1
|
Preston SEJ, Dahabieh MS, Flores González RE, Gonçalves C, Richard VR, Leibovitch M, Dakin E, Papadopoulos T, Lopez Naranjo C, McCallum PA, Huang F, Gagnon N, Perrino S, Zahedi RP, Borchers CH, Jones RG, Brodt P, Miller WH, del Rincón SV. Blocking tumor-intrinsic MNK1 kinase restricts metabolic adaptation and diminishes liver metastasis. SCIENCE ADVANCES 2024; 10:eadi7673. [PMID: 39270021 PMCID: PMC11397505 DOI: 10.1126/sciadv.adi7673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/07/2024] [Indexed: 09/15/2024]
Abstract
Dysregulation of the mitogen-activated protein kinase interacting kinases 1/2 (MNK1/2)-eukaryotic initiation factor 4E (eIF4E) signaling axis promotes breast cancer progression. MNK1 is known to influence cancer stem cells (CSCs); self-renewing populations that support metastasis, recurrence, and chemotherapeutic resistance, making them a clinically relevant target. The precise function of MNK1 in regulating CSCs, however, remains unexplored. Here, we generated MNK1 knockout cancer cell lines, resulting in diminished CSC properties in vitro and slowed tumor growth in vivo. Using a multiomics approach, we functionally demonstrated that loss of MNK1 restricts tumor cell metabolic adaptation by reducing glycolysis and increasing dependence on oxidative phosphorylation. Furthermore, MNK1-null breast and pancreatic tumor cells demonstrated suppressed metastasis to the liver, but not the lung. Analysis of The Cancer Genome Atlas (TCGA) data from breast cancer patients validated the positive correlation between MNK1 and glycolytic enzyme protein expression. This study defines metabolic perturbations as a previously unknown consequence of targeting MNK1/2, which may be therapeutically exploited.
Collapse
Affiliation(s)
- Samuel E. J. Preston
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Michael S. Dahabieh
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Raúl Ernesto Flores González
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Christophe Gonçalves
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Vincent R. Richard
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Matthew Leibovitch
- MUHC Research Institute, McGill University Health Centre, Montréal, QC, Canada
| | - Eleanor Dakin
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Theodore Papadopoulos
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Carolina Lopez Naranjo
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Paige A. McCallum
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Fan Huang
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Natascha Gagnon
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Stephanie Perrino
- MUHC Research Institute, McGill University Health Centre, Montréal, QC, Canada
| | - René P. Zahedi
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, Winnipeg, MB, Canada
- Department of Internal Medicine, University of Manitoba, Winnipeg, MB, Canada
- CancerCare Manitoba, Winnipeg, MB, Canada
| | - Christoph H. Borchers
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
- Department of Pathology, McGill University, Montréal, QC, Canada
| | - Russell G. Jones
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI, USA
| | - Pnina Brodt
- MUHC Research Institute, McGill University Health Centre, Montréal, QC, Canada
- Departments of Surgery, Oncology and Medicine, McGill University, Montréal, QC, Canada
| | - Wilson H. Miller
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| | - Sonia V. del Rincón
- Division of Experimental Medicine, Faculty of Medicine, McGill University, Montréal, QC, Canada
- Gerald Bronfman Department of Oncology, Lady Davis Institute for Medical Research, Jewish General Hospital, Montréal, QC, Canada
| |
Collapse
|
2
|
Wang W, Lopez McDonald MC, Hariprasad R, Hamilton T, Frank DA. Oncogenic STAT Transcription Factors as Targets for Cancer Therapy: Innovative Strategies and Clinical Translation. Cancers (Basel) 2024; 16:1387. [PMID: 38611065 PMCID: PMC11011165 DOI: 10.3390/cancers16071387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Despite advances in our understanding of molecular aspects of oncogenesis, cancer remains a leading cause of death. The malignant behavior of a cancer cell is driven by the inappropriate activation of transcription factors. In particular, signal transducers and activators of transcription (STATs), which regulate many critical cellular processes such as proliferation, apoptosis, and differentiation, are frequently activated inappropriately in a wide spectrum of human cancers. Multiple signaling pathways converge on the STATs, highlighting their importance in the development and progression of oncogenic diseases. STAT3 and STAT5 are two members of the STAT protein family that are the most frequently activated in cancers and can drive cancer pathogenesis directly. The development of inhibitors targeting STAT3 and STAT5 has been the subject of intense investigations in the last decade, although effective treatment options remain limited. In this review, we investigate the specific roles of STAT3 and STAT5 in normal physiology and cancer biology, discuss the opportunities and challenges in pharmacologically targeting STAT proteins and their upstream activators, and offer insights into novel therapeutic strategies to identify STAT inhibitors as cancer therapeutics.
Collapse
Affiliation(s)
- Weiyuan Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA; (W.W.); (M.C.L.M.); (T.H.)
| | - Melanie Cristina Lopez McDonald
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA; (W.W.); (M.C.L.M.); (T.H.)
| | | | - Tiara Hamilton
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA; (W.W.); (M.C.L.M.); (T.H.)
| | - David A. Frank
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA; (W.W.); (M.C.L.M.); (T.H.)
| |
Collapse
|
3
|
Shang R, Liao Y, Zheng X. Inhibition of Wnt Signaling by Atovaquone Inhibits Gastric Cancer and Enhances Chemotherapy Effectiveness Through Activation of Casein Kinase 1α. Nutr Cancer 2024; 76:452-462. [PMID: 38494910 DOI: 10.1080/01635581.2024.2328377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
Abnormal activation of the Wnt/β-catenin signaling pathway is a driving force behind the progression of gastric cancer. Atovaquone, known as an antimalarial drug, has emerged as a potential candidate for anti-cancer therapy. This study investigated atovaquone's effects on gastric cancer and its underlying mechanisms. Using gastric cancer cell lines, we found that atovaquone, at concentrations relevant to clinical use, significantly reduced their viability. Notably, atovaquone exhibited a lower effectiveness in reducing the viability of normal gastric cells compared to gastric cancer cells. We further demonstrated that atovaquone inhibited gastric cancer growth and colony formation. Mechanism studies revealed that atovaquone inhibited mitochondrial respiration and induced oxidative stress. Experiments using ρ0 cells, deficient in mitochondrial respiration, indicated a slightly weaker effect of atovaquone on inducing apoptosis compared to wildtype cells. Atovaquone increased phosphorylated β-catenin at Ser45 and Ser33/37/Thr41, elevated Axin, and reduced β-catenin. The inhibitory effects of atovaquone on β-catenin were reversed upon depletion of CK1α. Furthermore, the combination of atovaquone with paclitaxel suppressed gastric cancer growth and improved overall survival in mice. Given that atovaquone is already approved for clinical use, these findings suggest its potential as a valuable addition to the drug arsenal available for treating gastric cancer.
