1
|
Balderas E, Lee SHJ, Rai NK, Mollinedo DM, Duron HE, Chaudhuri D. Mitochondrial Calcium Regulation of Cardiac Metabolism in Health and Disease. Physiology (Bethesda) 2024; 39:0. [PMID: 38713090 PMCID: PMC11460536 DOI: 10.1152/physiol.00014.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024] Open
Abstract
Oxidative phosphorylation is regulated by mitochondrial calcium (Ca2+) in health and disease. In physiological states, Ca2+ enters via the mitochondrial Ca2+ uniporter and rapidly enhances NADH and ATP production. However, maintaining Ca2+ homeostasis is critical: insufficient Ca2+ impairs stress adaptation, and Ca2+ overload can trigger cell death. In this review, we delve into recent insights further defining the relationship between mitochondrial Ca2+ dynamics and oxidative phosphorylation. Our focus is on how such regulation affects cardiac function in health and disease, including heart failure, ischemia-reperfusion, arrhythmias, catecholaminergic polymorphic ventricular tachycardia, mitochondrial cardiomyopathies, Barth syndrome, and Friedreich's ataxia. Several themes emerge from recent data. First, mitochondrial Ca2+ regulation is critical for fuel substrate selection, metabolite import, and matching of ATP supply to demand. Second, mitochondrial Ca2+ regulates both the production and response to reactive oxygen species (ROS), and the balance between its pro- and antioxidant effects is key to how it contributes to physiological and pathological states. Third, Ca2+ exerts localized effects on the electron transport chain (ETC), not through traditional allosteric mechanisms but rather indirectly. These effects hinge on specific transporters, such as the uniporter or the Na+/Ca2+ exchanger, and may not be noticeable acutely, contributing differently to phenotypes depending on whether Ca2+ transporters are acutely or chronically modified. Perturbations in these novel relationships during disease states may either serve as compensatory mechanisms or exacerbate impairments in oxidative phosphorylation. Consequently, targeting mitochondrial Ca2+ holds promise as a therapeutic strategy for a variety of cardiac diseases characterized by contractile failure or arrhythmias.
Collapse
Affiliation(s)
- Enrique Balderas
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Sandra H J Lee
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Neeraj K Rai
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - David M Mollinedo
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Hannah E Duron
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
| | - Dipayan Chaudhuri
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, Utah, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, Biochemistry, Biomedical Engineering, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
2
|
Marcucci L, Nogara L, Canato M, Germinario E, Raffaello A, Carraro M, Bernardi P, Pietrangelo L, Boncompagni S, Protasi F, Paolocci N, Reggiani C. Mitochondria can substitute for parvalbumin to lower cytosolic calcium levels in the murine fast skeletal muscle. Acta Physiol (Oxf) 2024; 240:e14208. [PMID: 39077881 DOI: 10.1111/apha.14208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/31/2024]
Abstract
AIM Parvalbumin (PV) is a primary calcium buffer in mouse fast skeletal muscle fibers. Previous work showed that PV ablation has a limited impact on cytosolic Ca2+ ([Ca2+]cyto) transients and contractile response, while it enhances mitochondrial density and mitochondrial matrix-free calcium concentration ([Ca2+]mito). Here, we aimed to quantitatively test the hypothesis that mitochondria act to compensate for PV deficiency. METHODS We determined the free Ca2+ redistribution during a 2 s 60 Hz tetanic stimulation in the sarcoplasmic reticulum, cytosol, and mitochondria. Via a reaction-diffusion Ca2+ model, we quantitatively evaluated mitochondrial uptake and storage capacity requirements to compensate for PV lack and analyzed possible extracellular export. RESULTS [Ca2+]mito during tetanic stimulation is greater in knock-out (KO) (1362 ± 392 nM) than in wild-type (WT) (855 ± 392 nM), p < 0.05. Under the assumption of a non-linear intramitochondrial buffering, the model predicts an accumulation of 725 μmoles/L fiber (buffering ratio 1:11 000) in KO, much higher than in WT (137 μmoles/L fiber, ratio 1:4500). The required transport rate via mitochondrial calcium uniporter (MCU) reaches 3 mM/s, compatible with available literature. TEM images of calcium entry units and Mn2+ quenching showed a greater capacity of store-operated calcium entry in KO compared to WT. However, levels of [Ca2+]cyto during tetanic stimulation were not modulated to variations of extracellular calcium. CONCLUSIONS The model-based analysis of experimentally determined calcium distribution during tetanic stimulation showed that mitochondria can act as a buffer to compensate for the lack of PV. This result contributes to a better understanding of mitochondria's role in modulating [Ca2+]cyto in skeletal muscle fibers.
Collapse
Affiliation(s)
- Lorenzo Marcucci
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Center for Biosystems Dynamics Research, RIKEN, Suita, Japan
| | - Leonardo Nogara
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marta Canato
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Elena Germinario
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Anna Raffaello
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Myology Center, University of Padova, Padova, Italy
| | - Michela Carraro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Laura Pietrangelo
- CAST, Center for Advanced Studies and Technology, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- DMSI, Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Simona Boncompagni
- CAST, Center for Advanced Studies and Technology, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- DNICS, Department of Neuroscience and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Feliciano Protasi
- CAST, Center for Advanced Studies and Technology, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
- DMSI, Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Nazareno Paolocci
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Division of Cardiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Science and Research Center Koper, Institute for Kinesiology Research, Koper, Slovenia
| |
Collapse
|
3
|
Ceyhan B, Nategh P, Neghabi M, LaMar JA, Konjalwar S, Rodriguez P, Hahn MK, Gross M, Grumbar G, Salleng KJ, Blakely RD, Ranji M. Optical Imaging Demonstrates Tissue-Specific Metabolic Perturbations in Mblac1 Knockout Mice. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2024; 12:298-305. [PMID: 38410184 PMCID: PMC10896421 DOI: 10.1109/jtehm.2024.3355962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/10/2023] [Accepted: 01/15/2024] [Indexed: 02/28/2024]
Abstract
OBJECTIVE Metabolic changes have been extensively documented in neurodegenerative brain disorders, including Parkinson's disease and Alzheimer's disease (AD). Mutations in the C. elegans swip-10 gene result in dopamine (DA) dependent motor dysfunction accompanied by DA neuron degeneration. Recently, the putative human ortholog of swip-10 (MBLAC1) was implicated as a risk factor in AD, a disorder that, like PD, has been associated with mitochondrial dysfunction. Interestingly, the AD risk associated with MBLAC1 arises in subjects with cardiovascular morbidity, suggesting a broader functional insult arising from reduced MBLAC1 protein expression and one possibly linked to metabolic alterations. METHODS Our current studies, utilizing Mblac1 knockout (KO) mice, seek to determine whether mitochondrial respiration is affected in the peripheral tissues of these mice. We quantified the levels of mitochondrial coenzymes, NADH, FAD, and their redox ratio (NADH/FAD, RR) in livers and kidneys of wild-type (WT) mice and their homozygous KO littermates of males and females, using 3D optical cryo-imaging. RESULTS Compared to WT, the RR of livers from KO mice was significantly reduced, without an apparent sex effect, driven predominantly by significantly lower NADH levels. In contrast, no genotype and sex differences were observed in kidney samples. Serum analyses of WT and KO mice revealed significantly elevated glucose levels in young and aged KO adults and diminished cholesterol levels in the aged KOs, consistent with liver dysfunction. DISCUSSION/CONCLUSION As seen with C. elegans swip-10 mutants, loss of MBLAC1 protein results in metabolic changes that are not restricted to neural cells and are consistent with the presence of peripheral comorbidities accompanying neurodegenerative disease in cases where MBLAC1 expression changes impact risk.
