1
|
Xie ZL, Gupta N, Niklas J, Poluektov OG, Lynch VM, Glusac KD, Mulfort KL. Photochemical charge accumulation in a heteroleptic copper(i)-anthraquinone molecular dyad via proton-coupled electron transfer. Chem Sci 2023; 14:10219-10235. [PMID: 37772110 PMCID: PMC10529959 DOI: 10.1039/d3sc03428c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023] Open
Abstract
Developing efficient photocatalysts that perform multi electron redox reactions is critical to achieving solar energy conversion. One can reach this goal by developing systems which mimic natural photosynthesis and exploit strategies such as proton-coupled electron transfer (PCET) to achieve photochemical charge accumulation. We report herein a heteroleptic Cu(i)bis(phenanthroline) complex, Cu-AnQ, featuring a fused phenazine-anthraquinone moiety that photochemically accumulates two electrons in the anthraquinone unit via PCET. Full spectroscopic and electrochemical analyses allowed us to identify the reduced species and revealed that up to three electrons can be accumulated in the phenazine-anthraquinone ring system under electrochemical conditions. Continuous photolysis of Cu-AnQ in the presence of sacrificial electron donor produced doubly reduced monoprotonated photoproduct confirmed unambiguously by X-ray crystallography. Formation of this photoproduct indicates that a PCET process occurred during illumination and two electrons were accumulated in the system. The role of the heteroleptic Cu(i)bis(phenanthroline) moiety participating in the photochemical charge accumulation as a light absorber was evidenced by comparing the photolysis of Cu-AnQ and the free AnQ ligand with less reductive triethylamine as a sacrificial electron donor, in which photogenerated doubly reduced species was observed with Cu-AnQ, but not with the free ligand. The thermodynamic properties of Cu-AnQ were examined by DFT which mapped the probable reaction pathway for photochemical charge accumulation and the capacity for solar energy stored in the process. This study presents a unique system built on earth-abundant transition metal complex to store electrons, and tune the storage of solar energy by the degree of protonation of the electron acceptor.
Collapse
Affiliation(s)
- Zhu-Lin Xie
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
| | - Nikita Gupta
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
- Department of Chemistry, University of Illinois at Chicago USA
| | - Jens Niklas
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
| | - Oleg G Poluektov
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
| | | | - Ksenija D Glusac
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
- Department of Chemistry, University of Illinois at Chicago USA
| | - Karen L Mulfort
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
| |
Collapse
|
2
|
Wei RJ, Khaniya U, Mao J, Liu J, Batista VS, Gunner MR. Tools for analyzing protonation states and for tracing proton transfer pathways with examples from the Rb. sphaeroides photosynthetic reaction centers. PHOTOSYNTHESIS RESEARCH 2023; 156:101-112. [PMID: 36307598 DOI: 10.1007/s11120-022-00973-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Protons participate in many reactions. In proteins, protons need paths to move in and out of buried active sites. The vectorial movement of protons coupled to electron transfer reactions establishes the transmembrane electrochemical gradient used for many reactions, including ATP synthesis. Protons move through hydrogen bonded chains of waters and hydroxy side chains via the Grotthuss mechanism and by proton binding and release from acidic and basic residues. MCCE analysis shows that proteins exist in a large number of protonation states. Knowledge of the equilibrium ensemble can provide a rational basis for setting protonation states in simulations that fix them, such as molecular dynamics (MD). The proton path into the QB site in the bacterial reaction centers (RCs) of Rb. sphaeroides is analyzed by MD to provide an example of the benefits of using protonation states found by the MCCE program. A tangled web of side chains and waters link the cytoplasm to QB. MCCE analysis of snapshots from multiple trajectories shows that changing the input protonation state of a residue in MD biases the trajectory shifting the proton affinity of that residue. However, the proton affinity of some residues is more sensitive to the input structure. The proton transfer networks derived from different trajectories are quite robust. There are some changes in connectivity that are largely restricted to the specific residues whose protonation state is changed. Trajectories with QB•- are compared with earlier results obtained with QB [Wei et. al Photosynthesis Research volume 152, pages153-165 (2022)] showing only modest changes. While introducing new methods the study highlights the difficulty of establishing the connections between protein conformation.
Collapse
Affiliation(s)
- Rongmei Judy Wei
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, NY, 10016, USA
- Department of Physics, City College of New York, New York, NY, 10031, USA
| | - Umesh Khaniya
- Department of Physics, City College of New York, New York, NY, 10031, USA
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Junjun Mao
- Department of Physics, City College of New York, New York, NY, 10031, USA
| | - Jinchan Liu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - M R Gunner
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, NY, 10016, USA.
- Department of Physics, City College of New York, New York, NY, 10031, USA.
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
3
|
Prince RC, Dutton PL, Gunner MR. The aprotic electrochemistry of quinones. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148558. [PMID: 35413248 DOI: 10.1016/j.bbabio.2022.148558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 03/26/2022] [Accepted: 04/05/2022] [Indexed: 05/09/2023]
Abstract
Quinones play important roles in biological electron transfer reactions in almost all organisms, with specific roles in many physiological processes and chemotherapy. Quinones participate in two-electron, two-proton reactions in aqueous solution at equilibrium near neutral pH, but protons often lag behind the electron transfers. The relevant reactions in proteins are often sequential one electron redox processes without involving protons. Here we report the aprotic electrochemistry of the two half-couples, Q/Q.- and Q.-/Q=, of 11 parent quinones and 118 substituted 1,4-benzoquinones, 91 1,4-naphthoquinones, and 107 9,10-anthraquinones. The measured redox potentials are fit quite well with the Hammett para sigma (σpara) parameter. Occasional exceptions can involve important groups, such as methoxy substituents in ubiquinone and hydroxy substituents in therapeutics. These can generally be explained by reasonable conjectures involving steric clashes and internal hydrogen bonds. We also provide data for 25 other quinones, 2 double quinones and 15 non-quinones, all measured under similar conditions.
Collapse
Affiliation(s)
| | - P Leslie Dutton
- The Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 10104, USA
| | - M R Gunner
- Physics Department City College of New York in the City University of New York, NY 10031, USA.
| |
Collapse
|
4
|
Wei RJ, Zhang Y, Mao J, Kaur D, Khaniya U, Gunner MR. Comparison of proton transfer paths to the Q A and Q B sites of the Rb. sphaeroides photosynthetic reaction centers. PHOTOSYNTHESIS RESEARCH 2022; 152:153-165. [PMID: 35344134 DOI: 10.1007/s11120-022-00906-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The photosynthetic bacterial reaction centers from purple non-sulfur bacteria use light energy to drive the transfer of electrons from cytochrome c to ubiquinone. Ubiquinone bound in the QA site cycles between quinone, QA, and anionic semiquinone, QA·-, being reduced once and never binding protons. In the QB site, ubiquinone is reduced twice by QA·-, binds two protons and is released into the membrane as the quinol, QH2. The network of hydrogen bonds formed in a molecular dynamics trajectory was drawn to investigate proton transfer pathways from the cytoplasm to each quinone binding site. QA is isolated with no path for protons to enter from the surface. In contrast, there is a complex and tangled network requiring residues and waters that can bring protons to QB. There are three entries from clusters of surface residues centered around HisH126, GluH224, and HisH68. The network is in good agreement with earlier studies, Mutation of key nodes in the network, such as SerL223, were previously shown to slow proton delivery. Mutational studies had also shown that double mutations of residues such as AspM17 and AspL210 along multiple paths in the network presented here slow the reaction, while single mutations do not. Likewise, mutation of both HisH126 and HisH128, which are at the entry to two paths reduce the rate of proton uptake.
Collapse
Affiliation(s)
- Rongmei Judy Wei
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, NY, 10016, USA
- Department of Physics, City College of New York, New York, NY, 10031, USA
| | - Yingying Zhang
- Department of Physics, City College of New York, New York, NY, 10031, USA
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Junjun Mao
- Department of Physics, City College of New York, New York, NY, 10031, USA
| | - Divya Kaur
- Department of Chemistry, Brock University, 500 Glenridge Avenue, St. Catharines, ON, L2S 3A1, Canada
| | - Umesh Khaniya
- Department of Physics, City College of New York, New York, NY, 10031, USA
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - M R Gunner
- Ph.D. Program in Chemistry, The Graduate Center, City University of New York, New York, NY, 10016, USA.
- Department of Physics, City College of New York, New York, NY, 10031, USA.