Collapse
Affiliation(s)
- Rui Shang
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yingying Liao
- Department of Gastroenterology, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xuejiao Zheng
- Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
4
|
Chen A, Yu Z, Ma N, Lu X, Zhang Y, Xu W, Wang Y, Xie J, Qin Y, Mo G, Wu S, Hou J, Zhu W. Atovaquone enhances antitumor efficacy of TCR-T therapy by augmentation of ROS-induced ferroptosis in hepatocellular carcinoma. Cancer Immunol Immunother 2024; 73:49. [PMID: 38349553 PMCID: PMC10864481 DOI: 10.1007/s00262-024-03628-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/06/2024] [Indexed: 02/15/2024]
Abstract
T-cell receptor (TCR) engineered T-cell therapy has recently emerged as a promising adoptive immunotherapy approach for tumor treatment, yet hindered by tumor immune evasion resulting in poor therapeutic efficacy. The introduction of ferroptosis-targeted inducers offers a potential solution, as they empower T cells to induce ferroptosis and exert influence over the tumor microenvironment. Atovaquone (ATO) stands as a prospective pharmaceutical candidate with the potential to target ferroptosis, effectively provoking an excessive generation and accumulation of reactive oxygen species (ROS). In this study, we evaluated the effectiveness of a combination therapy comprising ATO and TCR-T cells against hepatocellular carcinoma (HCC), both in vitro and in vivo. The results of lactate dehydrogenase and cytokine assays demonstrated that ATO enhanced cytotoxicity mediated by AFP-specific TCR-T cells and promoted the release of IFN-γ in vitro. Additionally, in an established HCC xenograft mouse model, the combined therapy with low-dose ATO and TCR-T cells exhibited heightened efficacy in suppressing tumor growth, with no apparent adverse effects, comparable to the results achieved through monotherapy. The RNA-seq data unveiled a significant activation of the ferroptosis-related pathway in the combination therapy group in comparison to the TCR-T cells group. Mechanistically, the synergy between ATO and TCR-T cells augmented the release of IFN-γ by TCR-T cells, while concurrently elevating the intracellular and mitochondrial levels of ROS, expanding the labile iron pool, and impairing the integrity of the mitochondrial membrane in HepG2 cells. This multifaceted interaction culminated in the potentiation of ferroptosis within the tumor, primarily induced by an excess of ROS. In summary, the co-administration of ATO and TCR-T cells in HCC exhibited heightened vulnerability to ferroptosis. This heightened susceptibility led to the inhibition of tumor growth and the stimulation of an anti-tumor immune response. These findings suggest that repurposing atovaquone for adoptive cell therapy combination therapy holds the potential to enhance treatment outcomes in HCC.
Collapse
Affiliation(s)
- Anan Chen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhiwu Yu
- Department of Laboratory Medicine, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, 510095, Guangdong, China
| | - Na Ma
- Department of Pathology, The First People's Hospital of Foshan, Foshan, 528000, China
| | - Xinyu Lu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yajing Zhang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Weikang Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510220, China
| | - Yiyue Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jiayi Xie
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuqi Qin
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Guoheng Mo
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Sha Wu
- Department of Immunology, School of Basic Medical Sciences, Guangdong Provincial Key Laboratory of Proteomics, Southern Medical University, Guangzhou, 510515, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Wei Zhu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
5
|
Liu B, Zheng X, Li J, Yao P, Guo P, Liu W, Zhao G. Atovaquone inhibits colorectal cancer metastasis by regulating PDGFRβ/NF-κB signaling pathway. BMC Cancer 2023; 23:1070. [PMID: 37932661 PMCID: PMC10629062 DOI: 10.1186/s12885-023-11585-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 10/29/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Colorectal cancer is a common malignant tumour. Invasive growth and distant metastasis are the main characteristics of its malignant biological behaviour, and they are also the primary factors leading to death in colon cancer patients. Atovaquone is an antimalarial drug, and its anticancer effect has recently been demonstrated in several cancer models in vitro and in vivo, but it has not been examined in the treatment of colorectal cancer. METHODS To elucidate the effect of atovaquone on colorectal cancer. We used RNA transcriptome sequencing, RT‒PCR and Western blot experiments to examine the expression of NF-κB (p-P65), EMT-related proteins and related inflammatory factors (IL1B, IL6, CCL20, CCL2, CXCL8, CXCL6, IL6ST, FAS, IL10 and IL1A). The effect of atovaquone on colorectal cancer metastasis was validated using an animal model of lung metastases. We further used transcriptome sequencing, the GCBI bioinformatics database and the STRING database to predict relevant target proteins. Furthermore, pathological sections were collected from relevant cases for immunohistochemical verification. RESULTS This study showed that atovaquone could inhibit colorectal cancer metastasis and invasion in vivo and in vitro, inhibit the expression of E-cadherin protein, and promote the protein expression of N-cadherin, vimentin, ZEB1, Snail and Slug. Atovaquone could inhibit EMT by inhibiting NF-κB (p-P65) and related inflammatory factors. Further bioinformatics analysis and verification showed that PDGFRβ was one of the targets of atovaquone. CONCLUSION In summary, atovaquone can inhibit the expression of NF-κB (p-P65) and related inflammatory factors by inhibiting the protein expression of p-PDGFRβ, thereby inhibiting colorectal cancer metastasis. Atovaquone may be a promising drug for the treatment of colorectal cancer metastasis.
