessing the best match between a variety of measured NMR parameters and predictions based on 3D structure, often from X-ray crystallography. Finding this match is a challenging process that has benefitted from many computational tools, including trained neural nets for chemical shift prediction, genetic algorithms for searches through a myriad of assignment possibilities, and now AI-based prediction of high-quality structures for protein targets. AssignSLP_GUI, a new version of a software package for assignment of resonances from sparsely-labeled proteins, uses many of these tools. These tools and new additions to the package are highlighted in an application to a sparsely-labeled domain from a glycoprotein, CEACAM1.
Collapse
Affiliation(s)
- Robert V Williams
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Monique J Rogals
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Alexander Eletsky
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Chin Huang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Laura C Morris
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - James H Prestegard
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
16
|
Penumutchu S, Liu J, Singh UK, Kutateladze TG, Zhang Y. Protocol to identify drug-binding sites in proteins using solution NMR spectroscopy. STAR Protoc 2022; 3:101842. [PMID: 36595882 PMCID: PMC9667315 DOI: 10.1016/j.xpro.2022.101842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/18/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022] Open
Abstract
Dusquetide is a next-generation IDR (innate defense regulator) targeting the major autophagy receptor protein SQSTM1/p62 and modulating the innate immune response. Here, we describe a protocol for determining dusquetide-binding sites of p62 by solution NMR spectroscopy. Step-by-step technique details were provided, including sample preparation, NMR experiment setup, data processing, and binding site analysis. This protocol could be applied to characterize other small molecules targeting the ZZ domain of p62 (9 kDa) or other proteins containing ZZ domains. For complete details on the use and execution of this protocol, please refer to Zhang et al. (2022).
Collapse
Affiliation(s)
- Srinivasa Penumutchu
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jiuyang Liu
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Upendra K Singh
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Tatiana G Kutateladze
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Yi Zhang
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA; Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
17
|
Rapid protein assignments and structures from raw NMR spectra with the deep learning technique ARTINA. Nat Commun 2022; 13:6151. [PMID: 36257955 PMCID: PMC9579175 DOI: 10.1038/s41467-022-33879-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Nuclear Magnetic Resonance (NMR) spectroscopy is a major technique in structural biology with over 11,800 protein structures deposited in the Protein Data Bank. NMR can elucidate structures and dynamics of small and medium size proteins in solution, living cells, and solids, but has been limited by the tedious data analysis process. It typically requires weeks or months of manual work of a trained expert to turn NMR measurements into a protein structure. Automation of this process is an open problem, formulated in the field over 30 years ago. We present a solution to this challenge that enables the completely automated analysis of protein NMR data within hours after completing the measurements. Using only NMR spectra and the protein sequence as input, our machine learning-based method, ARTINA, delivers signal positions, resonance assignments, and structures strictly without human intervention. Tested on a 100-protein benchmark comprising 1329 multidimensional NMR spectra, ARTINA demonstrated its ability to solve structures with 1.44 Å median RMSD to the PDB reference and to identify 91.36% correct NMR resonance assignments. ARTINA can be used by non-experts, reducing the effort for a protein assignment or structure determination by NMR essentially to the preparation of the sample and the spectra measurements.
Collapse
|
18
|
Ghasriani H, Ahmadi S, Hodgson DJ, Aubin Y. Backbone and side-chain resonance assignments of the NISTmAb-scFv and antigen-binding study. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:391-398. [PMID: 36083574 PMCID: PMC9510101 DOI: 10.1007/s12104-022-10109-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/31/2022] [Indexed: 06/02/2023]
Abstract
Monoclonal antibodies (mAbs) therapeutics are the largest and fastest growing class of biologic drugs, amongst which, the vast majority are immunoglobulin G1 (IgG1). Their antigen binding abilities are used for the treatment of immunologic diseases, cancer therapy, reversal of drug effects, and targeting viruses and bacteria. The high importance of therapeutic mAbs and their derivatives has called for the generation of well-characterized standards for method development and calibration. One such standard, the NISTmAb RM 8621 based on the antibody motavizumab, has been developed by the National Institute of Standards and Technologies (NIST) in the US. Here, we present the resonance assignment of the single chain variable fragment, NISTmAb-scFv, that was engineered by linking the variable domains of the heavy and light chains of the NISTmAb. Also, addition of a peptide, corresponding to the target antigen of motavizumab, to samples of NISTmAb-scFv has induced chemical shift perturbations on residues lining the antigen binding interface thereby indicating proper folding of the NISTmAb-scFv.
Collapse
Affiliation(s)
- Houman Ghasriani
- Centre for Oncology, Radiopharmaceuticals and Research, Biologics and Radiotherapeutic Drugs Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Sara Ahmadi
- Centre for Oncology, Radiopharmaceuticals and Research, Biologics and Radiotherapeutic Drugs Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Derek J Hodgson
- Centre for Oncology, Radiopharmaceuticals and Research, Biologics and Radiotherapeutic Drugs Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Yves Aubin
- Centre for Oncology, Radiopharmaceuticals and Research, Biologics and Radiotherapeutic Drugs Directorate, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
- Department of Chemistry, Carleton University, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
19
|
Dwarasala A, Rahimi M, Markley JL, Lee W. ssPINE: Probabilistic Algorithm for Automated Chemical Shift Assignment of Solid-State NMR Data from Complex Protein Systems. MEMBRANES 2022; 12:834. [PMID: 36135853 PMCID: PMC9503581 DOI: 10.3390/membranes12090834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
The heightened dipolar interactions in solids render solid-state NMR (ssNMR) spectra more difficult to interpret than solution NMR spectra. On the other hand, ssNMR does not suffer from severe molecular weight limitations like solution NMR. In recent years, ssNMR has undergone rapid technological developments that have enabled structure-function studies of increasingly larger biomolecules, including membrane proteins. Current methodology includes stable isotope labeling schemes, non-uniform sampling with spectral reconstruction, faster magic angle spinning, and innovative pulse sequences that capture different types of interactions among spins. However, computational tools for the analysis of complex ssNMR data from membrane proteins and other challenging protein systems have lagged behind those for solution NMR. Before a structure can be determined, thousands of signals from individual types of multidimensional ssNMR spectra of samples, which may have differing isotopic composition, must be recognized, correlated, categorized, and eventually assigned to atoms in the chemical structure. To address these tedious steps, we have developed an automated algorithm for ssNMR spectra called "ssPINE". The ssPINE software accepts the sequence of the protein plus peak lists from a variety of ssNMR experiments as inputs and offers automated backbone and side-chain assignments. The alpha version of ssPINE, which we describe here, is freely available through a web submission form.