- Ph.D. Program in Physics, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
5
|
Zhai H, Zhao J, Wang R, Yan Y, Yu S, Zhao Y. Formation of trihalomethanes and haloacetic acids from 2,6-dichloro-1,4-benzoquinone during chlorination: Decomposition kinetics, conversion rates, and pathways. CHEMOSPHERE 2022; 291:132729. [PMID: 34718017 DOI: 10.1016/j.chemosphere.2021.132729] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
As a typical aromatic disinfection byproduct (DBP), 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ) attracts much concern due to the potential toxicity. To further evaluate the role of 2,6-DCBQ as an intermediate DBP in water with or without chlorine, their decomposition characteristics and transformation potential to the regulated DBPs (i.e., trihalomethanes (THMs) and haloacetic acids (HAAs)) were investigated under different chlorine doses, pH values, temperatures, contact times, and bromide levels. The decomposition of 2,6-DCBQ under different conditions all fit apparent first-order kinetics. The hydrolysis rate constants of 2,6-DCBQ significantly increased with pH. The half-live values of 2,6-DCBQ were 108.3-568.7 h at pH 6.0-6.5, and 1.8-31.1 h at pH 7.0-8.5. During the hydrolysis of 2,6-DCBQ, there was no THMs and HAAs generated. During chlorination, 2,6-DCBQ decayed rapidly accompanied by the fast formation of trichloromethane (TCM) and the gradual generation of dichloroacetic acid and trichloroacetic acid. The molar conversion rates of 2,6-DCBQ-to-THMs (i.e., TCM) and 2,6-DCBQ-to-HAAs were 2.9-10.0% and 0.1-2.2% under different conditions. The presence of bromide increased the conversion rates of 2,6-DCBQ-to-THMs and caused the generation of brominated THMs and HAAs. According to the decomposition characteristics of 2,6-DCBQ and the formation trends of THMs and HAAs under different conditions, multiple formation pathways from 2,6-DCBQ to THMs and HAAs were proposed.
Collapse
Affiliation(s)
- Hongyan Zhai
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China.
| | - Jun Zhao
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Rumeng Wang
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Yuwei Yan
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Shanshan Yu
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Weijin Road 92, Tianjin, 300072, China
| |
Collapse
|
6
|
Kaur D, Khaniya U, Zhang Y, Gunner MR. Protein Motifs for Proton Transfers That Build the Transmembrane Proton Gradient. Front Chem 2021; 9:660954. [PMID: 34211960 PMCID: PMC8239185 DOI: 10.3389/fchem.2021.660954] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Biological membranes are barriers to polar molecules, so membrane embedded proteins control the transfers between cellular compartments. Protein controlled transport moves substrates and activates cellular signaling cascades. In addition, the electrochemical gradient across mitochondrial, bacterial and chloroplast membranes, is a key source of stored cellular energy. This is generated by electron, proton and ion transfers through proteins. The gradient is used to fuel ATP synthesis and to drive active transport. Here the mechanisms by which protons move into the buried active sites of Photosystem II (PSII), bacterial RCs (bRCs) and through the proton pumps, Bacteriorhodopsin (bR), Complex I and Cytochrome c oxidase (CcO), are reviewed. These proteins all use water filled proton transfer paths. The proton pumps, that move protons uphill from low to high concentration compartments, also utilize Proton Loading Sites (PLS), that transiently load and unload protons and gates, which block backflow of protons. PLS and gates should be synchronized so PLS proton affinity is high when the gate opens to the side with few protons and low when the path is open to the high concentration side. Proton transfer paths in the proteins we describe have different design features. Linear paths are seen with a unique entry and exit and a relatively straight path between them. Alternatively, paths can be complex with a tangle of possible routes. Likewise, PLS can be a single residue that changes protonation state or a cluster of residues with multiple charge and tautomer states.
Collapse
Affiliation(s)
- Divya Kaur
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY, United States.,Department of Physics, City College of New York, New York, NY, United States
| | - Umesh Khaniya
- Department of Physics, City College of New York, New York, NY, United States.,Department of Physics, The Graduate Center, City University of New York, New York, NY, United States
| | - Yingying Zhang
- Department of Physics, City College of New York, New York, NY, United States.,Department of Physics, The Graduate Center, City University of New York, New York, NY, United States
| | - M R Gunner
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY, United States.,Department of Physics, City College of New York, New York, NY, United States.,Department of Physics, The Graduate Center, City University of New York, New York, NY, United States
| |
Collapse
|
7
|
Zhang Y, Haider K, Kaur D, Ngo VA, Cai X, Mao J, Khaniya U, Zhu X, Noskov S, Lazaridis T, Gunner MR. Characterizing the Water Wire in the Gramicidin Channel Found by Monte Carlo Sampling Using Continuum Electrostatics and in Molecular Dynamics Trajectories with Conventional or Polarizable Force Fields. JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY 2021. [DOI: 10.1142/s2737416520420016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Water molecules play a key role in all biochemical processes. They help define the shape of proteins, and they are reactant or product in many reactions and are released as ligands are bound. They facilitate the transfer of protons through transmembrane proton channel, pump and transporter proteins. Continuum electrostatics (CE) force fields used by program Multiconformation CE (MCCE) capture electrostatic interactions in biomolecules with an implicit solvent, which captures the averaged solvent water equilibrium properties. Hybrid CE methods can use explicit water molecules within the protein surrounded by implicit solvent. These hybrid methods permit the study of explicit hydrogen bond networks within the protein and allow analysis of processes such as proton transfer reactions. Yet hybrid CE methods have not been rigorously tested. Here, we present an explicit treatment of water molecules in the Gramicidin A (gA) channel using MCCE and compare the resulting distributions of water molecules and key hydration features against those obtained with explicit solvent Molecular Dynamics (MD) simulations with the nonpolarizable CHARMM36 and polarizable Drude force fields. CHARMM36 leads to an aligned water wire in the channel characterized by a large absolute net water dipole moment; the MCCE and Drude analysis lead to a small net dipole moment as the water molecules change orientation within the channel. The correct orientation is not as yet known, so these calculations identify an open question.
Collapse
Affiliation(s)
- Yingying Zhang
- Department of Physics, City College of New York, City University of New York, New York, NY 10031, USA
- Department of Physics, The Graduate Center, City University of New York, New York, NY 10016, USA
| | - Kamran Haider
- Department of Physics, City College of New York, City University of New York, New York, NY 10031, USA
| | - Divya Kaur
- Department of Physics, City College of New York, City University of New York, New York, NY 10031, USA
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY 10016, USA
| | - Van A. Ngo
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Xiuhong Cai
- Department of Physics, City College of New York, City University of New York, New York, NY 10031, USA
- Department of Physics, The Graduate Center, City University of New York, New York, NY 10016, USA
| | - Junjun Mao
- Levich Institute, School of Engineering, City College of New York, City University of New York, New York, NY 10031, USA
| | - Umesh Khaniya
- Department of Physics, City College of New York, City University of New York, New York, NY 10031, USA
- Department of Physics, The Graduate Center, City University of New York, New York, NY 10016, USA
| | - Xuyu Zhu
- Department of Physics, City College of New York, City University of New York, New York, NY 10031, USA
- Department of Physics, The Graduate Center, City University of New York, New York, NY 10016, USA
| | - Sergei Noskov
- Department of Biological Sciences, Centre for Molecular Simulation, University of Calgary, Calgary, AB, Canada
| | - Themis Lazaridis
- Department of Chemistry, The Graduate Center, City University of New York, New York, NY 10016, USA
- Department of Chemistry, City College of New York, City University of New York, New York, NY 10031, USA
| | - M. R. Gunner
- Department of Physics, City College of New York, City University of New York, New York, NY 10031, USA
- Department of Physics, The Graduate Center, City University of New York, New York, NY 10016, USA
| |
Collapse
|
8
|
Sarewicz M, Pintscher S, Pietras R, Borek A, Bujnowicz Ł, Hanke G, Cramer WA, Finazzi G, Osyczka A. Catalytic Reactions and Energy Conservation in the Cytochrome bc1 and b6f Complexes of Energy-Transducing Membranes. Chem Rev 2021; 121:2020-2108. [PMID: 33464892 PMCID: PMC7908018 DOI: 10.1021/acs.chemrev.0c00712] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Indexed: 12/16/2022]
Abstract
This review focuses on key components of respiratory and photosynthetic energy-transduction systems: the cytochrome bc1 and b6f (Cytbc1/b6f) membranous multisubunit homodimeric complexes. These remarkable molecular machines catalyze electron transfer from membranous quinones to water-soluble electron carriers (such as cytochromes c or plastocyanin), coupling electron flow to proton translocation across the energy-transducing membrane and contributing to the generation of a transmembrane electrochemical potential gradient, which powers cellular metabolism in the majority of living organisms. Cytsbc1/b6f share many similarities but also have significant differences. While decades of research have provided extensive knowledge on these enzymes, several important aspects of their molecular mechanisms remain to be elucidated. We summarize a broad range of structural, mechanistic, and physiological aspects required for function of Cytbc1/b6f, combining textbook fundamentals with new intriguing concepts that have emerged from more recent studies. The discussion covers but is not limited to (i) mechanisms of energy-conserving bifurcation of electron pathway and energy-wasting superoxide generation at the quinol oxidation site, (ii) the mechanism by which semiquinone is stabilized at the quinone reduction site, (iii) interactions with substrates and specific inhibitors, (iv) intermonomer electron transfer and the role of a dimeric complex, and (v) higher levels of organization and regulation that involve Cytsbc1/b6f. In addressing these topics, we point out existing uncertainties and controversies, which, as suggested, will drive further research in this field.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Sebastian Pintscher
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Rafał Pietras
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Arkadiusz Borek
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Łukasz Bujnowicz
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| | - Guy Hanke
- School
of Biological and Chemical Sciences, Queen
Mary University of London, London E1 4NS, U.K.