Collapse
Affiliation(s)
- Bin Liu
- Department of General Surgery, The Second Affiliated Hospital of Chengdu Medical College, National Nuclear Corporation 416 Hospital, 610051, Chengdu, Sichuan, China
| | - Xin Zheng
- Department of General Surgery, The Second Affiliated Hospital of Chengdu Medical College, National Nuclear Corporation 416 Hospital, 610051, Chengdu, Sichuan, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiajun Li
- Department of General Surgery, The Second Affiliated Hospital of Chengdu Medical College, National Nuclear Corporation 416 Hospital, 610051, Chengdu, Sichuan, China
| | - Peng Yao
- Department of Nephrology, The Second Affiliated Hospital of Chengdu Medical College, National Nuclear Corporation 416 Hospital, 610051, Chengdu, Sichuan, China
| | - Peng Guo
- Chengdu Medical College, 610500, Chengdu, Sichuan, China
| | - Wei Liu
- Department of General Surgery, The Second Affiliated Hospital of Chengdu Medical College, National Nuclear Corporation 416 Hospital, 610051, Chengdu, Sichuan, China
| | - Gaoping Zhao
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 610072, Chengdu, Sichuan, China.
| |
Collapse
|
6
|
Dong Y, Chen J, Chen Y, Liu S. Targeting the STAT3 oncogenic pathway: Cancer immunotherapy and drug repurposing. Biomed Pharmacother 2023; 167:115513. [PMID: 37741251 DOI: 10.1016/j.biopha.2023.115513] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023] Open
Abstract
Immune effector cells in the microenvironment tend to be depleted or remodeled, unable to perform normal functions, and even promote the malignant characterization of tumors, resulting in the formation of immunosuppressive microenvironments. The strategy of reversing immunosuppressive microenvironment has been widely used to enhance the tumor immunotherapy effect. Signal transducer and activator of transcription 3 (STAT3) was found to be a crucial regulator of immunosuppressive microenvironment formation and activation as well as a factor, stimulating tumor cell proliferation, survival, invasiveness and metastasis. Therefore, regulating the immune microenvironment by targeting the STAT3 oncogenic pathway might be a new cancer therapy strategy. This review discusses the pleiotropic effects of STAT3 on immune cell populations that are critical for tumorigenesis, and introduces the novel strategies targeting STAT3 oncogenic pathway for cancer immunotherapy. Lastly, we summarize the conventional drugs used in new STAT3-targeting anti-tumor applications.
Collapse
Affiliation(s)
- Yushan Dong
- Graduate School of Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin, Heilongjiang, China
| | - Jingyu Chen
- Department of Chinese Medicine Internal Medicine, Xiyuan Hospital, China Academy of Chinese Medical Sciences, No. 1 Xiyuan Playground, Haidian District, Beijing, China
| | - Yuhan Chen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Songjiang Liu
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, No.26, Heping Road, Xiangfang District, Harbin, Heilongjiang Province, China.
| |
Collapse
|
7
|
Villa-Ruano N, Anaya-Ruiz M, Villafaña-Diaz L, Barron-Villaverde D, Perez-Santos M. Drug repurposing of mito-atovaquone for cancer treatment. Pharm Pat Anal 2023; 12:143-149. [PMID: 37801038 DOI: 10.4155/ppa-2023-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Repurposing of approved drugs in a new strategy to combat cancer that leads to savings in time and investment. Atovaquone is a US FDA-approved drug for treatment of Pneumocystis carinii pneumonia and malaria. Patent US2023017373 describe the use of mito-atovaquone for the treatment of several types of cancer. Mito-atovaquone demonstrated antiproliferative activity in cell lines of pancreatic cancer, lung cancer and brain cancer and inhibited tumor growth in syngeneic mouse models and in animals genetically prone to breast cancer. Mito-atovaquone has the potential to be used successfully in the treatment of various types of tumors.
Collapse
Affiliation(s)
- Nemesio Villa-Ruano
- Dirección de Innovación y Transferencia de Conocimiento, Benemérita Universidad Autónoma de Puebla, Puebla CP 72570, México
- Consejo Nacional de Ciencia y Tecnología, Cátedras CONACYT, México
| | - Maricruz Anaya-Ruiz
- Laboratorio de Biología Celular, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla CP 74360, México
| | - Luis Villafaña-Diaz
- Posgrado en Planeación Estratégica y Dirección Tecnológica, Universidad Popular Autónoma del Estado de Puebla, Puebla CP 72410, México
| | - Diana Barron-Villaverde
- Posgrado en Planeación Estratégica y Dirección Tecnológica, Universidad Popular Autónoma del Estado de Puebla, Puebla CP 72410, México
| | - Martin Perez-Santos
- Dirección de Innovación y Transferencia de Conocimiento, Benemérita Universidad Autónoma de Puebla, Puebla CP 72570, México
| |
Collapse
|
8
|
Nagayama Y, Hamada K. Reprogramming of Cellular Metabolism and Its Therapeutic Applications in Thyroid Cancer. Metabolites 2022; 12:1214. [PMID: 36557253 PMCID: PMC9782759 DOI: 10.3390/metabo12121214] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 12/07/2022] Open
Abstract
Metabolism is a series of life-sustaining chemical reactions in organisms, providing energy required for cellular processes and building blocks for cellular constituents of proteins, lipids, carbohydrates and nucleic acids. Cancer cells frequently reprogram their metabolic behaviors to adapt their rapid proliferation and altered tumor microenvironments. Not only aerobic glycolysis (also termed the Warburg effect) but also altered mitochondrial metabolism, amino acid metabolism and lipid metabolism play important roles for cancer growth and aggressiveness. Thus, the mechanistic elucidation of these metabolic changes is invaluable for understanding the pathogenesis of cancers and developing novel metabolism-targeted therapies. In this review article, we first provide an overview of essential metabolic mechanisms, and then summarize the recent findings of metabolic reprogramming and the recent reports of metabolism-targeted therapies for thyroid cancer.