Collapse
Affiliation(s)
- Busenur Ceyhan
- Biophotonics LaboratoryDepartment of Electrical Engineering and Computer Science, College of Engineering and Computer ScienceFlorida Atlantic UniversityBoca RatonFL33431USA
| | - Parisa Nategh
- Biophotonics LaboratoryDepartment of Electrical Engineering and Computer Science, College of Engineering and Computer ScienceFlorida Atlantic UniversityBoca RatonFL33431USA
| | - Mehrnoosh Neghabi
- Biophotonics LaboratoryDepartment of Electrical Engineering and Computer Science, College of Engineering and Computer ScienceFlorida Atlantic UniversityBoca RatonFL33431USA
| | - Jacob A. LaMar
- Department of Biomedical ScienceCharles E. Schmidt College of MedicineFlorida Atlantic UniversityBoca RatonFL33431USA
| | - Shalaka Konjalwar
- Biophotonics LaboratoryDepartment of Electrical Engineering and Computer Science, College of Engineering and Computer ScienceFlorida Atlantic UniversityBoca RatonFL33431USA
| | - Peter Rodriguez
- Department of Biomedical ScienceCharles E. Schmidt College of MedicineFlorida Atlantic UniversityBoca RatonFL33431USA
| | - Maureen K. Hahn
- Department of Biomedical ScienceCharles E. Schmidt College of MedicineFlorida Atlantic UniversityBoca RatonFL33431USA
- Stiles-Nicholson Brain Institute, Florida Atlantic UniversityJupiterFL33458USA
| | - Matthew Gross
- Department of Biomedical ScienceCharles E. Schmidt College of MedicineFlorida Atlantic UniversityBoca RatonFL33431USA
| | - Gregory Grumbar
- Department of Biomedical ScienceCharles E. Schmidt College of MedicineFlorida Atlantic UniversityBoca RatonFL33431USA
| | - Kenneth J. Salleng
- Division of Research, Comparative MedicineFlorida Atlantic UniversityBoca RatonFL33431USA
| | - Randy D. Blakely
- Department of Biomedical ScienceCharles E. Schmidt College of MedicineFlorida Atlantic UniversityBoca RatonFL33431USA
- Stiles-Nicholson Brain Institute, Florida Atlantic UniversityJupiterFL33458USA
| | - Mahsa Ranji
- Biophotonics LaboratoryDepartment of Electrical Engineering and Computer Science, College of Engineering and Computer ScienceFlorida Atlantic UniversityBoca RatonFL33431USA
- Stiles-Nicholson Brain Institute, Florida Atlantic UniversityJupiterFL33458USA
| |
Collapse
|
4
|
Csordás G, Weaver D, Várnai P, Hajnóczky G. Supralinear Dependence of the IP 3 Receptor-to-Mitochondria Local Ca 2+ Transfer on the Endoplasmic Reticulum Ca 2+ Loading. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241229273. [PMID: 38362008 PMCID: PMC10868505 DOI: 10.1177/25152564241229273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/31/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024]
Abstract
Calcium signal propagation from endoplasmic reticulum (ER) to mitochondria regulates a multitude of mitochondrial and cell functions, including oxidative ATP production and cell fate decisions. Ca2+ transfer is optimal at the ER-mitochondrial contacts, where inositol 1,4,5-trisphosphate (IP3) receptors (IP3R) can locally expose the mitochondrial Ca2+ uniporter (mtCU) to high [Ca2+] nanodomains. The Ca2+ loading state of the ER (Ca2 + ER) can vary broadly in physiological and pathological scenarios, however, the correlation between Ca2 + ER and the local Ca2+ transfer is unclear. Here, we studied IP3-induced Ca2+ transfer to mitochondria at different Ca2 + ER in intact and permeabilized RBL-2H3 cells via fluorescence measurements of cytoplasmic [Ca2+] ([Ca2+]c) and mitochondrial matrix [Ca2+] ([Ca2+]m). Preincubation of intact cells in high versus low extracellular [Ca2+] caused disproportionally greater increase in [Ca2+]m than [Ca2+]c responses to IP3-mobilizing agonist. Increasing Ca2 + ER by small Ca2+ boluses in suspensions of permeabilized cells supralinearly enhanced the mitochondrial Ca2+ uptake from IP3-induced Ca2+ release. The IP3-induced local [Ca2+] spikes exposing the mitochondrial surface measured using a genetically targeted sensor appeared to linearly correlate with Ca2 + ER, indicating that amplification happened in the mitochondria. Indeed, overexpression of an EF-hand deficient mutant of the mtCU gatekeeper MICU1 reduced the cooperativity of mitochondrial Ca2+ uptake. Interestingly, the IP3-induced [Ca2+]m signal plateaued at high Ca2 + ER, indicating activation of a matrix Ca2+ binding/chelating species. Mitochondria thus seem to maintain a "working [Ca2+]m range" via a low-affinity and high-capacity buffer species, and the ER loading steeply enhances the IP3R-linked [Ca2+]m signals in this working range.
Collapse
Affiliation(s)
- György Csordás
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - David Weaver
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Péter Várnai
- Department of Physiology, Semmelweis Medical University, Budapest, Hungary
| | - György Hajnóczky
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
5
|
Eisner D, Neher E, Taschenberger H, Smith G. Physiology of intracellular calcium buffering. Physiol Rev 2023; 103:2767-2845. [PMID: 37326298 PMCID: PMC11550887 DOI: 10.1152/physrev.00042.2022] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/08/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023] Open
Abstract
Calcium signaling underlies much of physiology. Almost all the Ca2+ in the cytoplasm is bound to buffers, with typically only ∼1% being freely ionized at resting levels in most cells. Physiological Ca2+ buffers include small molecules and proteins, and experimentally Ca2+ indicators will also buffer calcium. The chemistry of interactions between Ca2+ and buffers determines the extent and speed of Ca2+ binding. The physiological effects of Ca2+ buffers are determined by the kinetics with which they bind Ca2+ and their mobility within the cell. The degree of buffering depends on factors such as the affinity for Ca2+, the Ca2+ concentration, and whether Ca2+ ions bind cooperatively. Buffering affects both the amplitude and time course of cytoplasmic Ca2+ signals as well as changes of Ca2+ concentration in organelles. It can also facilitate Ca2+ diffusion inside the cell. Ca2+ buffering affects synaptic transmission, muscle contraction, Ca2+ transport across epithelia, and the killing of bacteria. Saturation of buffers leads to synaptic facilitation and tetanic contraction in skeletal muscle and may play a role in inotropy in the heart. This review focuses on the link between buffer chemistry and function and how Ca2+ buffering affects normal physiology and the consequences of changes in disease. As well as summarizing what is known, we point out the many areas where further work is required.
Collapse
Affiliation(s)
- David Eisner
- Division of Cardiovascular Sciences, University of Manchester, Manchester, United Kingdom
| | - Erwin Neher
- Membrane Biophysics Laboratory, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Godfrey Smith
- School of Cardiovascular and Metabolic Health, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
6
|
Marcucci L, Michelucci A, Reggiani C. Cytosolic Ca 2+ gradients and mitochondrial Ca 2+ uptake in resting muscle fibers: A model analysis. BIOPHYSICAL REPORTS 2023; 3:100117. [PMID: 37576797 PMCID: PMC10412765 DOI: 10.1016/j.bpr.2023.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/12/2023] [Indexed: 08/15/2023]
Abstract
Calcium ions (Ca2+) enter mitochondria via the mitochondrial Ca2+ uniporter, driven by electrical and concentration gradients. In this regard, transgenic mouse models, such as calsequestrin knockout (CSQ-KO) mice, with higher mitochondrial Ca2+ concentrations ([Ca2+]mito), should display higher cytosolic Ca2+ concentrations ([Ca2+]cyto). However, repeated measurements of [Ca2+]cyto in quiescent CSQ-KO fibers never showed a difference between WT and CSQ-KO. Starting from the consideration that fluorescent Ca2+ probes (Fura-2 and Indo-1) measure averaged global cytosolic concentrations, in this report we explored the role of local Ca2+ concentrations (i.e., Ca2+ microdomains) in regulating mitochondrial Ca2+ in resting cells, using a multicompartmental diffusional Ca2+ model. Progressively including the inward and outward fluxes of sarcoplasmic reticulum (SR), extracellular space, and mitochondria, we explored their contribution to the local Ca2+ distribution within the cell. The model predicts Ca2+ concentration gradients with hot spots or microdomains even at rest, minor but similar to those of evoked Ca2+ release. Due to their specific localization close to Ca2+ release units (CRU), mitochondria could take up Ca2+ directly from high-concentration microdomains, thus sensibly raising [Ca2+]mito, despite minor, possibly undetectable, modifications of the average [Ca2+]cyto.