| | - William A. Cramer
- Department
of Biological Sciences, Purdue University, West Lafayette, Indiana 47907 United States
| | - Giovanni Finazzi
- Laboratoire
de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, Centre National Recherche Scientifique,
Commissariat Energie Atomique et Energies Alternatives, Institut National
Recherche l’agriculture, l’alimentation et l’environnement, 38054 Grenoble Cedex 9, France
| | - Artur Osyczka
- Department
of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Kraków, Poland
| |
Collapse
|
9
|
Almeida RG, Valença WO, Rosa LG, de Simone CA, de Castro SL, Barbosa JMC, Pinheiro DP, Paier CRK, de Carvalho GGC, Pessoa C, Goulart MOF, Kharma A, da Silva Júnior EN. Synthesis of quinone imine and sulphur-containing compounds with antitumor and trypanocidal activities: redox and biological implications. RSC Med Chem 2020; 11:1145-1160. [PMID: 33479619 PMCID: PMC7651858 DOI: 10.1039/d0md00072h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Ortho-Quinones represent a special class of redox active compounds associated with a spectrum of pronounced biological activities, including selective cytotoxicity and antimicrobial actions. The modification of the quinone ring by simple nitrogen and sulphur substitutions leads to several new classes of compounds with their own, distinct redox behaviour and equally distinct activities against cancer cell lines and Trypanosoma cruzi. Some of the compounds investigated show activity against T. cruzi at concentrations of 24.3 and 65.6 μM with a selectivity index of around 1. These results demonstrate that simple chemical modifications on the ortho-quinone ring system, in particular, by heteroatoms such as nitrogen and sulphur, transform these simple redox molecules into powerful cytotoxic agents with considerable "potential", not only in synthesis and electrochemistry, but also, in a broader sense, in health sciences.
Collapse
Affiliation(s)
- Renata G Almeida
- Institute of Exact Sciences , Department of Chemistry , Federal University of Minas Gerais , Belo Horizonte , 31270-901 , MG , Brazil .
| | - Wagner O Valença
- Institute of Exact Sciences , Department of Chemistry , Federal University of Minas Gerais , Belo Horizonte , 31270-901 , MG , Brazil .
- Center for the Development of Chemical Technologies , State University of Mato Grosso do Sul , Naviraí , 79950-000 , MS , Brazil
| | - Luísa G Rosa
- Institute of Exact Sciences , Department of Chemistry , Federal University of Minas Gerais , Belo Horizonte , 31270-901 , MG , Brazil .
| | - Carlos A de Simone
- Department of Physics and Informatics , Institute of Physics , University of São Paulo , São Carlos , 13560-160 , SP , Brazil
| | | | | | - Daniel P Pinheiro
- Department of Physiology and Pharmacology , Federal University of Ceará , Fortaleza , CE 60430-270 , Brazil
| | - Carlos R K Paier
- Department of Physiology and Pharmacology , Federal University of Ceará , Fortaleza , CE 60430-270 , Brazil
| | - Guilherme G C de Carvalho
- Department of Physiology and Pharmacology , Federal University of Ceará , Fortaleza , CE 60430-270 , Brazil
| | - Claudia Pessoa
- Department of Physiology and Pharmacology , Federal University of Ceará , Fortaleza , CE 60430-270 , Brazil
| | - Marilia O F Goulart
- Institute of Chemistry and Biotechnology , Federal University of Alagoas , CEP 57072-970 , Maceió , AL , Brazil
| | - Ammar Kharma
- Institute of Exact Sciences , Department of Chemistry , Federal University of Minas Gerais , Belo Horizonte , 31270-901 , MG , Brazil .
- Division of Bioorganic Chemistry , School of Pharmacy , University of Saarland , D-66123 Saarbruecken , Germany
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences , Department of Chemistry , Federal University of Minas Gerais , Belo Horizonte , 31270-901 , MG , Brazil .
| |
Collapse
|
10
|
Agarwala N, Makita H, Luo L, Xu W, Hastings G. Reversible inhibition and reactivation of electron transfer in photosystem I. PHOTOSYNTHESIS RESEARCH 2020; 145:97-109. [PMID: 32447611 DOI: 10.1007/s11120-020-00760-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
In photosystem I (PSI) complexes at room temperature electron transfer from A1- to FX is an order of magnitude faster on the B-branch compared to the A-branch. One factor that might contribute to this branch asymmetry in time constants is TrpB673 (Thermosynechococcus elongatus numbering), which is located between A1B and FX. The corresponding residue on the A-branch, between A1A and FX, is GlyA693. Here, microsecond time-resolved step-scan FTIR difference spectroscopy at 77 K has been used to study isolated PSI complexes from wild type and TrpB673Phe mutant (WB673F mutant) cells from Synechocystis sp. PCC 6803. WB673F mutant cells require glucose for growth and are light sensitive. Photoaccumulated FTIR difference spectra indicate changes in amide I and II protein vibrations upon mutation of TrpB673 to Phe, indicating the protein environment near FX is altered upon mutation. In the WB673F mutant PSI samples, but not in WT PSI samples, the phylloquinone molecule that occupies the A1 binding site is likely doubly protonated following long periods of repetitive flash illumination at room temperature. PSI with (doubly) protonated quinone in the A1 binding site are not functional in electron transfer. However, electron transfer functionality can be restored by incubating the light-treated mutant PSI samples in the presence of added phylloquinone.
Collapse
Affiliation(s)
- Neva Agarwala
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, 30303, USA
| | - Hiroki Makita
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, 30303, USA
| | - Lujun Luo
- Department of Chemistry, University of Louisiana At Lafayette, Lafayette, LA, 70503, USA
| | - Wu Xu
- Department of Chemistry, University of Louisiana At Lafayette, Lafayette, LA, 70503, USA
| | - Gary Hastings
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|
11
|
Thodika M, Fennimore M, Karsili TNV, Matsika S. Comparative study of methodologies for calculating metastable states of small to medium-sized molecules. J Chem Phys 2019; 151:244104. [DOI: 10.1063/1.5134700] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Mushir Thodika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Mark Fennimore
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| | - Tolga N. V. Karsili
- Department of Chemistry, University of Louisiana, Lafayette, Louisiana 70504, USA
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
12
|
Abstract
Photosystem II (PSII), the light-driven water/plastoquinone photooxidoreductase, is of central importance in the planetary energy cycle. The product of the reaction, plastohydroquinone (PQH2), is released into the membrane from the QB site, where it is formed. A plastoquinone (PQ) from the membrane pool then binds into the QB site. Despite their functional importance, the thermodynamic properties of the PQ in the QB site, QB, in its different redox forms have received relatively little attention. Here we report the midpoint potentials (Em ) of QB in PSII from Thermosynechococcus elongatus using electron paramagnetic resonance (EPR) spectroscopy: Em QB/QB •- ≈ 90 mV, and Em QB •-/QBH2 ≈ 40 mV. These data allow the following conclusions: 1) The semiquinone, QB •-, is stabilized thermodynamically; 2) the resulting Em QB/QBH2 (∼65 mV) is lower than the Em PQ/PQH2 (∼117 mV), and the difference (ΔE ≈ 50 meV) represents the driving force for QBH2 release into the pool; 3) PQ is ∼50× more tightly bound than PQH2; and 4) the difference between the Em QB/QB •- measured here and the Em QA/QA •- from the literature is ∼234 meV, in principle corresponding to the driving force for electron transfer from QA •- to QB The pH dependence of the thermoluminescence associated with QB •- provided a functional estimate for this energy gap and gave a similar value (≥180 meV). These estimates are larger than the generally accepted value (∼70 meV), and this is discussed. The energetics of QB in PSII are comparable to those in the homologous purple bacterial reaction center.
Collapse
|
13
|
Koehn JT, Beuning CN, Peters BJ, Dellinger SK, Van Cleave C, Crick DC, Crans DC. Investigating Substrate Analogues for Mycobacterial MenJ: Truncated and Partially Saturated Menaquinones. Biochemistry 2019; 58:1596-1615. [DOI: 10.1021/acs.biochem.9b00007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Abstract
Photosystem II (PSII) uses water as the terminal electron donor, producing oxygen in the Mn4CaO5 oxygen evolving complex (OEC), while cytochrome c oxidase (CcO) reduces O2 to water in its heme–Cu binuclear center (BNC). Each protein is oriented in the membrane to add to the proton gradient. The OEC, which releases protons, is located near the P-side (positive, at low-pH) of the membrane. In contrast, the BNC is in the middle of CcO, so the protons needed for O2 reduction must be transferred from the N-side (negative, at high pH). In addition, CcO pumps protons from N- to P-side, coupled to the O2 reduction chemistry, to store additional energy. Thus, proton transfers are directly coupled to the OEC and BNC redox chemistry, as well as needed for CcO proton pumping. The simulations that study the changes in proton affinity of the redox active sites and the surrounding protein at different states of the reaction cycle, as well as the changes in hydration that modulate proton transfer paths, are described.