Collapse
Affiliation(s)
- Yuji Nagayama
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Koichiro Hamada
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
- Department of General Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-8501, Japan
| |
Collapse
|
9
|
Zhang N, Sundquist J, Sundquist K, Ji J. Proguanil and atovaquone use is associated with lower colorectal cancer risk: a nationwide cohort study. BMC Med 2022; 20:439. [PMID: 36357883 PMCID: PMC9650910 DOI: 10.1186/s12916-022-02643-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Individuals with a family history of colorectal cancer (CRC) are at a high risk of developing CRC. Preclinical studies suggest that the anti-malaria drug proguanil and atovaquone might play a role in preventing CRC, but population-based evidence is still lacking. METHODS By accessing a couple of nationwide Swedish registers, we performed a cohort study to explore whether using proguanil and atovaquone might associate with a lower risk of CRC by adopting a new-user study design. Adults who have 1 or more first-degree relatives (parents or siblings) diagnosed with CRC were identified and linked with the Prescribed Drug Register to evaluate their administration history of proguanil and atovaquone. Survival analysis of the time to CRC diagnosis with Cox proportional hazards regression was used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS A total of 16,817 incident proguanil/atovaquone users were identified and matched with 168,170 comparisons, who did not use proguanil/atovaquone, on the ratio of 1:10. We found a significant negative association between proguanil/atovaquone use and risk of CRC (adjusted HR, 0.76; 95% CI, 0.62-0.93). Test for trend showed significant dose- and duration-response correlations (P < 0.001). The association was more pronounced in CRC diagnosed at an advanced stage than at an early stage (adjusted HR, 0.69 vs.0.81). CONCLUSIONS This national-wide population-based cohort study showed that the use of proguanil and atovaquone was associated with a reduced risk of CRC among individuals with a family history of CRC.
Collapse
Affiliation(s)
- Naiqi Zhang
- Center for Primary Health Care Research, Lund University/Region Skåne, Skåne University Hospital, Jan Waldenströms gata 35, 205 02, Malmö, Sweden.
| | - Jan Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Skåne University Hospital, Jan Waldenströms gata 35, 205 02, Malmö, Sweden.,Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, USA.,Center for Community-based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Matsue, Japan
| | - Kristina Sundquist
- Center for Primary Health Care Research, Lund University/Region Skåne, Skåne University Hospital, Jan Waldenströms gata 35, 205 02, Malmö, Sweden.,Department of Family Medicine and Community Health, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, USA.,Center for Community-based Healthcare Research and Education (CoHRE), Department of Functional Pathology, School of Medicine, Shimane University, Matsue, Japan
| | - Jianguang Ji
- Center for Primary Health Care Research, Lund University/Region Skåne, Skåne University Hospital, Jan Waldenströms gata 35, 205 02, Malmö, Sweden
| |
Collapse
|
10
|
Exploring the Novel Computational Drug Target and Associated Key Pathways of Oral Cancer. Curr Issues Mol Biol 2022; 44:3552-3572. [PMID: 36005140 PMCID: PMC9406749 DOI: 10.3390/cimb44080244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022] Open
Abstract
Oral cancer (OC) is a serious health concern that has a high fatality rate. The oral cavity has seven kinds of OC, including the lip, tongue, and floor of the mouth, as well as the buccal, hard palate, alveolar, retromolar trigone, and soft palate. The goal of this study is to look into new biomarkers and important pathways that might be used as diagnostic biomarkers and therapeutic candidates in OC. The publicly available repository the Gene Expression Omnibus (GEO) was to the source for the collection of OC-related datasets. GSE74530, GSE23558, and GSE3524 microarray datasets were collected for analysis. Minimum cut-off criteria of |log fold-change (FC)| > 1 and adjusted p < 0.05 were applied to calculate the upregulated and downregulated differential expression genes (DEGs) from the three datasets. After that only common DEGs in all three datasets were collected to apply further analysis. Gene ontology (GO) and pathway analysis were implemented to explore the functional behaviors of DEGs. Then protein−protein interaction (PPI) networks were built to identify the most active genes, and a clustering algorithm was also implemented to identify complex parts of PPI. TF-miRNA networks were also constructed to study OC-associated DEGs in-depth. Finally, top gene performers from PPI networks were used to apply drug signature analysis. After applying filtration and cut-off criteria, 2508, 3377, and 670 DEGs were found for GSE74530, GSE23558, and GSE3524 respectively, and 166 common DEGs were found in every dataset. The GO annotation remarks that most of the DEGs were associated with the terms of type I interferon signaling pathway. The pathways of KEGG reported that the common DEGs are related to the cell cycle and influenza A. The PPI network holds 88 nodes and 492 edges, and CDC6 had the highest number of connections. Four clusters were identified from the PPI. Drug signatures doxorubicin and resveratrol showed high significance according to the hub genes. We anticipate that our bioinformatics research will aid in the definition of OC pathophysiology and the development of new therapies for OC.
Collapse
|
11
|
Dabravolski SA, Nikiforov NG, Zhuravlev AD, Orekhov NA, Mikhaleva LM, Orekhov AN. The Role of Altered Mitochondrial Metabolism in Thyroid Cancer Development and Mitochondria-Targeted Thyroid Cancer Treatment. Int J Mol Sci 2021; 23:ijms23010460. [PMID: 35008887 PMCID: PMC8745127 DOI: 10.3390/ijms23010460] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 01/02/2023] Open
Abstract
Thyroid cancer (TC) is the most common type of endocrine malignancy. Tumour formation, progression, and metastasis greatly depend on the efficacy of mitochondria-primarily, the regulation of mitochondria-mediated apoptosis, Ca2+ homeostasis, dynamics, energy production, and associated reactive oxygen species generation. Recent studies have successfully confirmed the mitochondrial aetiology of thyroid carcinogenesis. In this review, we focus on the recent progress in understanding the molecular mechanisms of thyroid cancer relating to altered mitochondrial metabolism. We also discuss the repurposing of known drugs and the induction of mitochondria-mediated apoptosis as a new trend in the development of anti-TC therapy.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 7/11 Dovatora Street, 210026 Vitebsk, Belarus
- Correspondence:
| | - Nikita G. Nikiforov
- AP Avtsyn Research Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (N.G.N.); (A.D.Z.); (L.M.M.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Street, 119334 Moscow, Russia
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Alexander D. Zhuravlev
- AP Avtsyn Research Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (N.G.N.); (A.D.Z.); (L.M.M.)
| | - Nikolay A. Orekhov
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, 121609 Moscow, Russia; (N.A.O.); (A.N.O.)
| | - Liudmila M. Mikhaleva
- AP Avtsyn Research Institute of Human Morphology, 3 Tsyurupa Street, 117418 Moscow, Russia; (N.G.N.); (A.D.Z.); (L.M.M.)