Collapse
Affiliation(s)
| | - Mehdi Rahimi
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217, USA
| | - John L. Markley
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Woonghee Lee
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217, USA
| |
Collapse
|
20
|
Gopinath T, Manu VS, Weber DK, Veglia G. PHRONESIS: a one-shot approach for sequential assignment of protein resonances by ultrafast MAS solid-state NMR spectroscopy. Chemphyschem 2022; 23:e202200127. [PMID: 35499980 PMCID: PMC9400877 DOI: 10.1002/cphc.202200127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/25/2022] [Indexed: 11/09/2022]
Abstract
Solid‐state NMR (ssNMR) spectroscopy has emerged as the method of choice to analyze the structural dynamics of fibrillar, membrane‐bound, and crystalline proteins that are recalcitrant to other structural techniques. Recently, 1H detection under fast magic angle spinning and multiple acquisition ssNMR techniques have propelled the structural analysis of complex biomacromolecules. However, data acquisition and resonance‐specific assignments remain a bottleneck for this technique. Here, we present a comprehensive multi‐acquisition experiment (PHRONESIS) that simultaneously generates up to ten 3D 1H‐detected ssNMR spectra. PHRONESIS utilizes broadband transfer and selective pulses to drive multiple independent polarization pathways. High selectivity excitation and de‐excitation of specific resonances were achieved by high‐fidelity selective pulses that were designed using a combination of an evolutionary algorithm and artificial intelligence. We demonstrated the power of this approach with microcrystalline U‐13C,15N GB1 protein, reaching 100 % of the resonance assignments using one data set of ten 3D experiments. The strategy outlined in this work opens up new avenues for implementing novel 1H‐detected multi‐acquisition ssNMR experiments to speed up and expand the application to larger biomolecular systems.
Collapse
Affiliation(s)
- T Gopinath
- University of Minnesota College of Biological Sciences, Biochemistry, Molecular Biology & Biophysics, UNITED STATES
| | - V S Manu
- University of Minnesota College of Biological Sciences, Biochemistry, Molecular Biology & Biophysics, 321 Church St SE, 55455, Minneapolis, UNITED STATES
| | - Daniel K Weber
- University of Minnesota College of Biological Sciences, Biochemistry, Molecular Biology & Biophysics, UNITED STATES
| | - Gianluigi Veglia
- University of Minnesota, Biochemistry, 321 Church Street SE, 55455, Minneapolis, UNITED STATES
| |
Collapse
|
21
|
Smith KP, Lee W, Tonelli M, Lee Y, Light SH, Cornilescu G, Chakravarthy S. Solution structure and dynamics of the mitochondrial-targeted GTPase-activating protein (GAP) VopE by an integrated NMR/SAXS approach. Protein Sci 2022; 31:e4282. [PMID: 35137487 PMCID: PMC9047041 DOI: 10.1002/pro.4282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 11/11/2022]
Abstract
The bacterial pathogen Vibrio cholerae use a type III secretion system to inject effector proteins into a host cell. Recently, a putative Toxic GTPase Activating Protein (ToxGAP) called Vibrio outer protein E (VopE) was identified as a T3SS substrate and virulence factor that affected host mitochondrial dynamics and immune response. However, biophysical and structural characterization has been absent. Here, we describe solution NMR structure of the putative GTPase-activating protein (GAP) domain (73-204) of VopE. Using size exclusion chromatography coupled with small-angle x-ray scattering and residual dipolar coupling data, we restrained the MD process to efficiently determine the overall fold and improve the quality of the output calculated structures. Comparing the structure of VopE with other ToxGAP's revealed a similar overall fold with several features unique to VopE. Specifically, the "Bulge 1," α1 helix, and noteworthy "backside linker" elements on the N-terminus are dissimilar to the other ToxGAP's. By using NMR relaxation dispersion experiments, we demonstrate that these regions undergo motions on a > 6 s-1 timescale. Based on the disposition of these mobile regions relative to the putative catalytic arginine residue, we hypothesize that the protein may undergo structural changes to bind cognate GTPases.
Collapse
Affiliation(s)
- Kyle P. Smith
- Department of Cell & Developmental BiologyNorthwestern University ChicagoIllinoisUSA
- Xilio TherapeuticsWalthamMassachusettsUSA
| | - Woonghee Lee
- Department of ChemistryUniversity of Colorado‐DenverDenverColoradoUSA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, Department of BiochemistryUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Yeongjoon Lee
- Department of ChemistryUniversity of Colorado‐DenverDenverColoradoUSA
| | - Samuel H. Light
- Department of MicrobiologyUniversity of ChicagoChicagoIllinoisUSA
| | - Gabriel Cornilescu
- Advanced Technology Research Facility, Frederick National Laboratory for Cancer ResearchLeidos Biomedical Research, Inc., National Cancer Institute, National Institutes of HealthFrederickMarylandUSA
| | | |
Collapse
|
22
|
Bukhteeva I, Hrunyk NI, Yusypovych YM, Shalovylo YI, Kovaleva V, Nesmelova IV. Structure, dynamics, and function of PsDef2 defensin from Pinus sylvestris. Structure 2022; 30:753-762.e5. [PMID: 35334207 DOI: 10.1016/j.str.2022.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 01/25/2022] [Accepted: 02/28/2022] [Indexed: 11/19/2022]
Abstract
Plant defensins demonstrate high structural stability at extreme temperatures and pH values and, in general, are non-toxic to mammalian cells. These properties make them attractive candidates for use in biotechnology and biomedicine. Knowing the structure-function relationship is desirable to guide the design of plant defensin-based applications. Thus far, the broad range of biological activities was described only for one defensin from gymnosperms, the defensin PsDef1 from Scots pine. Here, we report that closely related defensin from the same taxonomy group, PsDef2, differing from PsDef1 by six amino acids, also possesses antimicrobial, antibacterial, and insect α-amylase inhibitory activities. We also report the solution structure and dynamics properties of PsDef2 assessed using a combination of experimental nuclear magnetic resonance (NMR) techniques. Lastly, we perform a comparative analysis of PsDef2 and PsDef1 gaining a molecular-level insight into their structure-dynamics-function relationship.
Collapse
Affiliation(s)
- Irina Bukhteeva
- Department of Physics and Optical Science, University of North Carolina, Charlotte, NC 28223, USA
| | - Natalia I Hrunyk
- The Laboratory of Molecular Genetic Markers in Plants, Ukrainian National Forestry University, Lviv 79057, Ukraine
| | - Yuri M Yusypovych
- The Laboratory of Molecular Genetic Markers in Plants, Ukrainian National Forestry University, Lviv 79057, Ukraine
| | - Yulia I Shalovylo
- The Laboratory of Molecular Genetic Markers in Plants, Ukrainian National Forestry University, Lviv 79057, Ukraine
| | - Valentina Kovaleva
- The Laboratory of Molecular Genetic Markers in Plants, Ukrainian National Forestry University, Lviv 79057, Ukraine
| | - Irina V Nesmelova
- Department of Physics and Optical Science, University of North Carolina, Charlotte, NC 28223, USA.