Collapse
|
15
|
Ptushenko VV, Krishtalik LI. Reorganization energies of the electron transfer reactions involving quinones in the reaction center of Rhodobacter sphaeroides. PHOTOSYNTHESIS RESEARCH 2018; 138:167-175. [PMID: 30022339 DOI: 10.1007/s11120-018-0560-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
In framework of the continuum electrostatics theory, the reorganization energies of the electron transfers QA--QB (fast phase), Bph--QA, P+-QA-, and P+-QB- in the photosynthetic bacterial reaction center have been calculated. The calculations were based on the static dielectric permittivity spatial distribution derived from the data on the electrogenesis, with the corresponding characteristic times relatively close to the reaction times of QA--QB (fast phase) and Bph--QA but much shorter than those times of the latter two recombination reactions. The calculated reorganization energies were reasonably close to the experimental estimates for QA--QB (fast phase) and Bph--QA but substantially lower than those of P+-QA- and P+-QB-. A higher effective dielectric permittivity contributes to this effect, but the dominant contribution is most probably made by a non-dielectric relaxation, especially for the P+-QB- recombination influenced by the proton transfer. This situation calls for reconsidering of the current electron transfer rate estimates.
Collapse
Affiliation(s)
- Vasily V Ptushenko
- A.N. Belozersky Institute of Physical-Chemical Biology, M.V. Lomonosov Moscow State University, Moscow, Russia.
- N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia.
| | - Lev I Krishtalik
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
16
|
In situ determination of potential-driven structural changes in a redox-active plumbagin polymer film on a glassy carbon electrode using PM IRRAS under electrochemical control. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.09.152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Gamiz-Hernandez AP, Jussupow A, Johansson MP, Kaila VRI. Terminal Electron-Proton Transfer Dynamics in the Quinone Reduction of Respiratory Complex I. J Am Chem Soc 2017; 139:16282-16288. [PMID: 29017321 PMCID: PMC6300313 DOI: 10.1021/jacs.7b08486] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Complex I functions as a redox-driven proton pump in aerobic respiratory chains. By reducing quinone (Q), complex I employs the free energy released in the process to thermodynamically drive proton pumping across its membrane domain. The initial Q reduction step plays a central role in activating the proton pumping machinery. In order to probe the energetics, dynamics, and molecular mechanism for the proton-coupled electron transfer process linked to the Q reduction, we employ here multiscale quantum and classical molecular simulations. We identify that both ubiquinone (UQ) and menaquinone (MQ) can form stacking and hydrogen-bonded interactions with the conserved Q-binding-site residue His-38 and that conformational changes between these binding modes modulate the Q redox potentials and the rate of electron transfer (eT) from the terminal N2 iron-sulfur center. We further observe that, while the transient formation of semiquinone is not proton-coupled, the second eT process couples to a semiconcerted proton uptake from conserved tyrosine (Tyr-87) and histidine (His-38) residues within the active site. Our calculations indicate that both UQ and MQ have low redox potentials around -260 and -230 mV, respectively, in the Q-binding site, respectively, suggesting that release of the Q toward the membrane is coupled to an energy transduction step that could thermodynamically drive proton pumping in complex I.
Collapse
Affiliation(s)
- Ana P Gamiz-Hernandez
- Department Chemie, Technische Universität München (TUM) , Lichtenbergstraße 4, Garching D-85747, Germany
| | - Alexander Jussupow
- Department Chemie, Technische Universität München (TUM) , Lichtenbergstraße 4, Garching D-85747, Germany
| | - Mikael P Johansson
- Department Chemie, Technische Universität München (TUM) , Lichtenbergstraße 4, Garching D-85747, Germany.,Department of Chemistry, University of Helsinki , P.O. Box 55, Helsinki FI-00014, Finland
| | - Ville R I Kaila
- Department Chemie, Technische Universität München (TUM) , Lichtenbergstraße 4, Garching D-85747, Germany
| |
Collapse
|
18
|
Pietras R, Sarewicz M, Osyczka A. Distinct properties of semiquinone species detected at the ubiquinol oxidation Qo site of cytochrome bc1 and their mechanistic implications. J R Soc Interface 2017; 13:rsif.2016.0133. [PMID: 27194483 PMCID: PMC4892266 DOI: 10.1098/rsif.2016.0133] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/18/2016] [Indexed: 12/23/2022] Open
Abstract
The two-electron ubiquinol oxidation or ubiquinone reduction typically involves semiquinone (SQ) intermediates. Natural engineering of ubiquinone binding sites of bioenergetic enzymes secures that SQ is sufficiently stabilized, so that it does not leave the site to membranous environment before full oxidation/reduction is completed. The ubiquinol oxidation Qo site of cytochrome bc1 (mitochondrial complex III, cytochrome b6f in plants) has been considered an exception with catalytic reactions assumed to involve highly unstable SQ or not to involve any SQ intermediate. This view seemed consistent with long-standing difficulty in detecting any reaction intermediates at the Qo site. New perspective on this issue is now offered by recent, independent reports on detection of SQ in this site. Each of the described SQs seems to have different spectroscopic properties leaving space for various interpretations and mechanistic considerations. Here, we comparatively reflect on those properties and their consequences on the SQ stabilization, the involvement of SQ in catalytic reactions, including proton transfers, and the reactivity of SQ with oxygen associated with superoxide generation activity of the Qo site.
Collapse
Affiliation(s)
- Rafał Pietras
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Marcin Sarewicz
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
19
|
Seo J, Ha H, Park S, Haque AMJ, Kim S, Joo JM, Yang H. Immunosensor Employing Stable, Solid 1-Amino-2-naphthyl Phosphate and Ammonia-Borane toward Ultrasensitive and Simple Point-of-Care Testing. ACS Sens 2017; 2:1240-1246. [PMID: 28806067 DOI: 10.1021/acssensors.7b00407] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biosensors for ultrasensitive point-of-care testing require dried reagents with long-term stability and a high signal-to-background ratio. Although ortho-substituted diaromatic dihydroxy and aminohydroxy compounds undergo fast redox reactions, they are not used as electrochemical signaling species because they are readily oxidized and polymerized by dissolved oxygen. In this report, stable, solid 1-amino-2-naphthyl phosphate (1A2N-P) and ammonia-borane (H3N-BH3) are respectively employed as a substrate for alkaline phosphatase (ALP) and a reductant for electrochemical-chemical (EC) redox cycling. ALP converts 1A2N-P to 1-amino-2-naphthol (1A2N), which is then employed in EC redox cycling using H3N-BH3. The oxidation and polymerization of 1A2N by dissolved oxygen is significantly prevented in the presence of H3N-BH3. The electrochemical measurement is performed without modification of indium-tin oxide (ITO) electrodes with electrocatalytic materials. For comparison, nine aromatic dihydroxy and aminohydroxy compounds, including 1A2N, are evaluated to achieve fast EC redox cycling, and four strong reductants, including H3N-BH3, are evaluated to achieve a low background level. The combination of 1A2N and H3N-BH3 allows the achievement of a very high signal-to-background ratio. When the newly developed combination is applied to the detection of creatine kinase-MB (CK-MB), the detection limit for CK-MB is ∼80 fg/mL, indicating that the combination allows ultrasensitive detection. The concentrations of CK-MB in clinical serum samples, determined using the developed system, are in good agreement with the concentrations obtained using a commercial instrument. Thus, the use of stable, solid 1A2N-P and H3N-BH3 along with bare ITO electrodes is highly promising for ultrasensitive and simple point-of-care testing.
Collapse
Affiliation(s)
- Jeongwook Seo
- Department
of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Hyeri Ha
- Department
of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Seonhwa Park
- Department
of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Al-Monsur Jiaul Haque
- Department
of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Sinyoung Kim
- Department
of Laboratory Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jung Min Joo
- Department
of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Haesik Yang
- Department
of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| |
Collapse
|
20
|
Gunner MR, Koder R. The design features cells use to build their transmembrane proton gradient. Phys Biol 2017; 14:013001. [DOI: 10.1088/1478-3975/14/1/013001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Analytical characterization, occurrence, transformation, and removal of the emerging disinfection byproducts halobenzoquinones in water. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.03.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
The H-bond network surrounding the pyranopterins modulates redox cooperativity in the molybdenum- bis PGD cofactor in arsenite oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1353-1362. [DOI: 10.1016/j.bbabio.2016.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 05/12/2016] [Accepted: 05/16/2016] [Indexed: 11/19/2022]
|
23
|
Kaurola P, Sharma V, Vonk A, Vattulainen I, Róg T. Distribution and dynamics of quinones in the lipid bilayer mimicking the inner membrane of mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2116-2122. [PMID: 27342376 DOI: 10.1016/j.bbamem.2016.06.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/11/2016] [Accepted: 06/17/2016] [Indexed: 01/24/2023]
Abstract
Quinone and its analogues (Q) constitute an important class of compounds that perform key electron transfer reactions in oxidative- and photo-phosphorylation. In the inner membrane of mitochondria, ubiquinone molecules undergo continuous redox transitions enabling electron transfer between the respiratory complexes. In such a dynamic system undergoing continuous turnover for ATP synthesis, an uninterrupted supply of substrate molecules is absolutely necessary. In the current work, we have performed atomistic molecular dynamics simulations and free energy calculations to assess the structure, dynamics, and localization of quinone and its analogues in a lipid bilayer, whose composition mimics the one in the inner mitochondrial membrane. The results show that there is a strong tendency of both quinone and quinol molecules to localize in the vicinity of the lipids' acyl groups, right under the lipid head group region. Additionally, we observe a second location in the middle of the bilayer where quinone molecules tend to stabilize. Translocation of quinone through a lipid bilayer is very fast and occurs in 10-100ns time scale, whereas the translocation of quinol is at least an order of magnitude slower. We suggest that this has important mechanistic implications given that the localization of Q ensures maximal occupancy of the Q-binding sites or Q-entry points in electron transport chain complexes, thereby maintaining an optimal turnover rate for ATP synthesis.