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Osennyaya Street 4-1-207, 121609 Moscow, Russia; (N.A.O.); (A.N.O.)
| |
Collapse
|
12
|
Xie F, Gong J, Tan H, Zhang H, Ma J. Preclinical evidence of synergism between atovaquone and chemotherapy by AMPK-dependent mitochondrial dysfunction. Eur J Pharmacol 2021; 907:174256. [PMID: 34129882 DOI: 10.1016/j.ejphar.2021.174256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 05/31/2021] [Accepted: 06/11/2021] [Indexed: 12/01/2022]
Abstract
Chemoresistance has been associated with increased reliance on mitochondrial functions in many cancers, including lung cancer. Atovaquone is an anti-malaria drug and mitochondrial inhibitor. In this work, we attempted to explore whether atovaquone can be repurposed for lung cancer treatment to overcome chemoresistance. We showed that atovaquone inhibited proliferation, colony formation and survival in non-small cell lung cancer cell (NSCLC) cells. Of note, the effective dose of atovaquone was clinically achievable. Combination index value indicated that atovaquone and carboplatin were synergistic in inhibiting NSCLC. The potent efficacy of atovaquone and its synergism with chemotherapeutic drug were also demonstrated in NSCLC xenograft mice model. Mechanism studies showed that the synergism between atovaquone and carboplatin was due to atovaquone's ability in disrupting mitochondrial functions via specifically inhibiting complex III induced oxygen consumption. Subsequently, atovaquone activated AMP-activated protein kinase (AMPK) and inhibited mammalian target of rapamycin (mTOR) signaling. AMPK inhibition reversed the anti-NSCLC activity of atovaquone, suggesting that the action of atovaquone is also dependent on AMPK. Our work suggests that atovaquone is an attractive candidate for NSCLC treatment. Our findings emphasize that inhibition of mitochondrial function is a promising therapeutic strategy to enhance NSCLC chemosensitivity.
Collapse
Affiliation(s)
- Fan Xie
- Department of Pulmonary and Critical Care Medicine, Jingzhou Hospital, Yangtze University, Jingzhou, China
| | - Jianhua Gong
- Department of Pulmonary and Critical Care Medicine, Jingzhou Hospital, Yangtze University, Jingzhou, China
| | - Hongxia Tan
- Department of Pulmonary and Critical Care Medicine, Jingzhou Hospital, Yangtze University, Jingzhou, China
| | - Han Zhang
- Department of Pulmonary and Critical Care Medicine, Jingzhou Hospital, Yangtze University, Jingzhou, China
| | - Jingping Ma
- Department of Pulmonary and Critical Care Medicine, Jingzhou Hospital, Yangtze University, Jingzhou, China.
| |
Collapse
|
13
|
IL-6 enhances CD4 cell motility by sustaining mitochondrial Ca 2+ through the noncanonical STAT3 pathway. Proc Natl Acad Sci U S A 2021; 118:2103444118. [PMID: 34507993 DOI: 10.1073/pnas.2103444118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 12/24/2022] Open
Abstract
Interleukin 6 (IL-6) is known to regulate the CD4 T cell function by inducing gene expression of a number of cytokines through activation of Stat3 transcription factor. Here, we reveal that IL-6 strengthens the mechanics of CD4 T cells. The presence of IL-6 during activation of mouse and human CD4 T cells enhances their motility (random walk and exploratory spread), resulting in an increase in travel distance and higher velocity. This is an intrinsic effect of IL-6 on CD4 T-cell fitness that involves an increase in mitochondrial Ca2+ Although Stat3 transcriptional activity is dispensable for this process, IL-6 uses mitochondrial Stat3 to enhance mitochondrial Ca2+-mediated motility of CD4 T cells. Thus, through a noncanonical pathway, IL-6 can improve competitive fitness of CD4 T cells by facilitating cell motility. These results could lead to alternative therapeutic strategies for inflammatory diseases in which IL-6 plays a pathogenic role.
Collapse
|
14
|
Guo Y, Hu B, Fu B, Zhu H. Atovaquone at clinically relevant concentration overcomes chemoresistance in ovarian cancer via inhibiting mitochondrial respiration. Pathol Res Pract 2021; 224:153529. [PMID: 34174549 DOI: 10.1016/j.prp.2021.153529] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022]
Abstract
The poor outcomes in ovarian cancer necessitate new treatments. Strategies to interfere with oxidative phosphorylation have been recently highlighted for the treatment of ovarian tumors. Atovaquone, an approved antimicrobial drug, has demonstrated anti-cancer potential and ability in disrupting mitochondrial function. Here, we investigated the efficacy of atovaquone as single drug and its combination with cisplatin in ovarian cancer. We show that atovaquone at clinically achievable concentrations is active against ovarian cancer bulky and stem-cell like cells via inhibiting growth and colony formation, and inducing caspase-dependent apoptosis. In contrast, atovaquone either does not or inhibits normal cells in a less extent than in ovarian cancer cells. Mechanism studies using multiple independent approaches demonstrate that atovaquone acts on ovarian cancer cells via decreasing mitochondrial complex III which results in mitochondrial respiration inhibition, energy reduction and oxidative stress. In line with in vitro findings, atovaquone alone at non-toxic dose is effective in inhibiting ovarian cancer growth in vivo, and its combination with cisplatin is synergistic. Our study suggests that atovaquone is a promising candidate to the treatment of ovarian cancer. Our work also supports the notion that mitochondrial respiration is a therapeutic target in ovarian cancer.