Collapse
Affiliation(s)
- Lorenzo Marcucci
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Center for Biosystems Dynamics Research, RIKEN, Suita, Japan
| | - Antonio Michelucci
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy
| | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Science and Research Center Koper, Institute for Kinesiology Research, Koper, Slovenia
| |
Collapse
|
7
|
Sadri S, Zhang X, Audi SH, Cowley Jr. AW, Dash RK. Computational Modeling of Substrate-Dependent Mitochondrial Respiration and Bioenergetics in the Heart and Kidney Cortex and Outer Medulla. FUNCTION 2023; 4:zqad038. [PMID: 37575476 PMCID: PMC10413947 DOI: 10.1093/function/zqad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023] Open
Abstract
Integrated computational modeling provides a mechanistic and quantitative framework to characterize alterations in mitochondrial respiration and bioenergetics in response to different metabolic substrates in-silico. These alterations play critical roles in the pathogenesis of diseases affecting metabolically active organs such as heart and kidney. Therefore, the present study aimed to develop and validate thermodynamically constrained integrated computational models of mitochondrial respiration and bioenergetics in the heart and kidney cortex and outer medulla (OM). The models incorporated the kinetics of major biochemical reactions and transport processes as well as regulatory mechanisms in the mitochondria of these tissues. Intrinsic model parameters such as Michaelis-Menten constants were fixed at previously estimated values, while extrinsic model parameters such as maximal reaction and transport velocities were estimated separately for each tissue. This was achieved by fitting the model solutions to our recently published respirometry data measured in isolated rat heart and kidney cortex and OM mitochondria utilizing various NADH- and FADH2-linked metabolic substrates. The models were validated by predicting additional respirometry and bioenergetics data, which were not used for estimating the extrinsic model parameters. The models were able to predict tissue-specific and substrate-dependent mitochondrial emergent metabolic system properties such as redox states, enzyme and transporter fluxes, metabolite concentrations, membrane potential, and respiratory control index under diverse physiological and pathological conditions. The models were also able to quantitatively characterize differential regulations of NADH- and FADH2-linked metabolic pathways, which contribute differently toward regulations of oxidative phosphorylation and ATP synthesis in the heart and kidney cortex and OM mitochondria.
Collapse
Affiliation(s)
- Shima Sadri
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Xiao Zhang
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Said H Audi
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI 53223, USA
| | - Allen W Cowley Jr.
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ranjan K Dash
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI 53223, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Cardiovascular Research Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
8
|
Walkon LL, Strubbe-Rivera JO, Bazil JN. Calcium Overload and Mitochondrial Metabolism. Biomolecules 2022; 12:1891. [PMID: 36551319 PMCID: PMC9775684 DOI: 10.3390/biom12121891] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/30/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria calcium is a double-edged sword. While low levels of calcium are essential to maintain optimal rates of ATP production, extreme levels of calcium overcoming the mitochondrial calcium retention capacity leads to loss of mitochondrial function. In moderate amounts, however, ATP synthesis rates are inhibited in a calcium-titratable manner. While the consequences of extreme calcium overload are well-known, the effects on mitochondrial function in the moderately loaded range remain enigmatic. These observations are associated with changes in the mitochondria ultrastructure and cristae network. The present mini review/perspective follows up on previous studies using well-established cryo-electron microscopy and poses an explanation for the observable depressed ATP synthesis rates in mitochondria during calcium-overloaded states. The results presented herein suggest that the inhibition of oxidative phosphorylation is not caused by a direct decoupling of energy metabolism via the opening of a calcium-sensitive, proteinaceous pore but rather a separate but related calcium-dependent phenomenon. Such inhibition during calcium-overloaded states points towards mitochondrial ultrastructural modifications, enzyme activity changes, or an interplay between both events.
Collapse
Affiliation(s)
- Lauren L. Walkon
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Jasiel O. Strubbe-Rivera
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA
| | - Jason N. Bazil
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
9
|
Reggiani C, Marcucci L. A controversial issue: Can mitochondria modulate cytosolic calcium and contraction of skeletal muscle fibers? J Gen Physiol 2022; 154:e202213167. [PMID: 35849108 PMCID: PMC9297197 DOI: 10.1085/jgp.202213167] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Mitochondria are characterized by a high capacity to accumulate calcium thanks to the electrochemical gradient created by the extrusion of protons in the respiratory chain. Thereby calcium can enter crossing the inner mitochondrial membrane via MCU complex, a high-capacity, low-affinity transport mechanism. Calcium uptake serves numerous purposes, among them the regulation of three dehydrogenases of the citric cycle, apoptosis via permeability transition, and, in some cell types, modulation of cytosolic calcium transients. This Review is focused on mitochondrial calcium uptake in skeletal muscle fibers and aims to reanalyze its functional impact. In particular, we ask whether mitochondrial calcium uptake is relevant for the control of cytosolic calcium transients and therefore of contractile performance. Recent data suggest that this may be the case, at least in particular conditions, as modified expression of MCU complex subunits or of proteins involved in mitochondrial dynamics and ablation of the main cytosolic calcium buffer, parvalbumin.
Collapse
Affiliation(s)
- Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Science and Research Center Koper, Institute for Kinesiology Research, Koper, Slovenia
| | - Lorenzo Marcucci
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Center for Biosystems Dynamics Research, RIKEN, Suita, Japan
| |
Collapse
|
10
|
Chapa-Dubocq XR, Garcia-Baez JF, Bazil JN, Javadov S. Crosstalk between adenine nucleotide transporter and mitochondrial swelling: experimental and computational approaches. Cell Biol Toxicol 2022:10.1007/s10565-022-09724-2. [PMID: 35606662 DOI: 10.1007/s10565-022-09724-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/10/2022] [Indexed: 11/30/2022]
Abstract
Mitochondrial metabolism and function are modulated by changes in matrix Ca2+. Small increases in the matrix Ca2+ stimulate mitochondrial bioenergetics, whereas excessive Ca2+ leads to cell death by causing massive matrix swelling and impairing the structural and functional integrity of mitochondria. Sustained opening of the non-selective mitochondrial permeability transition pores (PTP) is the main mechanism responsible for mitochondrial Ca2+ overload that leads to mitochondrial dysfunction and cell death. Recent studies suggest the existence of two or more types of PTP, and adenine nucleotide translocator (ANT) and FOF1-ATP synthase were proposed to form the PTP independent of each other. Here, we elucidated the role of ANT in PTP opening by applying both experimental and computational approaches. We first developed and corroborated a detailed model of the ANT transport mechanism including the matrix (ANTM), cytosolic (ANTC), and pore (ANTP) states of the transporter. Then, the ANT model was incorporated into a simple, yet effective, empirical model of mitochondrial bioenergetics to ascertain the point when Ca2+ overload initiates PTP opening via an ANT switch-like mechanism activated by matrix Ca2+ and is inhibited by extra-mitochondrial ADP. We found that encoding a heterogeneous Ca2+ response of at least three types of PTPs, weakly, moderately, and strongly sensitive to Ca2+, enabled the model to simulate Ca2+ release dynamics observed after large boluses were administered to a population of energized cardiac mitochondria. Thus, this study demonstrates the potential role of ANT in PTP gating and proposes a novel mechanism governing the cryptic nature of the PTP phenomenon.