Collapse
Affiliation(s)
- Petri Kaurola
- Department of Physics, Tampere University of Technology, P. O. Box 692, FI-33101 Tampere, Finland
| | - Vivek Sharma
- Department of Physics, Tampere University of Technology, P. O. Box 692, FI-33101 Tampere, Finland; Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Amanda Vonk
- Department of Physics, Tampere University of Technology, P. O. Box 692, FI-33101 Tampere, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, P. O. Box 692, FI-33101 Tampere, Finland; Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland; MEMPHYS - Center for Biomembrane Physics, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Tomasz Róg
- Department of Physics, Tampere University of Technology, P. O. Box 692, FI-33101 Tampere, Finland; Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland.
| |
Collapse
|
24
|
Electron Transfer Reactions at the Qo Site of the Cytochrome bc 1 Complex: The Good, the Bad, and the Ugly. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2016. [DOI: 10.1007/978-94-017-7481-9_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
25
|
Sun C, Taguchi AT, Beal NJ, O'Malley PJ, Dikanov SA, Wraight CA. Regulation of the primary quinone binding conformation by the H subunit in reaction centers from Rhodobacter sphaeroides. J Phys Chem Lett 2015; 6:4541-4546. [PMID: 26517602 DOI: 10.1021/acs.jpclett.5b01851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Unlike photosystem II (PSII) in higher plants, bacterial photosynthetic reaction centers (bRCs) from Proteobacteria have an additional peripheral membrane subunit "H". The H subunit is necessary for photosynthetic growth, but can be removed chemically in vitro. The remaining LM dimer retains its activity to perform light-induced charge separation. Here we investigate the influence of the H subunit on interactions between the primary semiquinone and the protein matrix, using a combination of site-specific isotope labeling, pulsed electron paramagnetic resonance (EPR), and density functional theory (DFT) calculations. The data reveal substantially weaker binding interactions between the primary semiquinone and the LM dimer than observed for the intact bRC; the amount of electron spin transferred to the nitrogen hydrogen bond donors is significantly reduced, the methoxy groups are more free to rotate, and the spectra indicate a heterogeneous mixture of bound semiquinone states. These results are consistent with a loosening of the primary quinone binding pocket in the absence of the H subunit.
Collapse
Affiliation(s)
- Chang Sun
- Department of Biochemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Alexander T Taguchi
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Nathan J Beal
- School of Chemistry, University of Manchester , Manchester M13 9PL, U.K
| | | | - Sergei A Dikanov
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Colin A Wraight
- Department of Biochemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
- Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| |
Collapse
|
26
|
Lichtenstein BR, Bialas C, Cerda JF, Fry BA, Dutton PL, Moser CC. Designing Light-Activated Charge-Separating Proteins with a Naphthoquinone Amino Acid. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201507094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Lichtenstein BR, Bialas C, Cerda JF, Fry BA, Dutton PL, Moser CC. Designing Light-Activated Charge-Separating Proteins with a Naphthoquinone Amino Acid. Angew Chem Int Ed Engl 2015; 54:13626-9. [PMID: 26366882 DOI: 10.1002/anie.201507094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Indexed: 11/09/2022]
Abstract
The first principles design of manmade redox-protein maquettes is used to clarify the physical/chemical engineering supporting the mechanisms of natural enzymes with a view to recapitulate and surpass natural performance. Herein, we use intein-based protein semisynthesis to pair a synthetic naphthoquinone amino acid (Naq) with histidine-ligated photoactive metal-tetrapyrrole cofactors, creating a 100 μs photochemical charge separation unit akin to photosynthetic reaction centers. By using propargyl groups to protect the redox-active para-quinone during synthesis and assembly while permitting selective activation, we gain the ability to employ the quinone amino acid redox cofactor with the full set of natural amino acids in protein design. Direct anchoring of quinone to the protein backbone permits secure and adaptable control of intraprotein electron-tunneling distances and rates.
Collapse
Affiliation(s)
- Bruce R Lichtenstein
- The Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104-6059 (USA).,Present address: Max Planck Institute for Developmental Biology, Tübingen, 72076 (Germany)
| | - Chris Bialas
- The Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104-6059 (USA)
| | - José F Cerda
- Department of Chemistry, St. Joseph's University, Philadelphia, PA 19131 (USA)
| | - Bryan A Fry
- The Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104-6059 (USA)
| | - P Leslie Dutton
- The Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104-6059 (USA)
| | - Christopher C Moser
- The Johnson Research Foundation, Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104-6059 (USA).
| |
Collapse
|
28
|
Bull JN, West CW, Verlet JRR. On the formation of anions: frequency-, angle-, and time-resolved photoelectron imaging of the menadione radical anion. Chem Sci 2015; 6:1578-1589. [PMID: 29560245 PMCID: PMC5811081 DOI: 10.1039/c4sc03491k] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 12/17/2014] [Indexed: 11/24/2022] Open
Abstract
Frequency-, angle-, and time-resolved photoelectron imaging of gas-phase menadione (vitamin K3) radical anions was used to show that quasi-bound resonances of the anion can act as efficient doorway states to produce metastable ground electronic state anions on a sub-picosecond timescale. Several anion resonances have been experimentally observed and identified with the assistance of ab initio calculations, and ground state anion recovery was observed across the first 3 eV above threshold. Time-resolved measurements revealed the mechanism of electronic ground state anion formation, which first involves a cascade of very fast internal conversion processes to a bound electronic state that, in turn, decays by slower internal conversion to the ground state. Autodetachment processes from populated resonances are inefficient compared with electronic relaxation through internal conversion. The mechanistic understanding gained provides insight into the formation of radical anions in biological and astrochemical systems.
Collapse
Affiliation(s)
- James N Bull
- Department of Chemistry , Durham University , South Road , DH1 3LE , UK .
| | - Christopher W West
- Department of Chemistry , Durham University , South Road , DH1 3LE , UK .
| | - Jan R R Verlet
- Department of Chemistry , Durham University , South Road , DH1 3LE , UK .
| |
Collapse
|
29
|
Amin M, Vogt L, Szejgis W, Vassiliev S, Brudvig GW, Bruce D, Gunner MR. Proton-Coupled Electron Transfer During the S-State Transitions of the Oxygen-Evolving Complex of Photosystem II. J Phys Chem B 2015; 119:7366-77. [PMID: 25575266 DOI: 10.1021/jp510948e] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The oxygen-evolving complex (OEC) of photosystem II (PSII) is a unique Mn4O5Ca cluster that catalyzes water oxidation via four photoactivated electron transfer steps. As the protein influence on the redox and protonation chemistry of the OEC remains an open question, we present a classical valence model of the OEC that allows the redox state of each Mn and the protonation state of bridging μ-oxos and terminal waters to remain in equilibrium with the PSII protein throughout the redox cycle. We find that the last bridging oxygen loses its proton during the transition from S0 to S1. Two possible S2 states are found depending on the OEC geometry: S2 has Mn4(IV) with a proton lost from a terminal water (W1) trapped by the nearby D1-D61 if O5 is closer to Mn4, or Mn1(IV), with partial deprotonation of D1-H337 and D1-E329 if O5 is closer to Mn1. In S3, the OEC is Mn4(IV) with W2 deprotonated. The estimated OEC Em's range from +0.7 to +1.3 V, enabling oxidation by P680(+), the primary electron donor in PSII. In chloride-depleted PSII, the proton release increases during the S1 to S2 transition, leaving the OEC unable to properly advance through the water-splitting cycle.