| |
Collapse
|
23
|
Eves BJ, Gebregiworgis T, Gasmi-Seabrook GM, Kuntz DA, Privé GG, Marshall CB, Ikura M. Structures of RGL1 RAS-Association domain in complex with KRAS and the oncogenic G12V mutant. J Mol Biol 2022; 434:167527. [DOI: 10.1016/j.jmb.2022.167527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/28/2022]
|
24
|
Gibson JM, Cui H, Ali MY, Zhao X, Debler EW, Zhao J, Trybus KM, Solmaz SR, Wang C. Coil-to-α-helix transition at the Nup358-BicD2 interface activates BicD2 for dynein recruitment. eLife 2022; 11:74714. [PMID: 35229716 PMCID: PMC8956292 DOI: 10.7554/elife.74714] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Nup358, a protein of the nuclear pore complex, facilitates a nuclear positioning pathway that is essential for many biological processes, including neuromuscular and brain development. Nup358 interacts with the dynein adaptor Bicaudal D2 (BicD2), which in turn recruits the dynein machinery to position the nucleus. However, the molecular mechanisms of the Nup358/BicD2 interaction and the activation of transport remain poorly understood. Here for the first time, we show that a minimal Nup358 domain activates dynein/dynactin/BicD2 for processive motility on microtubules. Using nuclear magnetic resonance titration and chemical exchange saturation transfer, mutagenesis, and circular dichroism spectroscopy, a Nup358 α-helix encompassing residues 2162–2184 was identified, which transitioned from a random coil to an α-helical conformation upon BicD2 binding and formed the core of the Nup358-BicD2 interface. Mutations in this region of Nup358 decreased the Nup358/BicD2 interaction, resulting in decreased dynein recruitment and impaired motility. BicD2 thus recognizes Nup358 through a ‘cargo recognition α-helix,’ a structural feature that may stabilize BicD2 in its activated state and promote processive dynein motility.
Collapse
Affiliation(s)
- James M Gibson
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, United States
| | - Heying Cui
- Department of Chemistry, Binghamton University, Binghamton, United States
| | - M Yusuf Ali
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
| | - Xioaxin Zhao
- Department of Biological Sciences, Binghamton University, Binghamton, United States
| | - Erik W Debler
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, United States
| | - Jing Zhao
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, United States
| | - Kathleen M Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
| | - Sozanne R Solmaz
- Department of Chemistry, Binghamton University, Binghamton, United States
| | - Chunyu Wang
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, United States
| |
Collapse
|
25
|
Wang Y, Hu H, Yuan S, LI Y, Cao K, Sun H, Liu Y. Cuprous Ions can Disrupt Structure and Functions of the RING Finger Domain of RNF11. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00631f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper is an essential element that plays crucial roles in a variety of biological processes, while excessive copper is harmful to cells. RNF11 is a RING finger protein associated with...
Collapse
|
26
|
Manthey I, Tonelli M, II LC, Rahimi M, Markley JL, Lee W. POKY software tools encapsulating assignment strategies for solution and solid-state protein NMR data. J Struct Biol X 2022; 6:100073. [PMID: 36081577 PMCID: PMC9445392 DOI: 10.1016/j.yjsbx.2022.100073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/04/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022] Open
Abstract
New tools support efficient analysis of solution and solid-state NMR spectra of proteins. POKY integrates a powerful suite of software packages for automated assignments. The Versatile Assigner module validates assignments through probabilistic analysis. The operation of these tools is supported by on-line guidance. The performance of these tools is evaluated in reference to competing software.
NMR spectroscopy provides structural and functional information about biomolecules and their complexes. The complexity of these systems can make the NMR data difficult to interpret, particularly for newer users of NMR technology, who may have limited understanding of the tools available and how they are used. To alleviate this problem, we have created software based on standardized workflows for both solution and solid-state NMR spectroscopy of proteins. These tools assist with manual and automated peak picking and with chemical shift assignment and validation. They provide users with an optimized path through spectral analysis that can help them perform the necessary tasks more efficiently.
Collapse
Affiliation(s)
- Ira Manthey
- Department of Chemistry, and URS Scholars Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Mehdi Rahimi
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204, USA
| | - John L. Markley
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Woonghee Lee
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204, USA
- Corresponding author.
| |
Collapse
|
27
|
Marcum RD, Hsieh J, Giljen M, Justice E, Daffern N, Zhang Y, Radhakrishnan I. A Capped Tudor Domain within a Core Subunit of the Sin3L/Rpd3L Histone Deacetylase Complex Binds to Nucleic Acid G-Quadruplexes. J Biol Chem 2021; 298:101558. [PMID: 34979096 PMCID: PMC8800102 DOI: 10.1016/j.jbc.2021.101558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/04/2022] Open
Abstract
Chromatin-modifying complexes containing histone deacetylase (HDAC) activities play critical roles in the regulation of gene transcription in eukaryotes. These complexes are thought to lack intrinsic DNA-binding activity, but according to a well-established paradigm, they are recruited via protein–protein interactions by gene-specific transcription factors and posttranslational histone modifications to their sites of action on the genome. The mammalian Sin3L/Rpd3L complex, comprising more than a dozen different polypeptides, is an ancient HDAC complex found in diverse eukaryotes. The subunits of this complex harbor conserved domains and motifs of unknown structure and function. Here, we show that Sds3, a constitutively-associated subunit critical for the proper functioning of the Sin3L/Rpd3L complex, harbors a type of Tudor domain that we designate the capped Tudor domain. Unlike canonical Tudor domains that bind modified histones, the Sds3 capped Tudor domain binds to nucleic acids that can form higher-order structures such as G-quadruplexes and shares similarities with the knotted Tudor domain of the Esa1 histone acetyltransferase that was previously shown to bind single-stranded RNA. Our findings expand the range of macromolecules capable of recruiting the Sin3L/Rpd3L complex and draw attention to potentially new biological roles for this HDAC complex.
Collapse
Affiliation(s)
- Ryan Dale Marcum
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208-3500
| | - Joseph Hsieh
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208-3500
| | - Maksim Giljen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208-3500
| | - Emily Justice
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208-3500
| | - Nicolas Daffern
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208-3500
| | - Yongbo Zhang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208-3500
| | - Ishwar Radhakrishnan
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208-3500.
| |
Collapse
|
28
|
De novo protein design by deep network hallucination. Nature 2021; 600:547-552. [PMID: 34853475 DOI: 10.1038/s41586-021-04184-w] [Citation(s) in RCA: 258] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/21/2021] [Indexed: 12/25/2022]
Abstract
There has been considerable recent progress in protein structure prediction using deep neural networks to predict inter-residue distances from amino acid sequences1-3. Here we investigate whether the information captured by such networks is sufficiently rich to generate new folded proteins with sequences unrelated to those of the naturally occurring proteins used in training the models. We generate random amino acid sequences, and input them into the trRosetta structure prediction network to predict starting residue-residue distance maps, which, as expected, are quite featureless. We then carry out Monte Carlo sampling in amino acid sequence space, optimizing the contrast (Kullback-Leibler divergence) between the inter-residue distance distributions predicted by the network and background distributions averaged over all proteins. Optimization from different random starting points resulted in novel proteins spanning a wide range of sequences and predicted structures. We obtained synthetic genes encoding 129 of the network-'hallucinated' sequences, and expressed and purified the proteins in Escherichia coli; 27 of the proteins yielded monodisperse species with circular dichroism spectra consistent with the hallucinated structures. We determined the three-dimensional structures of three of the hallucinated proteins, two by X-ray crystallography and one by NMR, and these closely matched the hallucinated models. Thus, deep networks trained to predict native protein structures from their sequences can be inverted to design new proteins, and such networks and methods should contribute alongside traditional physics-based models to the de novo design of proteins with new functions.