Collapse
Affiliation(s)
- Xavier R Chapa-Dubocq
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR, 00936-5067, USA
| | - Jorge F Garcia-Baez
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR, 00936-5067, USA
| | - Jason N Bazil
- Department of Physiology, Michigan State University, East Lansing, MI, 48824-1046, USA
| | - Sabzali Javadov
- Department of Physiology, University of Puerto Rico School of Medicine, San Juan, PR, 00936-5067, USA.
| |
Collapse
|
11
|
Zhang X, Tomar N, Kandel SM, Audi SH, Cowley AW, Dash RK. Substrate- and Calcium-Dependent Differential Regulation of Mitochondrial Oxidative Phosphorylation and Energy Production in the Heart and Kidney. Cells 2021; 11:131. [PMID: 35011693 PMCID: PMC8750792 DOI: 10.3390/cells11010131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial dehydrogenases are differentially stimulated by Ca2+. Ca2+ has also diverse regulatory effects on mitochondrial transporters and other enzymes. However, the consequences of these regulatory effects on mitochondrial oxidative phosphorylation (OxPhos) and ATP production, and the dependencies of these consequences on respiratory substrates, have not been investigated between the kidney and heart despite the fact that kidney energy requirements are second only to those of the heart. Our objective was, therefore, to elucidate these relationships in isolated mitochondria from the kidney outer medulla (OM) and heart. ADP-induced mitochondrial respiration was measured at different CaCl2 concentrations in the presence of various respiratory substrates, including pyruvate + malate (PM), glutamate + malate (GM), alpha-ketoglutarate + malate (AM), palmitoyl-carnitine + malate (PCM), and succinate + rotenone (SUC + ROT). The results showed that, in both heart and OM mitochondria, and for most complex I substrates, Ca2+ effects are biphasic: small increases in Ca2+ concentration stimulated, while large increases inhibited mitochondrial respiration. Furthermore, significant differences in substrate- and Ca2+-dependent O2 utilization towards ATP production between heart and OM mitochondria were observed. With PM and PCM substrates, Ca2+ showed more prominent stimulatory effects in OM than in heart mitochondria, while with GM and AM substrates, Ca2+ had similar biphasic regulatory effects in both OM and heart mitochondria. In contrast, with complex II substrate SUC + ROT, only inhibitory effects on mitochondrial respiration was observed in both the heart and the OM. We conclude that the regulatory effects of Ca2+ on mitochondrial OxPhos and ATP synthesis are biphasic, substrate-dependent, and tissue-specific.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (X.Z.); (N.T.); (S.M.K.)
| | - Namrata Tomar
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (X.Z.); (N.T.); (S.M.K.)
| | - Sunil M. Kandel
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (X.Z.); (N.T.); (S.M.K.)
| | - Said H. Audi
- Department of Biomedical Engineering, Marquette University, Milwaukee, WI 53223, USA;
| | - Allen W. Cowley
- Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ranjan K. Dash
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA; (X.Z.); (N.T.); (S.M.K.)
- Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
12
|
Lamboley CR, Pearce L, Seng C, Meizoso-Huesca A, Singh DP, Frankish BP, Kaura V, Lo HP, Ferguson C, Allen PD, Hopkins PM, Parton RG, Murphy RM, van der Poel C, Barclay CJ, Launikonis BS. Ryanodine receptor leak triggers fiber Ca 2+ redistribution to preserve force and elevate basal metabolism in skeletal muscle. SCIENCE ADVANCES 2021; 7:eabi7166. [PMID: 34705503 PMCID: PMC8550231 DOI: 10.1126/sciadv.abi7166] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Muscle contraction depends on tightly regulated Ca2+ release. Aberrant Ca2+ leak through ryanodine receptor 1 (RyR1) on the sarcoplasmic reticulum (SR) membrane can lead to heatstroke and malignant hyperthermia (MH) susceptibility, as well as severe myopathy. However, the mechanism by which Ca2+ leak drives these pathologies is unknown. Here, we investigate the effects of four mouse genotypes with increasingly severe RyR1 leak in skeletal muscle fibers. We find that RyR1 Ca2+ leak initiates a cascade of events that cause precise redistribution of Ca2+ among the SR, cytoplasm, and mitochondria through altering the Ca2+ permeability of the transverse tubular system membrane. This redistribution of Ca2+ allows mice with moderate RyR1 leak to maintain normal function; however, severe RyR1 leak with RYR1 mutations reduces the capacity to generate force. Our results reveal the mechanism underlying force preservation, increased ATP metabolism, and susceptibility to MH in individuals with gain-of-function RYR1 mutations.
Collapse
Affiliation(s)
- Cedric R. Lamboley
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Luke Pearce
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Crystal Seng
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Aldo Meizoso-Huesca
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel P. Singh
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Barnaby P. Frankish
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
| | - Vikas Kaura
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Harriet P. Lo
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Charles Ferguson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Paul D. Allen
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | | | - Robert G. Parton
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, Australia
| | - Robyn M. Murphy
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC 3086, Australia
- Department of Physiology Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Chris van der Poel
- Department of Physiology Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia
| | - Christopher J. Barclay
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Bradley S. Launikonis
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
- Corresponding author.
| |
Collapse
|
13
|
Abstract
One of the most fascinating aspects of mitochondria is their remarkable ability to accumulate and store large amounts of calcium in the presence of phosphate leading to mitochondrial calcification. In this paper, we briefly address the mechanisms that regulate mitochondrial calcium homeostasis followed by the extensive review on the formation and characterization of intramitochondrial calcium phosphate granules leading to mitochondrial calcification and its relevance to physiological and pathological calcifications of body tissues.
Collapse
Affiliation(s)
- Bhargavi Duvvuri
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA 98195, USA
| | - Christian Lood
- Department of Medicine, Division of Rheumatology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
14
|
Strubbe-Rivera JO, Schrad JR, Pavlov EV, Conway JF, Parent KN, Bazil JN. The mitochondrial permeability transition phenomenon elucidated by cryo-EM reveals the genuine impact of calcium overload on mitochondrial structure and function. Sci Rep 2021; 11:1037. [PMID: 33441863 PMCID: PMC7806632 DOI: 10.1038/s41598-020-80398-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022] Open
Abstract
Mitochondria have a remarkable ability to uptake and store massive amounts of calcium. However, the consequences of massive calcium accumulation remain enigmatic. In the present study, we analyzed a series of time-course experiments to identify the sequence of events that occur in a population of guinea pig cardiac mitochondria exposed to excessive calcium overload that cause mitochondrial permeability transition (MPT). By analyzing coincident structural and functional data, we determined that excessive calcium overload is associated with large calcium phosphate granules and inner membrane fragmentation, which explains the extent of mitochondrial dysfunction. This data also reveals a novel mechanism for cyclosporin A, an inhibitor of MPT, in which it preserves cristae despite the presence of massive calcium phosphate granules in the matrix. Overall, these findings establish a mechanism of calcium-induced mitochondrial dysfunction and the impact of calcium regulation on mitochondrial structure and function.