Collapse
Affiliation(s)
- Muhamed Amin
- †Department of Physics, J-419, City College of New York, 138th Street, Convent Avenue, New York, New York 10031, United States
| | - Leslie Vogt
- ‡Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Witold Szejgis
- †Department of Physics, J-419, City College of New York, 138th Street, Convent Avenue, New York, New York 10031, United States
| | - Serguei Vassiliev
- §Department of Biological Sciences, Brock University, 500 Glenridge Ave., St. Catherines, ON LS2 3A1, Canada
| | - Gary W Brudvig
- ‡Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Doug Bruce
- §Department of Biological Sciences, Brock University, 500 Glenridge Ave., St. Catherines, ON LS2 3A1, Canada
| | - M R Gunner
- †Department of Physics, J-419, City College of New York, 138th Street, Convent Avenue, New York, New York 10031, United States
| |
Collapse
|
30
|
Sarewicz M, Osyczka A. Electronic connection between the quinone and cytochrome C redox pools and its role in regulation of mitochondrial electron transport and redox signaling. Physiol Rev 2015; 95:219-43. [PMID: 25540143 PMCID: PMC4281590 DOI: 10.1152/physrev.00006.2014] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial respiration, an important bioenergetic process, relies on operation of four membranous enzymatic complexes linked functionally by mobile, freely diffusible elements: quinone molecules in the membrane and water-soluble cytochromes c in the intermembrane space. One of the mitochondrial complexes, complex III (cytochrome bc1 or ubiquinol:cytochrome c oxidoreductase), provides an electronic connection between these two diffusible redox pools linking in a fully reversible manner two-electron quinone oxidation/reduction with one-electron cytochrome c reduction/oxidation. Several features of this homodimeric enzyme implicate that in addition to its well-defined function of contributing to generation of proton-motive force, cytochrome bc1 may be a physiologically important point of regulation of electron flow acting as a sensor of the redox state of mitochondria that actively responds to changes in bioenergetic conditions. These features include the following: the opposing redox reactions at quinone catalytic sites located on the opposite sides of the membrane, the inter-monomer electronic connection that functionally links four quinone binding sites of a dimer into an H-shaped electron transfer system, as well as the potential to generate superoxide and release it to the intermembrane space where it can be engaged in redox signaling pathways. Here we highlight recent advances in understanding how cytochrome bc1 may accomplish this regulatory physiological function, what is known and remains unknown about catalytic and side reactions within the quinone binding sites and electron transfers through the cofactor chains connecting those sites with the substrate redox pools. We also discuss the developed molecular mechanisms in the context of physiology of mitochondria.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
31
|
|
32
|
Zhang X, Gunner MR. Affinity and activity of non-native quinones at the Q(B) site of bacterial photosynthetic reaction centers. PHOTOSYNTHESIS RESEARCH 2014; 120:181-96. [PMID: 23715773 PMCID: PMC4442677 DOI: 10.1007/s11120-013-9850-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 05/08/2013] [Indexed: 05/11/2023]
Abstract
Purple, photosynthetic reaction centers from Rhodobacter sphaeroides bacteria use ubiquinone (UQ10) as both primary (Q(A)) and secondary (Q(B)) electron acceptors. Many quinones reconstitute Q(A) function, while a few will act as Q(B). Nine quinones were tested for their ability to bind and reconstitute Q(A) and Q(B) functions. Only ubiquinone (UQ) reconstitutes both functions in the same protein. The affinities of the non-native quinones for the Q(B) site were determined by a competitive inhibition assay. The affinities of benzoquinones, naphthoquinone (NQ), and 2-methyl-NQ for the Q(B) site are 7 ± 3 times weaker than that at Q(A) site. However, di-ortho-substituted NQs and anthraquinone bind tightly to the Q(A) site (K d ≤ 200 nM), and ≥1,000 times more weakly to the Q(B) site, perhaps setting a limit on the size of the site. With a low-potential electron donor, 2-methyl, 3-dimethylamino-1,4-NQ, (Me-diMeAm-NQ) at Q(A), Q(B) reduction is 260 meV, more favorable than with UQ as Q(A). Electron transfer from Me-diMeAm-NQ at the Q(A) site to NQ at the Q(B) site can be detected. In the Q(B) site, the NQ semiquinone is estimated to be ≈60-100 meV higher in energy than the UQ semiquinone, while in the Q(A) site, the semiquinone energy level is similar or lower with NQ than with UQ. Thus, the NQ semiquinone is more stable in the Q(A) than in the Q(B) site. In contrast, the native UQ semiquinone is ≈60 meV lower in energy in the Q(B) than in the Q(A) site, stabilizing forward electron transfer from Q(A) to Q(B).
Collapse
Affiliation(s)
| | - M. R. Gunner
- To whom correspondence should be addressed. Telephone: 212-650-5557. Fax: 212-650-6940
| |
Collapse
|
33
|
Cheng HY, Huang YS. Temporary anion states of p-benzoquinone: shape and core-excited resonances. Phys Chem Chem Phys 2014; 16:26306-13. [DOI: 10.1039/c4cp03353a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The energies and lifetimes of shape and core-excited resonances of p-benzoquinone have been studied in this paper. The obtained resonance parameters are of fundamental importance in understanding the bonding and electronic processes of quinones.
Collapse
Affiliation(s)
- Hsiu-Yao Cheng
- Department of Chemistry
- Tunghai University
- Taiwan Boulevard Sec. 4, Taiwan, Republic of China
| | - Yu-Shiuan Huang
- Department of Chemistry
- Tunghai University
- Taiwan Boulevard Sec. 4, Taiwan, Republic of China
| |
Collapse
|
34
|
Vennam PR, Fisher N, Krzyaniak MD, Kramer DM, Bowman MK. A caged, destabilized, free radical intermediate in the q-cycle. Chembiochem 2013; 14:1745-53. [PMID: 24009094 PMCID: PMC3951126 DOI: 10.1002/cbic.201300265] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Indexed: 11/12/2022]
Abstract
The Rieske/cytochrome b complexes, also known as cytochrome bc complexes, catalyze a unique oxidant-induced reduction reaction at their quinol oxidase (Qo ) sites, in which substrate hydroquinone reduces two distinct electron transfer chains, one through a series of high-potential electron carriers, the second through low-potential cytochrome b. This reaction is a critical step in energy storage by the Q-cycle. The semiquinone intermediate in this reaction can reduce O2 to produce deleterious superoxide. It is yet unknown how the enzyme controls this reaction, though numerous models have been proposed. In previous work, we trapped a Q-cycle semiquinone anion intermediate, termed SQo , in bacterial cytochrome bc1 by rapid freeze-quenching. In this work, we apply pulsed-EPR techniques to determine the location and properties of SQo in the mitochondrial complex. In contrast to semiquinone intermediates in other enzymes, SQo is not thermodynamically stabilized, and can even be destabilized with respect to solution. It is trapped in Qo at a site that is distinct from previously described inhibitor-binding sites, yet sufficiently close to cytochrome bL to allow rapid electron transfer. The binding site and EPR analyses show that SQo is not stabilized by hydrogen bonds to proteins. The formation of SQo involves "stripping" of both substrate -OH protons during the initial oxidation step, as well as conformational changes of the semiquinone and Qo proteins. The resulting charged radical is kinetically trapped, rather than thermodynamically stabilized (as in most enzymatic semiquinone species), conserving redox energy to drive electron transfer to cytochrome bL while minimizing certain Q-cycle bypass reactions, including oxidation of prereduced cytochrome b and reduction of O2 .
Collapse
Affiliation(s)
- Preethi R. Vennam
- Chemistry Department University of Alabama Box 870336, Tuscaloosa, AL 35487, United States
| | - Nicholas Fisher
- Biochemistry and Molecular Biology and the MSU-DOE Plant Research Laboratory Michigan State University East Lansing, MI 48824, United States
| | - Matthew D. Krzyaniak
- Chemistry Department University of Alabama Box 870336, Tuscaloosa, AL 35487, United States
| | - David M. Kramer
- Biochemistry and Molecular Biology and the MSU-DOE Plant Research Laboratory Michigan State University East Lansing, MI 48824, United States
| | - Michael K. Bowman
- Chemistry Department University of Alabama Box 870336, Tuscaloosa, AL 35487, United States
| |
Collapse
|
35
|
Sarewicz M, Dutka M, Pintscher S, Osyczka A. Triplet state of the semiquinone-Rieske cluster as an intermediate of electronic bifurcation catalyzed by cytochrome bc1. Biochemistry 2013; 52:6388-95. [PMID: 23941428 PMCID: PMC3889490 DOI: 10.1021/bi400624m] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Efficient energy conversion often requires stabilization of one-electron intermediates within catalytic sites of redox enzymes. While quinol oxidoreductases are known to stabilize semiquinones, one of the famous exceptions includes the quinol oxidation site of cytochrome bc1 (Qo), for which detection of any intermediate states is extremely difficult. Here we discover a semiquinone at the Qo site (SQo) that is coupled to the reduced Rieske cluster (FeS) via spin-spin exchange interaction. This interaction creates a new electron paramagnetic resonance (EPR) transitions with the most prominent g = 1.94 signal shifting to 1.96 with an increase in the EPR frequency from X- to Q-band. The estimated value of isotropic spin-spin exchange interaction (|J0| = 3500 MHz) indicates that at a lower magnetic field (typical of X-band) the SQo-FeS coupled centers can be described as a triplet state. Concomitantly with the appearance of the SQo-FeS triplet state, we detected a g = 2.0045 radical signal that corresponded to the population of unusually fast-relaxing SQo for which spin-spin exchange does not exist or is too small to be resolved. The g = 1.94 and g = 2.0045 signals reached up to 20% of cytochrome bc1 monomers under aerobic conditions, challenging the paradigm of the high reactivity of SQo toward molecular oxygen. Recognition of stable SQo reflected in g = 1.94 and g = 2.0045 signals offers a new perspective on understanding the mechanism of Qo site catalysis. The frequency-dependent EPR transitions of the SQo-FeS coupled system establish a new spectroscopic approach for the detection of SQo in mitochondria and other bioenergetic systems.