Collapse
|
29
|
Roy S, Boral S, Maiti S, Kushwaha T, Basak AJ, Lee W, Basak A, Gholap SL, Inampudi KK, De S. Structural and dynamic studies of the human RNA binding protein RBM3 reveals the molecular basis of its oligomerization and RNA recognition. FEBS J 2021; 289:2847-2864. [PMID: 34837346 DOI: 10.1111/febs.16301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 09/30/2021] [Accepted: 11/25/2021] [Indexed: 12/01/2022]
Abstract
Human RNA-binding motif 3 protein (RBM3) is a cold-shock protein which functions in various aspects of global protein synthesis, cell proliferation and apoptosis by interacting with the components of basal translational machinery. RBM3 plays important roles in tumour progression and cancer metastasis, and also has been shown to be involved in neuroprotection and endoplasmic reticulum stress response. Here, we have solved the solution NMR structure of the N-terminal 84 residue RNA recognition motif (RRM) of RBM3. The remaining residues are rich in RGG and YGG motifs and are disordered. The RRM domain adopts a βαββαβ topology, which is found in many RNA-binding proteins. NMR-monitored titration experiments and molecular dynamic simulations show that the beta-sheet and two loops form the RNA-binding interface. Hydrogen bond, pi-pi and pi-cation are the key interactions between the RNA and the RRM domain. NMR, size exclusion chromatography and chemical cross-linking experiments show that RBM3 forms oligomers in solution, which is favoured by decrease in temperature, thus, potentially linking it to its function as a cold-shock protein. Temperature-dependent NMR studies revealed that oligomerization of the RRM domain occurs via nonspecific interactions. Overall, this study provides the detailed structural analysis of RRM domain of RBM3, its interaction with RNA and the molecular basis of its temperature-dependent oligomerization.
Collapse
Affiliation(s)
- Sayantani Roy
- School of Bioscience, Indian Institute of Technology Kharagpur, India
| | - Soumendu Boral
- School of Bioscience, Indian Institute of Technology Kharagpur, India
| | - Snigdha Maiti
- School of Bioscience, Indian Institute of Technology Kharagpur, India
| | - Tushar Kushwaha
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Aditya J Basak
- School of Bioscience, Indian Institute of Technology Kharagpur, India
| | - Woonghee Lee
- Department of Chemistry, University of Colorado Denver, CO, USA
| | - Amit Basak
- School of Bioscience, Indian Institute of Technology Kharagpur, India.,Department of Chemistry, Indian Institute of Technology Kharagpur, India
| | - Shivajirao L Gholap
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, India
| | - Krishna K Inampudi
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Soumya De
- School of Bioscience, Indian Institute of Technology Kharagpur, India
| |
Collapse
|
30
|
Uhlemann EME, Lee W, Tonelli M, Dmitriev OY. At sixes and sevens: cryptic domain in the metal binding chain of the human copper transporter ATP7A. Biophys J 2021; 120:4600-4607. [PMID: 34461106 DOI: 10.1016/j.bpj.2021.08.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/27/2021] [Accepted: 08/25/2021] [Indexed: 10/20/2022] Open
Abstract
ATP7A and ATP7B are structurally similar but functionally distinct active copper transporters that regulate copper levels in the human cells and deliver copper to the biosynthetic pathways. Both proteins have a chain of six cytosolic metal-binding domains (MBDs) believed to be involved in the copper-dependent regulation of the activity and intracellular localization of these enzymes. Although all the MBDs are quite similar in structure, their spacing differs markedly between ATP7A and ATP7B. We show by NMR that the long polypeptide between MBD1 and MBD2 of ATP7A forms an additional seventh metastable domain, which we called HMA1A (heavy metal associated domain 1A). The structure of HMA1A resembles the MBDs but contains no copper-binding site. The HMA1A domain, which is unique to ATP7A, may modulate regulatory interactions between MBD1-3, contributing to the distinct functional properties of ATP7A and ATP7B.
Collapse
Affiliation(s)
- Eva-Maria E Uhlemann
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Woonghee Lee
- Department of Chemistry, University of Colorado, Denver, Colorado
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, University of Wisconsin, Madison, Wisconsin
| | - Oleg Y Dmitriev
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
31
|
Sakhrani VV, Ghosh RK, Hilario E, Weiss KL, Coates L, Mueller LJ. Toho-1 β-lactamase: backbone chemical shift assignments and changes in dynamics upon binding with avibactam. JOURNAL OF BIOMOLECULAR NMR 2021; 75:303-318. [PMID: 34218390 PMCID: PMC9122098 DOI: 10.1007/s10858-021-00375-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Backbone chemical shift assignments for the Toho-1 β-lactamase (263 amino acids, 28.9 kDa) are reported based on triple resonance solution-state NMR experiments performed on a uniformly 2H,13C,15N-labeled sample. These assignments allow for subsequent site-specific characterization at the chemical, structural, and dynamical levels. At the chemical level, titration with the non-β-lactam β-lactamase inhibitor avibactam is found to give chemical shift perturbations indicative of tight covalent binding that allow for mapping of the inhibitor binding site. At the structural level, protein secondary structure is predicted based on the backbone chemical shifts and protein residue sequence using TALOS-N and found to agree well with structural characterization from X-ray crystallography. At the dynamical level, model-free analysis of 15N relaxation data at a single field of 16.4 T reveals well-ordered structures for the ligand-free and avibactam-bound enzymes with generalized order parameters of ~ 0.85. Complementary relaxation dispersion experiments indicate that there is an escalation in motions on the millisecond timescale in the vicinity of the active site upon substrate binding. The combination of high rigidity on short timescales and active site flexibility on longer timescales is consistent with hypotheses for achieving both high catalytic efficiency and broad substrate specificity: the induced active site dynamics allows variously sized substrates to be accommodated and increases the probability that the optimal conformation for catalysis will be sampled.
Collapse
Affiliation(s)
- Varun V Sakhrani
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Rittik K Ghosh
- Department of Biochemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Eduardo Hilario
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Kevin L Weiss
- Neutron Scattering Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA
| | - Leighton Coates
- Second Target Station, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA.
| | - Leonard J Mueller
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
32
|
Evaluation of Multi-Objective Optimization Algorithms for NMR Chemical Shift Assignment. Molecules 2021; 26:molecules26123699. [PMID: 34204416 PMCID: PMC8235258 DOI: 10.3390/molecules26123699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
An automated NMR chemical shift assignment algorithm was developed using multi-objective optimization techniques. The problem is modeled as a combinatorial optimization problem and its objective parameters are defined separately in different score functions. Some of the heuristic approaches of evolutionary optimization are employed in this problem model. Both, a conventional genetic algorithm and multi-objective methods, i.e., the non-dominated sorting genetic algorithms II and III (NSGA2 and NSGA3), are applied to the problem. The multi-objective approaches consider each objective parameter separately, whereas the genetic algorithm followed a conventional way, where all objectives are combined in one score function. Several improvement steps and repetitions on these algorithms are performed and their combinations are also created as a hyper-heuristic approach to the problem. Additionally, a hill-climbing algorithm is also applied after the evolutionary algorithm steps. The algorithms are tested on several different datasets with a set of 11 commonly used spectra. The test results showed that our algorithm could assign both sidechain and backbone atoms fully automatically without any manual interactions. Our approaches could provide around a 65% success rate and could assign some of the atoms that could not be assigned by other methods.