Collapse
Affiliation(s)
| | - Jason R Schrad
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Evgeny V Pavlov
- Basic Science and Craniofacial Biology, New York University, New York, NY, 10010, USA
| | - James F Conway
- Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Kristin N Parent
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Jason N Bazil
- Physiology, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
15
|
Takeuchi A, Matsuoka S. Integration of mitochondrial energetics in heart with mathematical modelling. J Physiol 2020; 598:1443-1457. [DOI: 10.1113/jp276817] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/23/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Ayako Takeuchi
- Department of Integrative and Systems PhysiologyFaculty of Medical Sciencesand Life Science Innovation CenterUniversity of Fukui Fukui 910‐1193 Japan
| | - Satoshi Matsuoka
- Department of Integrative and Systems PhysiologyFaculty of Medical Sciencesand Life Science Innovation CenterUniversity of Fukui Fukui 910‐1193 Japan
| |
Collapse
|
16
|
Duong QV, Hoffman A, Zhong K, Dessinger MJ, Zhang Y, Bazil JN. Calcium overload decreases net free radical emission in cardiac mitochondria. Mitochondrion 2020; 51:126-139. [PMID: 31982614 DOI: 10.1016/j.mito.2020.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/08/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022]
Abstract
Elevated calcium and reactive oxygen species (ROS) are responsible for the bulk of cell death occurring in a variety of clinical settings that include acute coronary events, cerebrovascular accidents, and acute kidney injury. It is commonly believed that calcium and ROS participate in a viscous cycle during these events. However, the precise feedback mechanisms are unknown. We quantitatively demonstrate in this study that, on the contrary, calcium does not stimulate free radical production but suppresses it. Isolated mitochondria from guinea pig hearts were energized with a variety of substrates and exposed to calcium concentrations designed to induce moderate calcium overload conditions associated with ischemia/reperfusion injury but do not elicit the well-known mitochondrial permeability transition phenomenon. Metabolic function and free radical emission were simultaneously quantified using high-resolution respirometry and fluorimetry. Membrane potential, high amplitude swelling, and calcium dynamics were also quantified in parallel. Our results reveal that calcium overload does not lead to excessive ROS emission but does decrease ADP stimulated respiration rates for NADH-dependent pathways. Moreover, we developed an empirical model of mitochondrial free radical homeostasis to identify the processes that are different for each substrate and calcium condition. In summary, we show that in healthy guinea pig mitochondria, calcium uptake and free radical generation do not contribute to a viscous cycle and that the relationship between net free radical production and oxygen concentration is hyperbolic. Altogether, these results lay out an important foundation necessary to quantitatively determine the role of calcium in IR injury and ROS production.
Collapse
Affiliation(s)
- Quynh V Duong
- Department of Biochemistry and Molecular Biology, Michigan State University, United States
| | - Adrianna Hoffman
- Department of Physiology, Michigan State University, United States
| | - Katie Zhong
- Department of Physiology, Michigan State University, United States
| | | | - Yizhu Zhang
- Department of Physiology, Michigan State University, United States
| | - Jason N Bazil
- Department of Physiology, Michigan State University, United States.
| |
Collapse
|
17
|
Song Z, Xie LH, Weiss JN, Qu Z. A Spatiotemporal Ventricular Myocyte Model Incorporating Mitochondrial Calcium Cycling. Biophys J 2019; 117:2349-2360. [PMID: 31623883 PMCID: PMC6990377 DOI: 10.1016/j.bpj.2019.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/19/2019] [Accepted: 09/09/2019] [Indexed: 12/27/2022] Open
Abstract
Intracellular calcium (Ca2+) cycling dynamics in cardiac myocytes are spatiotemporally generated by stochastic events arising from a spatially distributed network of coupled Ca2+ release units that interact with an intertwined mitochondrial network. In this study, we developed a spatiotemporal ventricular myocyte model that integrates mitochondria-related Ca2+ cycling components into our previously developed ventricular myocyte model consisting of a three-dimensional Ca2+ release unit network. Mathematical formulations of mitochondrial membrane potential, mitochondrial Ca2+ cycling, mitochondrial permeability transition pore stochastic opening and closing, intracellular reactive oxygen species signaling, and oxidized Ca2+/calmodulin-dependent protein kinase II signaling were incorporated into the model. We then used the model to simulate the effects of mitochondrial depolarization on mitochondrial Ca2+ cycling, Ca2+ spark frequency, and Ca2+ amplitude, which agree well with experimental data. We also simulated the effects of the strength of mitochondrial Ca2+ uniporters and their spatial localization on intracellular Ca2+ cycling properties, which substantially affected diastolic and systolic Ca2+ levels in the mitochondria but exhibited only a small effect on sarcoplasmic reticulum and cytosolic Ca2+ levels under normal conditions. We show that mitochondrial depolarization can cause Ca2+ waves and Ca2+ alternans, which agrees with previous experimental observations. We propose that this new, to our knowledge, spatiotemporal ventricular myocyte model, incorporating properties of mitochondrial Ca2+ cycling and reactive-oxygen-species-dependent signaling, will be useful for investigating the effects of mitochondria on intracellular Ca2+ cycling and action potential dynamics in ventricular myocytes.
Collapse
Affiliation(s)
- Zhen Song
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| | - Lai-Hua Xie
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey
| | - James N Weiss
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Zhilin Qu
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California; Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
18
|
Cyclosporin A Increases Mitochondrial Buffering of Calcium: An Additional Mechanism in Delaying Mitochondrial Permeability Transition Pore Opening. Cells 2019; 8:cells8091052. [PMID: 31500337 PMCID: PMC6770067 DOI: 10.3390/cells8091052] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 08/26/2019] [Accepted: 09/03/2019] [Indexed: 02/07/2023] Open
Abstract
Regulation of mitochondrial free Ca2+ is critically important for cellular homeostasis. An increase in mitochondrial matrix free Ca2+ concentration ([Ca2+]m) predisposes mitochondria to opening of the permeability transition pore (mPTP). Opening of the pore can be delayed by cyclosporin A (CsA), possibly by inhibiting cyclophilin D (Cyp D), a key regulator of mPTP. Here, we report on a novel mechanism by which CsA delays mPTP opening by enhanced sequestration of matrix free Ca2+. Cardiac-isolated mitochondria were challenged with repetitive CaCl2 boluses under Na+-free buffer conditions with and without CsA. CsA significantly delayed mPTP opening primarily by promoting matrix Ca2+ sequestration, leading to sustained basal [Ca2+]m levels for an extended period. The preservation of basal [Ca2+]m during the CaCl2 pulse challenge was associated with normalized NADH, matrix pH (pHm), and mitochondrial membrane potential (ΔΨm). Notably, we found that in PO43− (Pi)-free buffer condition, the CsA-mediated buffering of [Ca2+]m was abrogated, and mitochondrial bioenergetics variables were concurrently compromised. In the presence of CsA, addition of Pi just before pore opening in the Pi-depleted condition reinstated the Ca2+ buffering system and rescued mitochondria from mPTP opening. This study shows that CsA promotes Pi-dependent mitochondrial Ca2+ sequestration to delay mPTP opening and, concomitantly, maintains mitochondrial function.