Collapse
Affiliation(s)
- Yue Guo
- Department of Oncology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Bo Hu
- Department of Oncology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Bingbing Fu
- Department of Obstetrics and Gynaecology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China.
| | - Hongyan Zhu
- Department of Oncology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, China.
| |
Collapse
|
15
|
Atovaquone Suppresses Triple-Negative Breast Tumor Growth by Reducing Immune-Suppressive Cells. Int J Mol Sci 2021; 22:ijms22105150. [PMID: 34068008 PMCID: PMC8152242 DOI: 10.3390/ijms22105150] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
A major contributing factor in triple-negative breast cancer progression is its ability to evade immune surveillance. One mechanism for this immunosuppression is through ribosomal protein S19 (RPS19), which facilitates myeloid-derived suppressor cells (MDSCs) recruitment in tumors, which generate cytokines TGF-β and IL-10 and induce regulatory T cells (Tregs), all of which are immunosuppressive and enhance tumor progression. Hence, enhancing the immune system in breast tumors could be a strategy for anticancer therapeutics. The present study evaluated the immune response of atovaquone, an antiprotozoal drug, in three independent breast-tumor models. Our results demonstrated that oral administration of atovaquone reduced HCC1806, CI66 and 4T1 paclitaxel-resistant (4T1-PR) breast-tumor growth by 45%, 70% and 42%, respectively. MDSCs, TGF-β, IL-10 and Tregs of blood and tumors were analyzed from all of these in vivo models. Our results demonstrated that atovaquone treatment in mice bearing HCC1806 tumors reduced MDSCs from tumor and blood by 70% and 30%, respectively. We also observed a 25% reduction in tumor MDSCs in atovaquone-treated mice bearing CI66 and 4T1-PR tumors. In addition, a decrease in TGF-β and IL-10 in tumor lysates was observed in atovaquone-treated mice with a reduction in tumor Tregs. Moreover, a significant reduction in the expression of RPS19 was found in tumors treated with atovaquone.
Collapse
|
16
|
Li YQ, Zheng Z, Liu QX, Lu X, Zhou D, Zhang J, Zheng H, Dai JG. Repositioning of Antiparasitic Drugs for Tumor Treatment. Front Oncol 2021; 11:670804. [PMID: 33996598 PMCID: PMC8117216 DOI: 10.3389/fonc.2021.670804] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
Drug repositioning is a strategy for identifying new antitumor drugs; this strategy allows existing and approved clinical drugs to be innovatively repurposed to treat tumors. Based on the similarities between parasitic diseases and cancer, recent studies aimed to investigate the efficacy of existing antiparasitic drugs in cancer. In this review, we selected two antihelminthic drugs (macrolides and benzimidazoles) and two antiprotozoal drugs (artemisinin and its derivatives, and quinolines) and summarized the research progresses made to date on the role of these drugs in cancer. Overall, these drugs regulate tumor growth via multiple targets, pathways, and modes of action. These antiparasitic drugs are good candidates for comprehensive, in-depth analyses of tumor occurrence and development. In-depth studies may improve the current tumor diagnoses and treatment regimens. However, for clinical application, current investigations are still insufficient, warranting more comprehensive analyses.
Collapse
Affiliation(s)
- Yan-Qi Li
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Zhi Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Quan-Xing Liu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xiao Lu
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Dong Zhou
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiao Zhang
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ji-Gang Dai
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
17
|
Sbirkov Y, Ivanova T, Burnusuzov H, Gercheva K, Petrie K, Schenk T, Sarafian V. The Protozoan Inhibitor Atovaquone Affects Mitochondrial Respiration and Shows In Vitro Efficacy Against Glucocorticoid-Resistant Cells in Childhood B-Cell Acute Lymphoblastic Leukaemia. Front Oncol 2021; 11:632181. [PMID: 33791218 PMCID: PMC8005808 DOI: 10.3389/fonc.2021.632181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/02/2021] [Indexed: 11/13/2022] Open
Abstract
Childhood acute lymphoblastic leukaemia (cALL) accounts for about one third of all paediatric malignancies making it the most common cancer in children. Alterations in tumour cell metabolism were first described nearly a century ago and have been acknowledged as one of the key characteristics of cancers including cALL. Two of the backbone chemotherapeutic agents in the treatment of this disease, Glucocorticoids and L-asparaginase, are exerting their anti-leukaemic effects through targeting cell metabolism. Even though risk stratification and treatment regimens have improved cure rates to nearly 90%, prognosis for relapsed children remains poor. Therefore, new therapeutic approaches are urgently required. Atovaquone is a well-tolerated drug used in the clinic mainly against malaria. Being a ubiquinone analogue, this drug inhibits co-enzyme Q10 of the electron transport chain (ETC) affecting oxidative phosphorylation and cell metabolism. In this study we tested the effect of Atovaquone on cALL cells in vitro. Pharmacologically relevant concentrations of the inhibitor could effectively target mitochondrial respiration in both cALL cell lines (REH and Sup-B15) and primary patient samples. We found that Atovaquone leads to a marked decrease in basal respiration and ATP levels, as well as reduced proliferation, cell cycle arrest, and induction of apoptosis. Importantly, we observed an enhanced anti-leukaemic effect when Atovaquone was combined with the standard chemotherapeutic Idarubicin, or with Prednisolone in an in vitro model of Glucocorticoid resistance. Repurposing of this clinically approved inhibitor renders further investigations, but also presents opportunities for fast-track trials as a single agent or in combination with standard chemotherapeutics.