Collapse
|
33
|
Shao H, Boulton S, Olivieri C, Mohamed H, Akimoto M, Subrahmanian MV, Veglia G, Markley JL, Melacini G, Lee W. CHESPA/CHESCA-SPARKY: automated NMR data analysis plugins for SPARKY to map protein allostery. Bioinformatics 2021; 37:1176-1177. [PMID: 32926121 DOI: 10.1093/bioinformatics/btaa781] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/02/2020] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Correlated Nuclear Magnetic Resonance (NMR) chemical shift changes identified through the CHEmical Shift Projection Analysis (CHESPA) and CHEmical Shift Covariance Analysis (CHESCA) reveal pathways of allosteric transitions in biological macromolecules. To address the need for an automated platform that implements CHESPA and CHESCA and integrates them with other NMR analysis software packages, we introduce here integrated plugins for NMRFAM-SPARKY that implement the seamless detection and visualization of allosteric networks. AVAILABILITY AND IMPLEMENTATION CHESCA-SPARKY and CHESPA-SPARKY are available in the latest version of NMRFAM-SPARKY from the National Magnetic Resonance Facility at Madison (http://pine.nmrfam.wisc.edu/download_packages.html), the NMRbox Project (https://nmrbox.org) and to subscribers to the SBGrid (https://sbgrid.org). The assigned spectra involved in this study and tutorial videos using this dataset are available at https://sites.google.com/view/chescachespa-sparky. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics Online.
Collapse
Affiliation(s)
- Hongzhao Shao
- Department of Chemistry and Chemical Biology, Hamilton, ON L8S 4L8, Canada
| | - Stephen Boulton
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Cristina Olivieri
- Department of Biochemistry, Molecular Biology and Biophysics, Minneapolis, MN 55455, USA
| | - Hebatallah Mohamed
- Department of Chemistry and Chemical Biology, Hamilton, ON L8S 4L8, Canada
| | - Madoka Akimoto
- Department of Chemistry and Chemical Biology, Hamilton, ON L8S 4L8, Canada
| | | | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology and Biophysics, Minneapolis, MN 55455, USA.,Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - John L Markley
- Biochemistry Department, National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53717, USA
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, Hamilton, ON L8S 4L8, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Woonghee Lee
- Biochemistry Department, National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI 53717, USA.,Department of Chemistry, University of Colorado Denver, Denver, CO 80217, USA
| |
Collapse
|
34
|
Salvi N, Bessa LM, Guseva S, Camacho-Zarco A, Maurin D, Perez LM, Malki A, Hengesbach M, Korn SM, Schlundt A, Schwalbe H, Blackledge M. 1H, 13C and 15N backbone chemical shift assignments of SARS-CoV-2 nsp3a. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:173-176. [PMID: 33475934 PMCID: PMC7819138 DOI: 10.1007/s12104-020-10001-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/24/2020] [Indexed: 05/25/2023]
Abstract
The non-structural protein nsp3 from SARS-CoV-2 plays an essential role in the viral replication transcription complex. Nsp3a constitutes the N-terminal domain of nsp3, comprising a ubiquitin-like folded domain and a disordered acidic chain. This region of nsp3a has been linked to interactions with the viral nucleoprotein and the structure of double membrane vesicles. Here, we report the backbone resonance assignment of both domains of nsp3a. The study is carried out in the context of the international covid19-nmr consortium, which aims to characterize SARS-CoV-2 proteins and RNAs, providing for example NMR chemical shift assignments of the different viral components. Our assignment will provide the basis for the identification of inhibitors and further functional and interaction studies of this essential protein.
Collapse
Affiliation(s)
- Nicola Salvi
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000, Grenoble, France
| | | | - Serafima Guseva
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000, Grenoble, France
| | | | - Damien Maurin
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000, Grenoble, France
| | | | - Anas Malki
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000, Grenoble, France
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Sophie Marianne Korn
- Institute for Molecular Biosciences, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Andreas Schlundt
- Institute for Molecular Biosciences, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, 60438, Frankfurt, Germany
| | | |
Collapse
|
35
|
Yang MJ, Lee W, Park CJ. Resonance assignments and secondary structure of thermophile single-stranded DNA binding protein from Sulfolobus solfataricus at 323K. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:159-164. [PMID: 33405014 DOI: 10.1007/s12104-020-09999-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Single-stranded DNA (ssDNA)-binding proteins (SSBs) are essential for DNA replication, recombination, and repair processes in all organisms. Sulfolobus solfataricus (S. solfataricus), a hyperthermophilic species, overexpresses its SSB (S. solfataricus SSB (SsoSSB)) to protect ssDNA during DNA metabolisms. Even though the crystal structure of apo SsoSSB and its ssDNA-bound solution structure have been reported at room temperature, structural information at high temperature is not yet available. To find out how SsoSSB maintains its structure and ssDNA binding affinity at high temperatures, we performed multidimensional NMR experiments for SsoSSB at 323K. In this study, we present the backbone and side chain chemical shifts and predict the secondary structure of SsoSSB from the chemical shifts. We found that SsoSSB is ordered, even at high temperatures, and has the same fold at high temperature as at room temperature. Our data will help improve structural analyses and our understanding of the features of thermophilic proteins.
Collapse
Affiliation(s)
- Min June Yang
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea
| | - Woonghee Lee
- Department of Chemistry, University of Colorado Denver, Denver, CO, 80217-3364, USA.
| | - Chin-Ju Park
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju, 61005, Korea.
| |
Collapse
|
36
|
Tonelli M, Rienstra C, Anderson TK, Kirchdoerfer R, Henzler-Wildman K. 1H, 13C, and 15N backbone and side chain chemical shift assignments of the SARS-CoV-2 non-structural protein 7. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:73-77. [PMID: 33219414 PMCID: PMC7678775 DOI: 10.1007/s12104-020-09985-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
The SARS-CoV-2 genome encodes for approximately 30 proteins. Within the international project covid19-nmr, we distribute the spectroscopic analysis of the viral proteins and RNA. Here, we report NMR chemical shift assignments for the protein nsp7. The 83 amino acid nsp7 protein is an essential cofactor in the RNA-dependent RNA polymerase. The polymerase activity and processivity of nsp12 are greatly enhanced by binding 1 copy of nsp7 and 2 copies of nsp8 to form a 160 kD complex. A separate hexadecameric complex of nsp7 and nsp8 (8 copies of each) forms a large ring-like structure. Thus, nsp7 is an important component of several large protein complexes that are required for replication of the large and complex coronavirus genome. We here report the near-complete NMR backbone and sidechain resonance assignment (1H,13C,15N) of isolated nsp7 from SARS-CoV-2 in solution. Further, we derive the secondary structure and compare it to the previously reported assignments and structure of the SARS-CoV nsp7.