Collapse
|
19
|
Haumann J, Camara AKS, Gadicherla AK, Navarro CD, Boelens AD, Blomeyer CA, Dash RK, Boswell MR, Kwok WM, Stowe DF. Slow Ca 2+ Efflux by Ca 2+/H + Exchange in Cardiac Mitochondria Is Modulated by Ca 2+ Re-uptake via MCU, Extra-Mitochondrial pH, and H + Pumping by F OF 1-ATPase. Front Physiol 2019; 9:1914. [PMID: 30804812 PMCID: PMC6378946 DOI: 10.3389/fphys.2018.01914] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/18/2018] [Indexed: 02/04/2023] Open
Abstract
Mitochondrial (m) Ca2+ influx is largely dependent on membrane potential (ΔΨm), whereas mCa2+ efflux occurs primarily via Ca2+ ion exchangers. We probed the kinetics of Ca2+/H+ exchange (CHEm) in guinea pig cardiac muscle mitochondria. We tested if net mCa2+ flux is altered during a matrix inward H+ leak that is dependent on matrix H+ pumping by ATPm hydrolysis at complex V (FOF1-ATPase). We measured [Ca2+]m, extra-mitochondrial (e) [Ca2+]e, ΔΨm, pHm, pHe, NADH, respiration, ADP/ATP ratios, and total [ATP]m in the presence or absence of protonophore dinitrophenol (DNP), mitochondrial uniporter (MCU) blocker Ru360, and complex V blocker oligomycin (OMN). We proposed that net slow influx/efflux of Ca2+ after adding DNP and CaCl2 is dependent on whether the ΔpHm gradient is/is not maintained by reciprocal outward H+ pumping by complex V. We found that adding CaCl2 enhanced DNP-induced increases in respiration and decreases in ΔΨm while [ATP]m decreased, ΔpHm gradient was maintained, and [Ca2+]m continued to increase slowly, indicating net mCa2+ influx via MCU. In contrast, with complex V blocked by OMN, adding DNP and CaCl2 caused larger declines in ΔΨm as well as a slow fall in pHm to near pHe while [Ca2+]m continued to decrease slowly, indicating net mCa2+ efflux in exchange for H+ influx (CHEm) until the ΔpHm gradient was abolished. The kinetics of slow mCa2+ efflux with slow H+ influx via CHEm was also observed at pHe 6.9 vs. 7.6 by the slow fall in pHm until ΔpHm was abolished; if Ca2+ reuptake via the MCU was also blocked, mCa2+ efflux via CHEm became more evident. Of the two components of the proton electrochemical gradient, our results indicate that CHEm activity is driven largely by the ΔpHm chemical gradient with H+ leak, while mCa2+ entry via MCU depends largely on the charge gradient ΔΨm. A fall in ΔΨm with excess mCa2+ loading can occur during cardiac cell stress. Cardiac cell injury due to mCa2+ overload may be reduced by temporarily inhibiting FOF1-ATPase from pumping H+ due to ΔΨm depolarization. This action would prevent additional slow mCa2+ loading via MCU and permit activation of CHEm to mediate efflux of mCa2+. HIGHLIGHTSWe examined how slow mitochondrial (m) Ca2+ efflux via Ca2+/H+ exchange (CHEm) is triggered by matrix acidity after a rapid increase in [Ca2+]m by adding CaCl2 in the presence of dinitrophenol (DNP) to permit H+ influx, and oligomycin (OMN) to block H+ pumping via FOF1-ATP synthase/ase (complex V). Declines in ΔΨm and pHm after DNP and added CaCl2 were larger when complex V was blocked. [Ca2+]m slowly increased despite a fall in ΔΨm but maintained pHm when H+ pumping by complex V was permitted. [Ca2+]m slowly decreased and external [Ca2+]e increased with declines in both ΔΨm and pHm when complex V was blocked. ATPm hydrolysis supports a falling pHm and redox state and promotes a slow increase in [Ca2+]m. After rapid Ca2+ influx due to a bolus of CaCl2, slow mCa2+ efflux by CHEm occurs directly if pHe is low.
Collapse
Affiliation(s)
- Johan Haumann
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ashish K Gadicherla
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Christopher D Navarro
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Age D Boelens
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Christoph A Blomeyer
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ranjan K Dash
- Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, United States
| | - Michael R Boswell
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Wai-Meng Kwok
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - David F Stowe
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, United States.,Research Service, Veterans Affairs Medical Center, Milwaukee, WI, United States
| |
Collapse
|
20
|
Malyala S, Zhang Y, Strubbe JO, Bazil JN. Calcium phosphate precipitation inhibits mitochondrial energy metabolism. PLoS Comput Biol 2019; 15:e1006719. [PMID: 30615608 PMCID: PMC6336351 DOI: 10.1371/journal.pcbi.1006719] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 01/17/2019] [Accepted: 12/17/2018] [Indexed: 11/19/2022] Open
Abstract
Early studies have shown that moderate levels of calcium overload can cause lower oxidative phosphorylation rates. However, the mechanistic interpretations of these findings were inadequate. And while the effect of excessive calcium overload on mitochondrial function is well appreciated, there has been little to no reports on the consequences of low to moderate calcium overload. To resolve this inadequacy, mitochondrial function from guinea pig hearts was quantified using several well-established methods including high-resolution respirometry and spectrofluorimetry and analyzed using mathematical modeling. We measured key mitochondrial variables such as respiration, mitochondrial membrane potential, buffer calcium, and substrate effects for a range of mitochondrial calcium loads from near zero to levels approaching mitochondrial permeability transition. In addition, we developed a computer model closely mimicking the experimental conditions and used this model to design experiments capable of eliminating many hypotheses generated from the data analysis. We subsequently performed those experiments and determined why mitochondrial ADP-stimulated respiration is significantly lowered during calcium overload. We found that when calcium phosphate levels, not matrix free calcium, reached sufficient levels, complex I activity is inhibited, and the rate of ATP synthesis is reduced. Our findings suggest that calcium phosphate granules form physical barriers that isolate complex I from NADH, disrupt complex I activity, or destabilize cristae and inhibit NADH-dependent respiration. Mitochondrial calcium handling has been studied for nearly half a century. As we understand it today, low concentrations (1–10 nmol/mg mitochondria) of calcium exert beneficial effects on energy transduction. And high concentrations (>500 nmol/mg mitochondria) lead to respiratory uncoupling and membrane damage. But relatively little is known about the effect of moderate calcium concentrations (10–500 nmol/mg mitochondria) on mitochondrial function. At these concentrations, mitochondrial membrane integrity remains intact and energized, while ATP synthesis becomes significantly impaired. Prior studies have postulated several possible mechanisms, but the precise consequence of calcium overload on mitochondrial ATP production remained obscure. In this study, we combine experimental and computational approaches to show that calcium phosphate precipitation, as opposed to matrix free calcium, inhibits respiratory function at complex I just enough to limit proton pumping during oxidative phosphorylation and decrease ATP synthesis rates.
Collapse
Affiliation(s)
- Sathyavani Malyala
- Department of Physiology, Michigan State University, East Lansing, MI, United States of America
| | - Yizhu Zhang
- Department of Physiology, Michigan State University, East Lansing, MI, United States of America
| | - Jasiel O. Strubbe
- Department of Physiology, Michigan State University, East Lansing, MI, United States of America
| | - Jason N. Bazil
- Department of Physiology, Michigan State University, East Lansing, MI, United States of America
- * E-mail:
| |
Collapse
|
21
|
Wacquier B, Romero Campos HE, González-Vélez V, Combettes L, Dupont G. Mitochondrial Ca2+dynamics in cells and suspensions. FEBS J 2017; 284:4128-4142. [DOI: 10.1111/febs.14296] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/17/2017] [Accepted: 10/17/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Benjamin Wacquier
- Unité de Chronobiologie Théorique; Université Libre de Bruxelles; Belgium
| | | | | | - Laurent Combettes
- Interactions Cellulaires et Physiopathologie Hépatique; UMR-S 1174; Université Paris Sud; Orsay France
| | - Geneviève Dupont
- Unité de Chronobiologie Théorique; Université Libre de Bruxelles; Belgium
| |
Collapse
|
22
|
Wollenman LC, Vander Ploeg MR, Miller ML, Zhang Y, Bazil JN. The effect of respiration buffer composition on mitochondrial metabolism and function. PLoS One 2017; 12:e0187523. [PMID: 29091971 PMCID: PMC5665555 DOI: 10.1371/journal.pone.0187523] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 10/20/2017] [Indexed: 11/19/2022] Open
Abstract
Functional studies on isolated mitochondria critically rely on the right choice of respiration buffer. Differences in buffer composition can lead to dramatically different respiration rates leading to difficulties in comparing prior studies. The ideal buffer facilities high ADP-stimulated respiratory rates and minimizes substrate transport effects so that the ability to distinguish between various treatments and conditions is maximal. In this study, we analyzed a variety of respiration buffers and substrate combinations to determine the optimal conditions to support mitochondrial function through ADP-stimulated respiration and uncoupled respiration using FCCP. The buffers consisted of a standard KCl based buffer (B1) and three modified buffers with chloride replaced by the K-lactobionate, sucrose, and the antioxidant taurine (B2) or K-gluconate (B3). The fourth buffer (B4) was identical to B2 except that K-lactobionate was replaced with K-gluconate. The substrate combinations consisted of metabolites that utilize different pathways of mitochondrial metabolism. To test mitochondrial function, we used isolated cardiac guinea pig mitochondria and measured oxygen consumption for three respiratory states using an Oroboros Oxygraph-2k. These states were the leak state (energized mitochondria in the absence of adenylates), ADP-stimulated state (energized mitochondria in the presence of saturating ADP concentrations), and uncoupled state (energized mitochondria in the presence of FCCP). On average across all substrate combinations, buffers B2, B3, and B4 had an increase of 16%, 26%, and 35% for the leak state, ADP-simulated state, and uncoupled state, respectively, relative to rates using B1. The common feature distinguishing these buffers from B1 is the notable lack of high chloride concentrations. Based on the respiratory rate metrics obtained with the substrate combinations, we conclude that the adenine nucleotide translocase, the dicarboxylate carrier, and the alpha-ketoglutarate exchanger are partially inhibited by chloride. Therefore, when the goal is to maximize ADP-stimulated respiration, buffers containing K-lactobionate or K-gluconate are superior choices compared to the standard KCl-based buffers.