Collapse
Affiliation(s)
- Yordan Sbirkov
- Department of Medical Biology, Medical University of Plovdiv, Plovdiv, Bulgaria.,Research Institute at Medical University of Plovdiv, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Tsvetomira Ivanova
- Research Institute at Medical University of Plovdiv, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Hasan Burnusuzov
- Research Institute at Medical University of Plovdiv, Medical University of Plovdiv, Plovdiv, Bulgaria.,Department of Pediatrics and Medical Genetics, Medical University of Plovdiv, Plovdiv, Bulgaria.,Center for Competence Personalized Innovative Medicine (PERIMED), Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Kalina Gercheva
- Department of Medical Biology, Medical University of Plovdiv, Plovdiv, Bulgaria
| | - Kevin Petrie
- Faculty of Health Sciences and Wellbeing, School of Medicine, University of Sunderland, Sunderland, United Kingdom
| | - Tino Schenk
- Department of Hematology and Medical Oncology, Jena University Hospital, Jena, Germany.,Institute of Molecular Cell Biology, Center for Molecular Biomedicine Jena (CMB), Jena University Hospital, Jena, Germany
| | - Victoria Sarafian
- Department of Medical Biology, Medical University of Plovdiv, Plovdiv, Bulgaria.,Research Institute at Medical University of Plovdiv, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
18
|
Boreel DF, Span PN, Heskamp S, Adema GJ, Bussink J. Targeting Oxidative Phosphorylation to Increase the Efficacy of Radio- and Immune-Combination Therapy. Clin Cancer Res 2021; 27:2970-2978. [PMID: 33419779 DOI: 10.1158/1078-0432.ccr-20-3913] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/25/2020] [Accepted: 01/06/2021] [Indexed: 11/16/2022]
Abstract
As tumors grow, they upregulate glycolytic and oxidative metabolism to support their increased and altered energetic demands. These metabolic changes have major effects on the tumor microenvironment. One of the properties leading to this aberrant metabolism is hypoxia, which occurs when tumors outgrow their often-chaotic vasculature. This scarcity of oxygen is known to induce radioresistance but can also have a disrupting effect on the antitumor immune response. Hypoxia inhibits immune effector cell function, while immune cells with a more suppressing phenotype become more active. Therefore, hypoxia strongly affects the efficacy of both radiotherapy and immunotherapy, as well as this therapy combination. Inhibition of oxidative phosphorylation (OXPHOS) is gaining interest for its ability to combat tumor hypoxia, and there are strong indications that this results in a reactivation of the immune response. This strategy decreases oxygen consumption, leading to better oxygenation of hypoxic tumor areas and eventually an increase in immunogenic cell death induced by radio-immunotherapy combinations. Promising preclinical improvements in radio- and immunotherapy efficacy have been observed by the hypoxia-reducing effect of OXPHOS inhibitors and several compounds are currently in clinical trials for their anticancer properties. Here, we will review the pharmacologic attenuation of tumor hypoxia using OXPHOS inhibitors, with emphasis on their impact on the intrinsic antitumor immune response and how this affects the efficacy of (combined) radio- and immunotherapy.
Collapse
Affiliation(s)
- Daan F Boreel
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands. .,Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Paul N Span
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sandra Heskamp
- Department of Medical Imaging, Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gosse J Adema
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Johan Bussink
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
19
|
Xu Y, Xue D, Bankhead A, Neamati N. Why All the Fuss about Oxidative Phosphorylation (OXPHOS)? J Med Chem 2020; 63:14276-14307. [PMID: 33103432 DOI: 10.1021/acs.jmedchem.0c01013] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Certain subtypes of cancer cells require oxidative phosphorylation (OXPHOS) to survive. Increased OXPHOS dependency is frequently a hallmark of cancer stem cells and cells resistant to chemotherapy and targeted therapies. Suppressing the OXPHOS function might also influence the tumor microenvironment by alleviating hypoxia and improving the antitumor immune response. Thus, targeting OXPHOS is a promising strategy to treat various cancers. A growing arsenal of therapeutic agents is under development to inhibit this biological process. This Perspective provides an overview of the structure and function of OXPHOS complexes, their biological functions in cancer, relevant research tools and models, as well as the limitations of OXPHOS as drug targets. We also focus on the current development status of OXPHOS inhibitors and potential therapeutic strategies to strengthen their clinical applications.
Collapse
Affiliation(s)
- Yibin Xu
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Ding Xue
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Armand Bankhead
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States.,Department of Biostatistics, University of Michigan, School of Public Health, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
20
|
Mudassar F, Shen H, O'Neill G, Hau E. Targeting tumor hypoxia and mitochondrial metabolism with anti-parasitic drugs to improve radiation response in high-grade gliomas. J Exp Clin Cancer Res 2020; 39:208. [PMID: 33028364 PMCID: PMC7542384 DOI: 10.1186/s13046-020-01724-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/30/2020] [Indexed: 02/06/2023] Open
Abstract
High-grade gliomas (HGGs), including glioblastoma and diffuse intrinsic pontine glioma, are amongst the most fatal brain tumors. These tumors are associated with a dismal prognosis with a median survival of less than 15 months. Radiotherapy has been the mainstay of treatment of HGGs for decades; however, pronounced radioresistance is the major obstacle towards the successful radiotherapy treatment. Herein, tumor hypoxia is identified as a significant contributor to the radioresistance of HGGs as oxygenation is critical for the effectiveness of radiotherapy. Hypoxia plays a fundamental role in the aggressive and resistant phenotype of all solid tumors, including HGGs, by upregulating hypoxia-inducible factors (HIFs) which stimulate vital enzymes responsible for cancer survival under hypoxic stress. Since current attempts to target tumor hypoxia focus on reducing oxygen demand of tumor cells by decreasing oxygen consumption rate (OCR), an attractive strategy to achieve this is by inhibiting mitochondrial oxidative phosphorylation, as it could decrease OCR, and increase oxygenation, and could therefore improve the radiation response in HGGs. This approach would also help in eradicating the radioresistant glioma stem cells (GSCs) as these predominantly rely on mitochondrial metabolism for survival. Here, we highlight the potential for repurposing anti-parasitic drugs to abolish tumor hypoxia and induce apoptosis of GSCs. Current literature provides compelling evidence that these drugs (atovaquone, ivermectin, proguanil, mefloquine, and quinacrine) could be effective against cancers by mechanisms including inhibition of mitochondrial metabolism and tumor hypoxia and inducing DNA damage. Therefore, combining these drugs with radiotherapy could potentially enhance the radiosensitivity of HGGs. The reported efficacy of these agents against glioblastomas and their ability to penetrate the blood-brain barrier provides further support towards promising results and clinical translation of these agents for HGGs treatment.