Collapse
Affiliation(s)
- Marco Tonelli
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin at Madison, Madison, WI, 53706, USA
| | - Chad Rienstra
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin at Madison, Madison, WI, 53706, USA
- Department of Biochemistry, University of Wisconsin at Madison, Madison, WI, 53706, USA
| | - Thomas K Anderson
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin at Madison, Madison, WI, 53706, USA
- Institute for Molecular Virology, University of Wisconsin at Madison, Madison, WI, 53706, USA
| | - Rob Kirchdoerfer
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin at Madison, Madison, WI, 53706, USA
- Institute for Molecular Virology, University of Wisconsin at Madison, Madison, WI, 53706, USA
| | - Katherine Henzler-Wildman
- National Magnetic Resonance Facility at Madison (NMRFAM), University of Wisconsin at Madison, Madison, WI, 53706, USA.
- Department of Biochemistry, University of Wisconsin at Madison, Madison, WI, 53706, USA.
| |
Collapse
|
37
|
Kesarwani S, Lama P, Chandra A, Reddy PP, Jijumon AS, Bodakuntla S, Rao BM, Janke C, Das R, Sirajuddin M. Genetically encoded live-cell sensor for tyrosinated microtubules. J Cell Biol 2021; 219:152071. [PMID: 32886100 PMCID: PMC7659708 DOI: 10.1083/jcb.201912107] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/16/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022] Open
Abstract
Microtubule cytoskeleton exists in various biochemical forms in different cells due to tubulin posttranslational modifications (PTMs). Tubulin PTMs are known to affect microtubule stability, dynamics, and interaction with MAPs and motors in a specific manner, widely known as tubulin code hypothesis. At present, there exists no tool that can specifically mark tubulin PTMs in living cells, thus severely limiting our understanding of their dynamics and cellular functions. Using a yeast display library, we identified a binder against terminal tyrosine of α-tubulin, a unique PTM site. Extensive characterization validates the robustness and nonperturbing nature of our binder as tyrosination sensor, a live-cell tubulin nanobody specific towards tyrosinated microtubules. Using this sensor, we followed nocodazole-, colchicine-, and vincristine-induced depolymerization events of tyrosinated microtubules in real time and found each distinctly perturbs the microtubule polymer. Together, our work describes a novel tyrosination sensor and its potential applications to study the dynamics of microtubule and their PTM processes in living cells.
Collapse
Affiliation(s)
- Shubham Kesarwani
- Centre for Cardiovascular Biology and Diseases, Institute for Stem Cell Science and Regenerative Medicine, Gandhi Krishi Vigyan Kendra Campus, Bangalore, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Prakash Lama
- Centre for Cardiovascular Biology and Diseases, Institute for Stem Cell Science and Regenerative Medicine, Gandhi Krishi Vigyan Kendra Campus, Bangalore, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anchal Chandra
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Gandhi Krishi Vigyan Kendra Campus, Bangalore, India
| | - P Purushotam Reddy
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Gandhi Krishi Vigyan Kendra Campus, Bangalore, India
| | - A S Jijumon
- Institut Curie, Paris Sciences et Lettres University, Centre National de la Recherche Scientifique UMR3348, Orsay, France.,Université Paris Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique UMR3348, Orsay, France
| | - Satish Bodakuntla
- Institut Curie, Paris Sciences et Lettres University, Centre National de la Recherche Scientifique UMR3348, Orsay, France.,Université Paris Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique UMR3348, Orsay, France
| | - Balaji M Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC
| | - Carsten Janke
- Institut Curie, Paris Sciences et Lettres University, Centre National de la Recherche Scientifique UMR3348, Orsay, France.,Université Paris Sud, Université Paris-Saclay, Centre National de la Recherche Scientifique UMR3348, Orsay, France
| | - Ranabir Das
- National Center for Biological Sciences, Tata Institute of Fundamental Research, Gandhi Krishi Vigyan Kendra Campus, Bangalore, India
| | - Minhajuddin Sirajuddin
- Centre for Cardiovascular Biology and Diseases, Institute for Stem Cell Science and Regenerative Medicine, Gandhi Krishi Vigyan Kendra Campus, Bangalore, India
| |
Collapse
|
38
|
Lee W, Rahimi M, Lee Y, Chiu A. POKY: a software suite for multidimensional NMR and 3D structure calculation of biomolecules. Bioinformatics 2021; 37:3041-3042. [PMID: 33715003 PMCID: PMC8479676 DOI: 10.1093/bioinformatics/btab180] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/17/2021] [Accepted: 03/10/2021] [Indexed: 02/02/2023] Open
Abstract
SUMMARY The need for an efficient and cost-effective method is compelling in biomolecular NMR. To tackle this problem, we have developed the Poky suite, the revolutionized platform with boundless possibilities for advancing research and technology development in signal detection, resonance assignment, structure calculation and relaxation studies with the help of many automation and user interface tools. This software is extensible and scalable by scripting and batching as well as providing modern graphical user interfaces and a diverse range of modules right out of the box. AVAILABILITY AND IMPLEMENTATION Poky is freely available to non-commercial users at https://poky.clas.ucdenver.edu. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Woonghee Lee
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204, USA,To whom correspondence should be addressed.
| | - Mehdi Rahimi
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204, USA
| | - Yeongjoon Lee
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204, USA
| | - Abigail Chiu
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204, USA
| |
Collapse
|
39
|
Aiyer S, Swapna GVT, Ma LC, Liu G, Hao J, Chalmers G, Jacobs BC, Montelione GT, Roth MJ. A common binding motif in the ET domain of BRD3 forms polymorphic structural interfaces with host and viral proteins. Structure 2021; 29:886-898.e6. [PMID: 33592170 DOI: 10.1016/j.str.2021.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/22/2020] [Accepted: 01/21/2021] [Indexed: 12/23/2022]
Abstract
The extraterminal (ET) domain of BRD3 is conserved among BET proteins (BRD2, BRD3, BRD4), interacting with multiple host and viral protein-protein networks. Solution NMR structures of complexes formed between the BRD3 ET domain and either the 79-residue murine leukemia virus integrase (IN) C-terminal domain (IN329-408) or its 22-residue IN tail peptide (IN386-407) alone reveal similar intermolecular three-stranded β-sheet formations. 15N relaxation studies reveal a 10-residue linker region (IN379-388) tethering the SH3 domain (IN329-378) to the ET-binding motif (IN389-405):ET complex. This linker has restricted flexibility, affecting its potential range of orientations in the IN:nucleosome complex. The complex of the ET-binding peptide of the host NSD3 protein (NSD3148-184) and the BRD3 ET domain includes a similar three-stranded β-sheet interaction, but the orientation of the β hairpin is flipped compared with the two IN:ET complexes. These studies expand our understanding of molecular recognition polymorphism in complexes of ET-binding motifs with viral and host proteins.