Collapse
Affiliation(s)
- Lucas C. Wollenman
- Department of Physiology, Michigan State University, East Lansing, MI, United States of America
- Vanderbilt University School of Medicine, Nashville, TN, United States of America
| | - Matthew R. Vander Ploeg
- Department of Physiology, Michigan State University, East Lansing, MI, United States of America
| | - Mackinzie L. Miller
- Biomedical Laboratory Diagnostics, Michigan State University, East Lansing, MI, United States of America
- Nephrology and Hypertension, Henry Ford Hospital, Detroit, MI, United States of America
| | - Yizhu Zhang
- Department of Physiology, Michigan State University, East Lansing, MI, United States of America
| | - Jason N. Bazil
- Department of Physiology, Michigan State University, East Lansing, MI, United States of America
| |
Collapse
|
23
|
Javadov S, Chapa-Dubocq X, Makarov V. Different approaches to modeling analysis of mitochondrial swelling. Mitochondrion 2017; 38:58-70. [PMID: 28802667 DOI: 10.1016/j.mito.2017.08.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/21/2017] [Accepted: 08/08/2017] [Indexed: 12/11/2022]
Abstract
Mitochondria are critical players involved in both cell life and death through multiple pathways. Structural integrity, metabolism and function of mitochondria are regulated by matrix volume due to physiological changes of ion homeostasis in cellular cytoplasm and mitochondria. Ca2+ and K+ presumably play a critical role in physiological and pathological swelling of mitochondria when increased uptake (influx)/decreased release (efflux) of these ions enhances osmotic pressure accompanied by high water accumulation in the matrix. Changes in the matrix volume in the physiological range have a stimulatory effect on electron transfer chain and oxidative phosphorylation to satisfy metabolic requirements of the cell. However, excessive matrix swelling associated with the sustained opening of mitochondrial permeability transition pores (PTP) and other PTP-independent mechanisms compromises mitochondrial function and integrity leading to cell death. The mechanisms of transition from reversible (physiological) to irreversible (pathological) swelling of mitochondria remain unknown. Mitochondrial swelling is involved in the pathogenesis of many human diseases such as neurodegenerative and cardiovascular diseases. Therefore, modeling analysis of the swelling process is important for understanding the mechanisms of cell dysfunction. This review attempts to describe the role of mitochondrial swelling in cell life and death and the main mechanisms involved in the maintenance of ion homeostasis and swelling. The review also summarizes and discusses different kinetic models and approaches that can be useful for the development of new models for better simulation and prediction of in vivo mitochondrial swelling.
Collapse
Affiliation(s)
- Sabzali Javadov
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR, USA.
| | - Xavier Chapa-Dubocq
- Department of Physiology, School of Medicine, University of Puerto Rico, San Juan, PR, USA
| | - Vladimir Makarov
- Department of Physics, Rio Piedras Campus, University of Puerto Rico, San Juan, PR, USA
| |
Collapse
|
24
|
Solesio ME, Demirkhanyan L, Zakharian E, Pavlov EV. Contribution of inorganic polyphosphate towards regulation of mitochondrial free calcium. Biochim Biophys Acta Gen Subj 2016; 1860:1317-25. [PMID: 26994920 DOI: 10.1016/j.bbagen.2016.03.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 03/08/2016] [Accepted: 03/15/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Calcium signaling plays a key role in the regulation of multiple processes in mammalian mitochondria, from cellular bioenergetics to the induction of stress-induced cell death. While the total concentration of calcium inside the mitochondria can increase by several orders of magnitude, the concentration of bioavailable free calcium in mitochondria is maintained within the micromolar range by the mitochondrial calcium buffering system. This calcium buffering system involves the participation of inorganic phosphate. However, the mechanisms of its function are not yet understood. Specifically, it is not clear how calcium-orthophosphate interactions, which normally lead to formation of insoluble precipitates, are capable to dynamically regulate free calcium concentration. Here we test the hypothesis that inorganic polyphosphate, which is a polymerized form of orthophosphate, is capable to from soluble complexes with calcium, playing a significant role in the regulation of the mitochondrial free calcium concentration. METHODS We used confocal fluorescence microscopy to measure the relative levels of mitochondrial free calcium in cultured hepatoma cells (HepG2) with variable levels of inorganic polyphosphate (polyP). RESULTS The depletion of polyP leads to the significantly lower levels of mitochondrial free calcium concentration under conditions of pathological calcium overload. These results are coherent with previous observations showing that inorganic polyphosphate (polyP) can inhibit calcium-phosphate precipitation and, thus, increase the amount of free calcium. CONCLUSIONS Inorganic polyphosphate plays an important role in the regulation of mitochondrial free calcium, leading to its significant increase. GENERAL SIGNIFICANCE Inorganic polyphosphate is a previously unrecognized integral component of the mitochondrial calcium buffering system.
Collapse
Affiliation(s)
- M E Solesio
- Department of Basic Sciences, New York University College of Dentistry, 345 East 24th Street, 10010 New York, NY, USA
| | - L Demirkhanyan
- Department of Cancer Biology and Pharmacology, 1 Illini Drive, 61605 Peoria, IL, USA
| | - E Zakharian
- Department of Cancer Biology and Pharmacology, 1 Illini Drive, 61605 Peoria, IL, USA
| | - E V Pavlov
- Department of Basic Sciences, New York University College of Dentistry, 345 East 24th Street, 10010 New York, NY, USA.
| |
Collapse
|
25
|
Blomeyer CA, Bazil JN, Stowe DF, Dash RK, Camara AKS. Mg(2+) differentially regulates two modes of mitochondrial Ca(2+) uptake in isolated cardiac mitochondria: implications for mitochondrial Ca(2+) sequestration. J Bioenerg Biomembr 2016; 48:175-88. [PMID: 26815005 DOI: 10.1007/s10863-016-9644-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/12/2016] [Indexed: 12/14/2022]
Abstract
The manner in which mitochondria take up and store Ca(2+) remains highly debated. Recent experimental and computational evidence has suggested the presence of at least two modes of Ca(2+) uptake and a complex Ca(2+) sequestration mechanism in mitochondria. But how Mg(2+) regulates these different modes of Ca(2+) uptake as well as mitochondrial Ca(2+) sequestration is not known. In this study, we investigated two different ways by which mitochondria take up and sequester Ca(2+) by using two different protocols. Isolated guinea pig cardiac mitochondria were exposed to varying concentrations of CaCl2 in the presence or absence of MgCl2. In the first protocol, A, CaCl2 was added to the respiration buffer containing isolated mitochondria, whereas in the second protocol, B, mitochondria were added to the respiration buffer with CaCl2 already present. Protocol A resulted first in a fast transitory uptake followed by a slow gradual uptake. In contrast, protocol B only revealed a slow and gradual Ca(2+) uptake, which was approximately 40 % of the slow uptake rate observed in protocol A. These two types of Ca(2+) uptake modes were differentially modulated by extra-matrix Mg(2+). That is, Mg(2+) markedly inhibited the slow mode of Ca(2+) uptake in both protocols in a concentration-dependent manner, but not the fast mode of uptake exhibited in protocol A. Mg(2+) also inhibited Na(+)-dependent Ca(2+) extrusion. The general Ca(2+) binding properties of the mitochondrial Ca(2+) sequestration system were reaffirmed and shown to be independent of the mode of Ca(2+) uptake, i.e. through the fast or slow mode of uptake. In addition, extra-matrix Mg(2+) hindered Ca(2+) sequestration. Our results indicate that mitochondria exhibit different modes of Ca(2+) uptake depending on the nature of exposure to extra-matrix Ca(2+), which are differentially sensitive to Mg(2+). The implications of these findings in cardiomyocytes are discussed.