Collapse
Affiliation(s)
- Marcin Sarewicz
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Kraków, Poland
| | | | | | | |
Collapse
|
36
|
Gunner MR, Amin M, Zhu X, Lu J. Molecular mechanisms for generating transmembrane proton gradients. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1827:892-913. [PMID: 23507617 PMCID: PMC3714358 DOI: 10.1016/j.bbabio.2013.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/28/2013] [Accepted: 03/01/2013] [Indexed: 01/02/2023]
Abstract
Membrane proteins use the energy of light or high energy substrates to build a transmembrane proton gradient through a series of reactions leading to proton release into the lower pH compartment (P-side) and proton uptake from the higher pH compartment (N-side). This review considers how the proton affinity of the substrates, cofactors and amino acids are modified in four proteins to drive proton transfers. Bacterial reaction centers (RCs) and photosystem II (PSII) carry out redox chemistry with the species to be oxidized on the P-side while reduction occurs on the N-side of the membrane. Terminal redox cofactors are used which have pKas that are strongly dependent on their redox state, so that protons are lost on oxidation and gained on reduction. Bacteriorhodopsin is a true proton pump. Light activation triggers trans to cis isomerization of a bound retinal. Strong electrostatic interactions within clusters of amino acids are modified by the conformational changes initiated by retinal motion leading to changes in proton affinity, driving transmembrane proton transfer. Cytochrome c oxidase (CcO) catalyzes the reduction of O2 to water. The protons needed for chemistry are bound from the N-side. The reduction chemistry also drives proton pumping from N- to P-side. Overall, in CcO the uptake of 4 electrons to reduce O2 transports 8 charges across the membrane, with each reduction fully coupled to removal of two protons from the N-side, the delivery of one for chemistry and transport of the other to the P-side.
Collapse
Affiliation(s)
- M R Gunner
- Department of Physics, City College of New York, New York, NY 10031, USA.
| | | | | | | |
Collapse
|
37
|
Madeo J, Zubair A, Marianne F. A review on the role of quinones in renal disorders. SPRINGERPLUS 2013; 2:139. [PMID: 23577302 PMCID: PMC3618882 DOI: 10.1186/2193-1801-2-139] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 03/10/2013] [Indexed: 12/12/2022]
Abstract
Quinones are electron and proton carriers that play a primary role in the aerobic metabolism of virtually every cell in nature. Most physiological quinones are benzoquinones. They undergo highly regulated redox reactions in the mitochondria, Golgi apparatus, plasma membrane and endoplasmic reticulum. Important consequences of these electron transfer reactions are the production of and protection against reactive oxygen species (ROS). Quinones have been extensively studied for both their cytotoxic as well as cellular protective properties and they have been particularly useful in rational drug design. The role of quinones in medicine is explored in this literature review with a particular focus on renal diseases. Due to their high basal metabolism and detoxification role, the kidneys are particularly sensitive to oxidative stress. Regardless of the underlying etiology, ROS plays an important role in both acute kidney injury (AKI) and chronic kidney diseases (CKD). Depending on the oxidative state of the kidney, quinones can be nephrotoxoic or nephro-protective. Many factors play a role in the interaction between quinones and the kidney and the consequences of this are just beginning to be explored.
Collapse
Affiliation(s)
- Jennifer Madeo
- Department of Medicine, Nassau University Medical Center, 2201 Hempstead Turnpike, East Meadow, NY 11554 USA
| | | | | |
Collapse
|
38
|
Dikanov SA. Resolving protein-semiquinone interactions by two-dimensional ESEEM spectroscopy. ELECTRON PARAMAGNETIC RESONANCE 2012. [DOI: 10.1039/9781849734837-00103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- S. A. Dikanov
- University of Illinois at Urbana-Champaign, Department of Veterinary Clinical Medicine 190 MSB, 506 S. Mathews Ave., Urbana IL 61801 USA
| |
Collapse
|
39
|
Electrochemical and chemical formation of a low-barrier proton transfer complex between the quinone dianion and hydroquinone. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.07.078] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
40
|
Lichtenstein BR, Moorman VR, Cerda JF, Wand AJ, Dutton PL. Electrochemical and structural coupling of the naphthoquinone amino acid. Chem Commun (Camb) 2012; 48:1997-9. [PMID: 22234390 DOI: 10.1039/c2cc16968a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As a prelude to engineering artificial energy conversion proteins emulating biology, we examine the inclusion of a synthetic naphthoquinone amino acid in a characterized host-guest protein and determine the effects of its quinone and hydroquinone forms on the helix-coil distribution.
Collapse
Affiliation(s)
- Bruce R Lichtenstein
- The Johnson Research Foundation and Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104-6059, USA
| | | | | | | | | |
Collapse
|
41
|
Madeo J, Mihajlovic M, Lazaridis T, Gunner MR. Slow dissociation of a charged ligand: analysis of the primary quinone Q(A) site of photosynthetic bacterial reaction centers. J Am Chem Soc 2011; 133:17375-85. [PMID: 21863833 PMCID: PMC3202297 DOI: 10.1021/ja205811f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Indexed: 12/14/2022]
Abstract
Reaction centers (RCs) are integral membrane proteins that undergo a series of electron transfer reactions during the process of photosynthesis. In the Q(A) site of RCs from Rhodobacter sphaeroides, ubiquinone-10 is reduced, by a single electron transfer, to its semiquinone. The neutral quinone and anionic semiquinone have similar affinities, which is required for correct in situ reaction thermodynamics. A previous study showed that despite similar affinities, anionic quinones associate and dissociate from the Q(A) site at rates ≈10(4) times slower than neutral quinones indicating that anionic quinones encounter larger binding barriers (Madeo, J.; Gunner, M. R. Modeling binding kinetics at the Q(A) site in bacterial reaction centers. Biochemistry 2005, 44, 10994-11004). The present study investigates these barriers computationally, using steered molecular dynamics (SMD) to model the unbinding of neutral ground state ubiquinone (UQ) and its reduced anionic semiquinone (SQ(-)) from the Q(A) site. In agreement with experiment, the SMD unbinding barrier for SQ(-) is larger than for UQ. Multi Conformational Continuum Electrostatics (MCCE), used here to calculate the binding energy, shows that SQ(-) and UQ have comparable affinities. In the Q(A) site, there are stronger binding interactions for SQ(-) compared to UQ, especially electrostatic attraction to a bound non-heme Fe(2+). These interactions compensate for the higher SQ(-) desolvation penalty, allowing both redox states to have similar affinities. These additional interactions also increase the dissociation barrier for SQ(-) relative to UQ. Thus, the slower SQ(-) dissociation rate is a direct physical consequence of the additional binding interactions required to achieve a Q(A) site affinity similar to that of UQ. By a similar mechanism, the slower association rate is caused by stronger interactions between SQ(-) and the polar solvent. Thus, stronger interactions for both the unbound and bound states of charged and highly polar ligands can slow their binding kinetics without a conformational gate. Implications of this for other systems are discussed.
Collapse
Affiliation(s)
- Jennifer Madeo
- Departments of Physics and Chemistry, City College of New York, New York, New York 10031, United States
| | - Maja Mihajlovic
- Departments of Physics and Chemistry, City College of New York, New York, New York 10031, United States
| | - Themis Lazaridis
- Departments of Physics and Chemistry, City College of New York, New York, New York 10031, United States
| | - M. R. Gunner
- Departments of Physics and Chemistry, City College of New York, New York, New York 10031, United States
| |
Collapse
|
42
|
Sviatenko L, Isayev O, Gorb L, Hill F, Leszczynski J. Toward robust computational electrochemical predicting the environmental fate of organic pollutants. J Comput Chem 2011; 32:2195-203. [DOI: 10.1002/jcc.21803] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 02/23/2011] [Accepted: 03/06/2011] [Indexed: 11/05/2022]
|
43
|
Rosendahl SM, Burgess IJ. Charge transfer and SEIRAS studies of 1,4-benzoquinone functionalized mixed monothiol/dithiol self-assembled monolayers. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Lin MT, Shubin AA, Samoilova RI, Narasimhulu KV, Baldansuren A, Gennis RB, Dikanov SA. Exploring by pulsed EPR the electronic structure of ubisemiquinone bound at the QH site of cytochrome bo3 from Escherichia coli with in vivo 13C-labeled methyl and methoxy substituents. J Biol Chem 2011; 286:10105-14. [PMID: 21247900 PMCID: PMC3060462 DOI: 10.1074/jbc.m110.206821] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/13/2011] [Indexed: 11/06/2022] Open
Abstract
The cytochrome bo(3) ubiquinol oxidase from Escherichia coli resides in the bacterial cytoplasmic membrane and catalyzes the two-electron oxidation of ubiquinol-8 and four-electron reduction of O(2) to water. The one-electron reduced semiquinone forms transiently during the reaction, and the enzyme has been demonstrated to stabilize the semiquinone. The semiquinone is also formed in the D75E mutant, where the mutation has little influence on the catalytic activity, and in the D75H mutant, which is virtually inactive. In this work, wild-type cytochrome bo(3) as well as the D75E and D75H mutant proteins were prepared with ubiquinone-8 (13)C-labeled selectively at the methyl and two methoxy groups. This was accomplished by expressing the proteins in a methionine auxotroph in the presence of l-methionine with the side chain methyl group (13)C-labeled. The (13)C-labeled quinone isolated from cytochrome bo(3) was also used for the generation of model anion radicals in alcohol. Two-dimensional pulsed EPR and ENDOR were used for the study of the (13)C methyl and methoxy hyperfine couplings in the semiquinone generated in the three proteins indicated above and in the model system. The data were used to characterize the transferred unpaired spin densities on the methyl and methoxy substituents and the conformations of the methoxy groups. In the wild type and D75E mutant, the constraints on the configurations of the methoxy side chains are similar, but the D75H mutant appears to have altered methoxy configurations, which could be related to the perturbed electron distribution in the semiquinone and the loss of enzymatic activity.