Collapse
Affiliation(s)
- Sriram Aiyer
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - G V T Swapna
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Li-Chung Ma
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Gaohua Liu
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Jingzhou Hao
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Gordon Chalmers
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Brian C Jacobs
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Gaetano T Montelione
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Monica J Roth
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
40
|
Solution NMR Determination of the CDHR3 Rhinovirus-C Binding Domain, EC1. Viruses 2021; 13:v13020159. [PMID: 33499226 PMCID: PMC7911512 DOI: 10.3390/v13020159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/22/2022] Open
Abstract
Cadherin Related Family Member 3 (CDHR3) is the identified and required cellular receptor for all virus isolates in the rhinovirus-C species (RV-C). Cryo-EM determinations recently resolved the atomic structure of RV-C15a, and subsequently, a complex of this virus bound to CDHR3 extracellular domain 1 (EC1), the N-terminal portion of this receptor responsible for virus interactions. The EC1 binds to a hypervariable sequence footprint on the virus surface, near the 3-fold axis of icosahedral symmetry. The key contacts involve discontinuous residues from 3 viral proteins, VP1, VP2 and VP3. That single cryo-EM EC1 structure, however, could not resolve whether the virus-receptor interface was structurally adaptable to accommodate multiple virus sequences. We now report the solution NMR determination of CDHR3 EC1, showing that this protein, in fact, is mostly inflexible, particularly in the virus-binding face. The new, higher resolution dataset identifies 3 cis-Pro residues in important loop regions, where they can influence both rigidity and overall protein conformation. The data also provide clarification about the residues involved in essential calcium ion binding, and a potential CDHR3 surface groove feature that may be involved in native protein interactions with cellular partners.
Collapse
|
41
|
Chen CY, Lee W, Renhowe PA, Jung J, Montfort WR. Solution structures of the Shewanella woodyi H-NOX protein in the presence and absence of soluble guanylyl cyclase stimulator IWP-051. Protein Sci 2020; 30:448-463. [PMID: 33236796 DOI: 10.1002/pro.4005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
Heme-nitric oxide/oxygen binding (H-NOX) domains bind gaseous ligands for signal transduction in organisms spanning prokaryotic and eukaryotic kingdoms. In the bioluminescent marine bacterium Shewanella woodyi (Sw), H-NOX proteins regulate quorum sensing and biofilm formation. In higher animals, soluble guanylyl cyclase (sGC) binds nitric oxide with an H-NOX domain to induce cyclase activity and regulate vascular tone, wound healing and memory formation. sGC also binds stimulator compounds targeting cardiovascular disease. The molecular details of stimulator binding to sGC remain obscure but involve a binding pocket near an interface between H-NOX and coiled-coil domains. Here, we report the full NMR structure for CO-ligated Sw H-NOX in the presence and absence of stimulator compound IWP-051, and its backbone dynamics. Nonplanar heme geometry was retained using a semi-empirical quantum potential energy approach. Although IWP-051 binding is weak, a single binding conformation was found at the interface of the two H-NOX subdomains, near but not overlapping with sites identified in sGC. Binding leads to rotation of the subdomains and closure of the binding pocket. Backbone dynamics are similar across both domains except for two helix-connecting loops, which display increased dynamics that are further enhanced by compound binding. Structure-based sequence analyses indicate high sequence diversity in the binding pocket, but the pocket itself appears conserved among H-NOX proteins. The largest dynamical loop lies at the interface between Sw H-NOX and its binding partner as well as in the interface with the coiled coil in sGC, suggesting a critical role for the loop in signal transduction.
Collapse
Affiliation(s)
- Cheng-Yu Chen
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| | - Woonghee Lee
- National Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Chemistry, University of Colorado Denver, Denver, Colorado, USA
| | | | - Joon Jung
- Cyclerion Therapeutics, Cambridge, Massachusetts, USA
| | - William R Montfort
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
42
|
Dinesh DC, Chalupska D, Silhan J, Koutna E, Nencka R, Veverka V, Boura E. Structural basis of RNA recognition by the SARS-CoV-2 nucleocapsid phosphoprotein. PLoS Pathog 2020; 16:e1009100. [PMID: 33264373 PMCID: PMC7735635 DOI: 10.1371/journal.ppat.1009100] [Citation(s) in RCA: 184] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/14/2020] [Accepted: 10/27/2020] [Indexed: 12/14/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19). SARS-CoV-2 is a single-stranded positive-sense RNA virus. Like other coronaviruses, SARS-CoV-2 has an unusually large genome that encodes four structural proteins and sixteen nonstructural proteins. The structural nucleocapsid phosphoprotein N is essential for linking the viral genome to the viral membrane. Both N-terminal RNA binding (N-NTD) and C-terminal dimerization domains are involved in capturing the RNA genome and, the intrinsically disordered region between these domains anchors the ribonucleoprotein complex to the viral membrane. Here, we characterized the structure of the N-NTD and its interaction with RNA using NMR spectroscopy. We observed a positively charged canyon on the surface of the N-NTD that might serve as a putative RNA binding site similarly to other coronaviruses. The subsequent NMR titrations using single-stranded and double-stranded RNA revealed a much more extensive U-shaped RNA-binding cleft lined with regularly distributed arginines and lysines. The NMR data supported by mutational analysis allowed us to construct hybrid atomic models of the N-NTD/RNA complex that provided detailed insight into RNA recognition.
Collapse
Affiliation(s)
| | - Dominika Chalupska
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Silhan
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eliska Koutna
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vaclav Veverka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
43
|
Dinesh DC, Chalupska D, Silhan J, Koutna E, Nencka R, Veverka V, Boura E. Structural basis of RNA recognition by the SARS-CoV-2 nucleocapsid phosphoprotein. PLoS Pathog 2020. [PMID: 33264373 DOI: 10.1101/2020.04.02.022194] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19). SARS-CoV-2 is a single-stranded positive-sense RNA virus. Like other coronaviruses, SARS-CoV-2 has an unusually large genome that encodes four structural proteins and sixteen nonstructural proteins. The structural nucleocapsid phosphoprotein N is essential for linking the viral genome to the viral membrane. Both N-terminal RNA binding (N-NTD) and C-terminal dimerization domains are involved in capturing the RNA genome and, the intrinsically disordered region between these domains anchors the ribonucleoprotein complex to the viral membrane. Here, we characterized the structure of the N-NTD and its interaction with RNA using NMR spectroscopy. We observed a positively charged canyon on the surface of the N-NTD that might serve as a putative RNA binding site similarly to other coronaviruses. The subsequent NMR titrations using single-stranded and double-stranded RNA revealed a much more extensive U-shaped RNA-binding cleft lined with regularly distributed arginines and lysines. The NMR data supported by mutational analysis allowed us to construct hybrid atomic models of the N-NTD/RNA complex that provided detailed insight into RNA recognition.