Collapse
Affiliation(s)
- Christoph A Blomeyer
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA
| | - Jason N Bazil
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA.,Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - David F Stowe
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Biomedical Engineering, Marquette University, Milwaukee, WI, 53233, USA.,Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| | - Ranjan K Dash
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Biomedical Engineering, Marquette University, Milwaukee, WI, 53233, USA
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, USA.
| |
Collapse
|
26
|
Williams GSB, Boyman L, Lederer WJ. Mitochondrial calcium and the regulation of metabolism in the heart. J Mol Cell Cardiol 2014; 78:35-45. [PMID: 25450609 DOI: 10.1016/j.yjmcc.2014.10.019] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/28/2014] [Accepted: 10/30/2014] [Indexed: 01/28/2023]
Abstract
Consumption of adenosine triphosphate (ATP) by the heart can change dramatically as the energetic demands increase from a period of rest to strenuous activity. Mitochondrial ATP production is central to this metabolic response since the heart relies largely on oxidative phosphorylation as its source of intracellular ATP. Significant evidence has been acquired indicating that Ca(2+) plays a critical role in regulating ATP production by the mitochondria. Here the evidence that the Ca(2+) concentration in the mitochondrial matrix ([Ca(2+)]m) plays a pivotal role in regulating ATP production by the mitochondria is critically reviewed and aspects of this process that are under current active investigation are highlighted. Importantly, current quantitative information on the bidirectional Ca(2+) movement across the inner mitochondrial membrane (IMM) is examined in two parts. First, we review how Ca(2+) influx into the mitochondrial matrix depends on the mitochondrial Ca(2+) channel (i.e., the mitochondrial calcium uniporter or MCU). This discussion includes how the MCU open probability (PO) depends on the cytosolic Ca(2+) concentration ([Ca(2+)]i) and on the mitochondrial membrane potential (ΔΨm). Second, we discuss how steady-state [Ca(2+)]m is determined by the dynamic balance between this MCU-based Ca(2+) influx and mitochondrial Na(+)/Ca(2+) exchanger (NCLX) based Ca(2+) efflux. These steady-state [Ca(2+)]m levels are suggested to regulate the metabolic energy supply due to Ca(2+)-dependent regulation of mitochondrial enzymes of the tricarboxylic acid cycle (TCA), the proteins of the electron transport chain (ETC), and the F1F0 ATP synthase itself. We conclude by discussing the roles played by [Ca(2+)]m in influencing mitochondrial responses under pathological conditions. This article is part of a Special Issue entitled "Mitochondria: From BasicMitochondrial Biology to Cardiovascular Disease."
Collapse
Affiliation(s)
- George S B Williams
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Liron Boyman
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - W Jonathan Lederer
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
27
|
Tewari SG, Camara AKS, Stowe DF, Dash RK. Computational analysis of Ca2+ dynamics in isolated cardiac mitochondria predicts two distinct modes of Ca2+ uptake. J Physiol 2014; 592:1917-30. [PMID: 24591571 DOI: 10.1113/jphysiol.2013.268847] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cardiac mitochondria can act as a significant Ca(2+) sink and shape cytosolic Ca(2+) signals affecting various cellular processes, such as energy metabolism and excitation-contraction coupling. However, different mitochondrial Ca(2+) uptake mechanisms are still not well understood. In this study, we analysed recently published Ca(2+) uptake experiments performed on isolated guinea pig cardiac mitochondria using a computer model of mitochondrial bioenergetics and cation handling. The model analyses of the data suggest that the majority of mitochondrial Ca(2+) uptake, at physiological levels of cytosolic Ca(2+) and Mg(2+), occurs through a fast Ca(2+) uptake pathway, which is neither the Ca(2+) uniporter nor the rapid mode of Ca(2+) uptake. This fast Ca(2+) uptake component was explained by including a biophysical model of the ryanodine receptor (RyR) in the computer model. However, the Mg(2+)-dependent enhancement of the RyR adaptation was not evident in this RyR-type channel, in contrast to that of cardiac sarcoplasmic reticulum RyR. The extended computer model is corroborated by simulating an independent experimental dataset, featuring mitochondrial Ca(2+) uptake, egress and sequestration. The model analyses of the two datasets validate the existence of two classes of Ca(2+) buffers that comprise the mitochondrial Ca(2+) sequestration system. The modelling study further indicates that the Ca(2+) buffers respond differentially depending on the source of Ca(2+) uptake. In particular, it suggests that the Class 1 Ca(2+) buffering capacity is auto-regulated by the rate at which Ca(2+) is taken up by mitochondria.
Collapse
Affiliation(s)
- Shivendra G Tewari
- Biotechnology and Bioengineering Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226-6509, USA.
| | | | | | | |
Collapse
|
28
|
Blomeyer CA, Bazil JN, Stowe DF, Pradhan RK, Dash RK, Camara AKS. Dynamic buffering of mitochondrial Ca2+ during Ca2+ uptake and Na+-induced Ca2+ release. J Bioenerg Biomembr 2012; 45:189-202. [PMID: 23225099 DOI: 10.1007/s10863-012-9483-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/08/2012] [Indexed: 11/26/2022]
Abstract
In cardiac mitochondria, matrix free Ca(2+) ([Ca(2+)]m) is primarily regulated by Ca(2+) uptake and release via the Ca(2+) uniporter (CU) and Na(+)/Ca(2+) exchanger (NCE) as well as by Ca(2+) buffering. Although experimental and computational studies on the CU and NCE dynamics exist, it is not well understood how matrix Ca(2+) buffering affects these dynamics under various Ca(2+) uptake and release conditions, and whether this influences the stoichiometry of the NCE. To elucidate the role of matrix Ca(2+) buffering on the uptake and release of Ca(2+), we monitored Ca(2+) dynamics in isolated mitochondria by measuring both the extra-matrix free [Ca(2+)] ([Ca(2+)]e) and [Ca(2+)]m. A detailed protocol was developed and freshly isolated mitochondria from guinea pig hearts were exposed to five different [CaCl2] followed by ruthenium red and six different [NaCl]. By using the fluorescent probe indo-1, [Ca(2+)]e and [Ca(2+)]m were spectrofluorometrically quantified, and the stoichiometry of the NCE was determined. In addition, we measured NADH, membrane potential, matrix volume and matrix pH to monitor Ca(2+)-induced changes in mitochondrial bioenergetics. Our [Ca(2+)]e and [Ca(2+)]m measurements demonstrate that Ca(2+) uptake and release do not show reciprocal Ca(2+) dynamics in the extra-matrix and matrix compartments. This salient finding is likely caused by a dynamic Ca(2+) buffering system in the matrix compartment. The Na(+)- induced Ca(2+) release demonstrates an electrogenic exchange via the NCE by excluding an electroneutral exchange. Mitochondrial bioenergetics were only transiently affected by Ca(2+) uptake in the presence of large amounts of CaCl2, but not by Na(+)- induced Ca(2+) release.
Collapse
Affiliation(s)
- Christoph A Blomeyer
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|