Collapse
Affiliation(s)
| | | | - Rimma I. Samoilova
- Institute of Chemical Kinetics and Combustion, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Kuppala V. Narasimhulu
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 and
| | | | | | - Sergei A. Dikanov
- Department of Veterinary Clinical Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 and
| |
Collapse
|
45
|
Chernev P, Zaharieva I, Dau H, Haumann M. Carboxylate shifts steer interquinone electron transfer in photosynthesis. J Biol Chem 2011; 286:5368-74. [PMID: 21169354 PMCID: PMC3037649 DOI: 10.1074/jbc.m110.202879] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 12/10/2010] [Indexed: 11/06/2022] Open
Abstract
Understanding the mechanisms of electron transfer (ET) in photosynthetic reaction centers (RCs) may inspire novel catalysts for sunlight-driven fuel production. The electron exit pathway of type II RCs comprises two quinone molecules working in series and in between a non-heme iron atom with a carboxyl ligand (bicarbonate in photosystem II (PSII), glutamate in bacterial RCs). For decades, the functional role of the iron has remained enigmatic. We tracked the iron site using microsecond-resolution x-ray absorption spectroscopy after laser-flash excitation of PSII. After formation of the reduced primary quinone, Q(A)(-), the x-ray spectral changes revealed a transition (t½ ≈ 150 μs) from a bidentate to a monodentate coordination of the bicarbonate at the Fe(II) (carboxylate shift), which reverted concomitantly with the slower ET to the secondary quinone Q(B). A redox change of the iron during the ET was excluded. Density-functional theory calculations corroborated the carboxylate shift both in PSII and bacterial RCs and disclosed underlying changes in electronic configuration. We propose that the iron-carboxyl complex facilitates the first interquinone ET by optimizing charge distribution and hydrogen bonding within the Q(A)FeQ(B) triad for high yield Q(B) reduction. Formation of a specific priming intermediate by nuclear rearrangements, setting the stage for subsequent ET, may be a common motif in reactions of biological redox cofactors.
Collapse
Affiliation(s)
- Petko Chernev
- From the Freie Universität Berlin, Institut für Experimentalphysik, 14195 Berlin, Germany
| | - Ivelina Zaharieva
- From the Freie Universität Berlin, Institut für Experimentalphysik, 14195 Berlin, Germany
| | - Holger Dau
- From the Freie Universität Berlin, Institut für Experimentalphysik, 14195 Berlin, Germany
| | - Michael Haumann
- From the Freie Universität Berlin, Institut für Experimentalphysik, 14195 Berlin, Germany
| |
Collapse
|
46
|
Zheng Z, Dutton PL, Gunner MR. The measured and calculated affinity of methyl- and methoxy-substituted benzoquinones for the Q(A) site of bacterial reaction centers. Proteins 2010; 78:2638-54. [PMID: 20607696 DOI: 10.1002/prot.22779] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Quinones play important roles in mitochondrial and photosynthetic energy conversion acting as intramembrane, mobile electron, and proton carriers between catalytic sites in various electron transfer proteins. They display different affinity, selectivity, functionality, and exchange dynamics in different binding sites. The computational analysis of quinone binding sheds light on the requirements for quinone affinity and specificity. The affinities of 10 oxidized, neutral benzoquinones were measured for the high affinity Q(A) site in the detergent-solubilized Rhodobacter sphaeroides bacterial photosynthetic reaction center. Multiconformation Continuum Electrostatics was then used to calculate their relative binding free energies by grand canonical Monte Carlo sampling with a rigid protein backbone, flexible ligand, and side chain positions and protonation states. Van der Waals and torsion energies, Poisson-Boltzmann continuum electrostatics, and accessible surface area-dependent ligand-solvent interactions are considered. An initial, single cycle of GROMACS backbone optimization improves the match with experiment as do coupled-ligand and side-chain motions. The calculations match experiment with an root mean square deviation (RMSD) of 2.29 and a slope of 1.28. The affinities are dominated by favorable protein-ligand van der Waals rather than electrostatic interactions. Each quinone appears in a closely clustered set of positions. Methyl and methoxy groups move into the same positions as found for the native quinone. Difficulties putting methyls into methoxy sites are observed. Calculations using a solvent-accessible surface area-dependent implicit van der Waals interaction smoothed out small clashes, providing a better match to experiment with a RMSD of 0.77 and a slope of 0.97.
Collapse
Affiliation(s)
- Zhong Zheng
- Department of Physics, City College of New York, New York, New York 10031, USA
| | | | | |
Collapse
|
47
|
Bao D, Ramu S, Contreras A, Upadhyayula S, Vasquez JM, Beran G, Vullev VI. Electrochemical Reduction of Quinones: Interfacing Experiment and Theory for Defining Effective Radii of Redox Moieties. J Phys Chem B 2010; 114:14467-79. [DOI: 10.1021/jp101730e] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Duoduo Bao
- Department of Bioengineering, University of California, Riverside, California 92521, Center for Bioengineering Research, University of California, Riverside, California 92521, and Department of Chemistry, University of California, Riverside, California 92521
| | - Sangeetha Ramu
- Department of Bioengineering, University of California, Riverside, California 92521, Center for Bioengineering Research, University of California, Riverside, California 92521, and Department of Chemistry, University of California, Riverside, California 92521
| | - Antonio Contreras
- Department of Bioengineering, University of California, Riverside, California 92521, Center for Bioengineering Research, University of California, Riverside, California 92521, and Department of Chemistry, University of California, Riverside, California 92521
| | - Srigokul Upadhyayula
- Department of Bioengineering, University of California, Riverside, California 92521, Center for Bioengineering Research, University of California, Riverside, California 92521, and Department of Chemistry, University of California, Riverside, California 92521
| | - Jacob M. Vasquez
- Department of Bioengineering, University of California, Riverside, California 92521, Center for Bioengineering Research, University of California, Riverside, California 92521, and Department of Chemistry, University of California, Riverside, California 92521
| | - Gregory Beran
- Department of Bioengineering, University of California, Riverside, California 92521, Center for Bioengineering Research, University of California, Riverside, California 92521, and Department of Chemistry, University of California, Riverside, California 92521
| | - Valentine I. Vullev
- Department of Bioengineering, University of California, Riverside, California 92521, Center for Bioengineering Research, University of California, Riverside, California 92521, and Department of Chemistry, University of California, Riverside, California 92521
| |
Collapse
|
48
|
Boesch SE, Wheeler RA. Isotropic 13C hyperfine coupling constants distinguish neutral from anionic ubiquinone-derived radicals. Chemphyschem 2010; 10:3187-9. [PMID: 19904797 DOI: 10.1002/cphc.200900503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Scott E Boesch
- Department of Chemistry & Biochemistry, University of Oklahoma, 620 Parrington Oval, Room 208, Norman, OK 73019, USA
| | | |
Collapse
|
49
|
Weyers AM, Chatterjee R, Milikisiyants S, Lakshmi KV. Structure and Function of Quinones in Biological Solar Energy Transduction: A Differential Pulse Voltammetry, EPR, and Hyperfine Sublevel Correlation (HYSCORE) Spectroscopy Study of Model Benzoquinones. J Phys Chem B 2009; 113:15409-18. [DOI: 10.1021/jp907379d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amanda M. Weyers
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Ruchira Chatterjee
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Sergey Milikisiyants
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - K. V. Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, New York 12180
| |
Collapse
|
50
|
Cheap H, Bernad S, Derrien V, Gerencsér L, Tandori J, de Oliveira P, Hanson DK, Maróti P, Sebban P. M234Glu is a component of the proton sponge in the reaction center from photosynthetic bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:1505-15. [PMID: 19632193 DOI: 10.1016/j.bbabio.2009.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 07/13/2009] [Accepted: 07/15/2009] [Indexed: 10/20/2022]
Abstract
Bacterial reaction centers use light energy to couple the uptake of protons to the successive semi-reduction of two quinones, namely Q(A) and Q(B). These molecules are situated symmetrically in regard to a non-heme iron atom. Four histidines and one glutamic acid, M234Glu, constitute the five ligands of this atom. By flash-induced absorption spectroscopy and delayed fluorescence we have studied in the M234EH and M234EL variants the role played by this acidic residue on the energetic balance between the two quinones as well as in proton uptake. Delayed fluorescence from the P(+)Q(A)(-) state (P is the primary electron donor) and temperature dependence of the rate of P(+)Q(A)(-) charge recombination that are in good agreement show that in the two RC variants, both Q(A)(-) and Q(B)(-) are destabilized by about the same free energy amount: respectively approximately 100 +/- 5 meV and 90 +/- 5 meV for the M234EH and M234EL variants, as compared to the WT. Importantly, in the M234EH and M234EL variants we observe a collapse of the high pH band (present in the wild-type reaction center) of the proton uptake amplitudes associated with formation of Q(A)(-) and Q(B)(-). This band has recently been shown to be a signature of a collective behaviour of an extended, multi-entry, proton uptake network. M234Glu seems to play a central role in the proton sponge-like system formed by the RC protein.
Collapse
Affiliation(s)
- Hélène Cheap
- Laboratoire de Chimie Physique, UMR 8000, University of Paris-Sud 11/CNRS, 91405 cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|