Collapse
Affiliation(s)
| | - Dominika Chalupska
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Silhan
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eliska Koutna
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vaclav Veverka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
44
|
Basu R, Eichhorn CD, Cheng R, Peterson RD, Feigon J. Structure of S. pombe telomerase protein Pof8 C-terminal domain is an xRRM conserved among LARP7 proteins. RNA Biol 2020; 18:1181-1192. [PMID: 33131423 DOI: 10.1080/15476286.2020.1836891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
La-related proteins 7 (LARP7) are a class of RNA chaperones that bind the 3' ends of RNA and are constitutively associated with their specific target RNAs. In metazoa, Larp7 binds to the long non-coding 7SK RNA as a core component of the 7SK RNP, a major regulator of eukaryotic transcription. In the ciliate Tetrahymena the LARP7 protein p65 is a component of telomerase, an essential ribonucleoprotein complex that maintains the telomeric DNA at eukaryotic chromosome ends. p65 is important for the ordered assembly of telomerase RNA (TER) with telomerase reverse transcriptase. Unexpectedly, Schizosaccharomyces pombe Pof8 was recently identified as a LARP7 protein and a core component of fission yeast telomerase essential for biogenesis. LARP7 proteins have a conserved N-terminal La motif and RRM1 (La module) and C-terminal RRM2 with specific RNA substrate recognition attributed to RRM2, first structurally characterized in p65 as an atypical RRM named xRRM. Here we present the X-ray crystal structure and NMR studies of S. pombe Pof8 RRM2. Sequence and structure comparison of Pof8 RRM2 to p65 and human Larp7 xRRMs reveals conserved features for RNA binding with the main variability in the length of the non-canonical helix α3. This study shows that Pof8 has conserved xRRM features, providing insight into TER recognition and the defining characteristics of the xRRM.
Collapse
Affiliation(s)
- Ritwika Basu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Catherine D Eichhorn
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Ryan Cheng
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Robert D Peterson
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Juli Feigon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| |
Collapse
|
45
|
Sakhrani VV, Hilario E, Caulkins BG, Hatcher-Skeers ME, Fan L, Dunn MF, Mueller LJ. Backbone assignments and conformational dynamics in the S. typhimurium tryptophan synthase α-subunit from solution-state NMR. JOURNAL OF BIOMOLECULAR NMR 2020; 74:341-354. [PMID: 32415580 PMCID: PMC7451264 DOI: 10.1007/s10858-020-00320-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Backbone assignments for the isolated α-subunit of Salmonella typhimurium tryptophan synthase (TS) are reported based on triple resonance solution-state NMR experiments on a uniformly 2H,13C,15N-labeled sample. From the backbone chemical shifts, secondary structure and random coil index order parameters (RCI-S2) are predicted. Titration with the 3-indole-D-glycerol 3'-phosphate analog, N-(4'-trifluoromethoxybenzenesulfonyl)-2-aminoethyl phosphate (F9), leads to chemical shift perturbations indicative of conformational changes from which an estimate of the dissociation constant is obtained. Comparisons of the backbone chemical-shifts, RCI-S2 values, and site-specific relaxation times with and without F9 reveal allosteric changes including modulation in secondary structures and loop rigidity induced upon ligand binding. A comparison is made to the X-ray crystal structure of the α-subunit in the full TS αββα bi-enzyme complex and to two new X-ray crystal structures of the isolated TS α-subunit reported in this work.
Collapse
Affiliation(s)
- Varun V Sakhrani
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Eduardo Hilario
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Bethany G Caulkins
- Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Mary E Hatcher-Skeers
- Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, 91711, USA
| | - Li Fan
- Department of Biochemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Michael F Dunn
- Department of Biochemistry, University of California Riverside, Riverside, CA, 92521, USA
| | - Leonard J Mueller
- Department of Chemistry, University of California Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
46
|
Kooijman L, Ansorge P, Schuster M, Baumann C, Löhr F, Jurt S, Güntert P, Zerbe O. Backbone and methyl assignment of bacteriorhodopsin incorporated into nanodiscs. JOURNAL OF BIOMOLECULAR NMR 2020; 74:45-60. [PMID: 31754899 PMCID: PMC7015963 DOI: 10.1007/s10858-019-00289-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/11/2019] [Indexed: 05/21/2023]
Abstract
Resonance assignments are challenging for membrane proteins due to the size of the lipid/detergent-protein complex and the presence of line-broadening from conformational exchange. As a consequence, many correlations are missing in the triple-resonance NMR experiments typically used for assignments. Herein, we present an approach in which correlations from these solution-state NMR experiments are supplemented by data from 13C unlabeling, single-amino acid type labeling, 4D NOESY data and proximity of moieties to lipids or water in combination with a structure of the protein. These additional data are used to edit the expected peaklists for the automated assignment protocol FLYA, a module of the program package CYANA. We demonstrate application of the protocol to the 262-residue proton pump from archaeal bacteriorhodopsin (bR) in lipid nanodiscs. The lipid-protein assembly is characterized by an overall correlation time of 44 ns. The protocol yielded assignments for 62% of all backbone (H, N, Cα, Cβ, C') resonances of bR, corresponding to 74% of all observed backbone spin systems, and 60% of the Ala, Met, Ile (δ1), Leu and Val methyl groups, thus enabling to assign a large fraction of the protein without mutagenesis data. Most missing resonances stem from the extracellular half, likely due intermediate exchange line-broadening. Further analysis revealed that missing information of the amino acid type of the preceding residue is the largest problem, and that 4D NOESY experiments are particularly helpful to compensate for that information loss.
Collapse
Affiliation(s)
- Laurens Kooijman
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Philipp Ansorge
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Matthias Schuster
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Christian Baumann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Simon Jurt
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Peter Güntert
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zurich, Switzerland
- Department of Chemistry, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Oliver Zerbe
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
47
|
Bortnov V, Tonelli M, Lee W, Lin Z, Annis DS, Demerdash ON, Bateman A, Mitchell JC, Ge Y, Markley JL, Mosher DF. Solution structure of human myeloid-derived growth factor suggests a conserved function in the endoplasmic reticulum. Nat Commun 2019; 10:5612. [PMID: 31819058 PMCID: PMC6901522 DOI: 10.1038/s41467-019-13577-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Human myeloid-derived growth factor (hMYDGF) is a 142-residue protein with a C-terminal endoplasmic reticulum (ER) retention sequence (ERS). Extracellular MYDGF mediates cardiac repair in mice after anoxic injury. Although homologs of hMYDGF are found in eukaryotes as distant as protozoans, its structure and function are unknown. Here we present the NMR solution structure of hMYDGF, which consists of a short α-helix and ten β-strands distributed in three β-sheets. Conserved residues map to the unstructured ERS, loops on the face opposite the ERS, and the surface of a cavity underneath the conserved loops. The only protein or portion of a protein known to have a similar fold is the base domain of VNN1. We suggest, in analogy to the tethering of the VNN1 nitrilase domain to the plasma membrane via its base domain, that MYDGF complexed to the KDEL receptor binds cargo via its conserved residues for transport to the ER.
Collapse
Affiliation(s)
- Valeriu Bortnov
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Marco Tonelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Woonghee Lee
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ziqing Lin
- Departments of Cell and Regenerative Biology and Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Douglas S Annis
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Omar N Demerdash
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Julie C Mitchell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Ying Ge
- Departments of Cell and Regenerative Biology and Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - John L Markley
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Deane F Mosher
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|