Collapse
Affiliation(s)
- Faiqa Mudassar
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, NSW, Westmead, Australia
| | - Han Shen
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, NSW, Westmead, Australia.
- Sydney Medical School, University of Sydney, NSW, Sydney, Australia.
| | - Geraldine O'Neill
- Children's Cancer Research Unit, The Children's Hospital at Westmead, NSW, Westmead, Australia
- Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, NSW, Sydney, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, NSW, Sydney, Australia
| | - Eric Hau
- Translational Radiation Biology and Oncology Laboratory, Centre for Cancer Research, Westmead Institute for Medical Research, NSW, Westmead, Australia
- Sydney Medical School, University of Sydney, NSW, Sydney, Australia
- Department of Radiation Oncology, Crown Princess Mary Cancer Centre, Westmead Hospital, NSW, Westmead, Australia
- Blacktown Hematology and Cancer Centre, Blacktown Hospital, NSW, Blacktown, Australia
| |
Collapse
|
21
|
Cortez-Maya S, Moreno-Herrera A, Palos I, Rivera G. Old Antiprotozoal Drugs: Are They Still Viable Options for Parasitic Infections or New Options for Other Diseases? Curr Med Chem 2020; 27:5403-5428. [DOI: 10.2174/0929867326666190628163633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/31/2019] [Accepted: 06/10/2019] [Indexed: 01/16/2023]
Abstract
Parasitic diseases, caused by helminths (ascariasis, hookworm, trichinosis, and schistosomiasis)
and protozoa (chagas, leishmaniasis, and amebiasis), are considered a serious public
health problem in developing countries. Additionally, there is a limited arsenal of anti-parasitic
drugs in the current pipeline and growing drug resistance. Therefore, there is a clear need for the
discovery and development of new compounds that can compete and replace these drugs that have
been controlling parasitic infections over the last decades. However, this approach is highly resource-
intensive, expensive and time-consuming. Accordingly, a drug repositioning strategy of the
existing drugs or drug-like molecules with known pharmacokinetics and safety profiles is alternatively
being used as a fast approach towards the identification of new treatments. The artemisinins,
mefloquine, tribendimidine, oxantel pamoate and doxycycline for the treatment of helminths, and
posaconazole and hydroxymethylnitrofurazone for the treatment of protozoa are promising candidates.
Therefore, traditional antiprotozoal drugs, which were developed in some cases decades ago,
are a valid solution. Herein, we review the current status of traditional anti-helminthic and antiprotozoal
drugs in terms of drug targets, mode of action, doses, adverse effects, and parasite resistance
to define their suitability for repurposing strategies. Current antiparasitic drugs are not only
still viable for the treatment of helminth and protozoan infections but are also important candidates
for new pharmacological treatments.
Collapse
Affiliation(s)
- Sandra Cortez-Maya
- Instituto de Quimica, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Circuito Exterior, Coyoacan, 04510 Ciudad de Mexico, Mexico
| | - Antonio Moreno-Herrera
- Laboratorio de Biotecnologia Farmaceutica, Centro de Biotecnologia Genomica, Instituto Politecnico Nacional, 88710 Reynosa, Mexico
| | - Isidro Palos
- Unidad AcadEmica Multidisciplinaria Reynosa-Rodhe, Universidad AutOnoma de Tamaulipas, 88710 Reynosa, Mexico
| | - Gildardo Rivera
- Laboratorio de Biotecnologia Farmaceutica, Centro de Biotecnologia Genomica, Instituto Politecnico Nacional, 88710 Reynosa, Mexico
| |
Collapse
|
22
|
STAT3 transcription factor as target for anti-cancer therapy. Pharmacol Rep 2020; 72:1101-1124. [PMID: 32880101 DOI: 10.1007/s43440-020-00156-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022]
Abstract
STATs constitute a large family of transcription activators and transducers of signals that have an important role in many cell functions as regulation of proliferation and differentiation of the cell also regulation of apoptosis and angiogenesis. STAT3 as a member of that family, recently was discovered to have a vital role in progression of different types of cancers. The activation of STAT3 was observed to regulate multiple gene functions during cancer-like cell proliferation, differentiation, apoptosis, metastasis, inflammation, immunity, cell survival, and angiogenesis. The inhibition of STAT3 activation has been an important target for cancer therapy. Inhibitors of STAT3 have been used for a long time for treatment of many types of cancers like leukemia, melanoma, colon, and renal cancer. In this review article, we summarize and discuss different drugs inhibiting the action of STAT3 and used in treatment of different types of cancer.
Collapse
|
23
|
Kirtonia A, Gala K, Fernandes SG, Pandya G, Pandey AK, Sethi G, Khattar E, Garg M. Repurposing of drugs: An attractive pharmacological strategy for cancer therapeutics. Semin Cancer Biol 2020; 68:258-278. [PMID: 32380233 DOI: 10.1016/j.semcancer.2020.04.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/20/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
Human malignancies are one of the major health-related issues though out the world and anticipated to rise in the future. The development of novel drugs/agents requires a huge amount of cost and time that represents a major challenge for drug discovery. In the last three decades, the number of FDA approved drugs has dropped down and this led to increasing interest in drug reposition or repurposing. The present review focuses on recent concepts and therapeutic opportunities for the utilization of antidiabetics, antibiotics, antifungal, anti-inflammatory, antipsychotic, PDE inhibitors and estrogen receptor antagonist, Antabuse, antiparasitic and cardiovascular agents/drugs as an alternative approach against human malignancies. The repurposing of approved non-cancerous drugs is an effective strategy to develop new therapeutic options for the treatment of cancer patients at an affordable cost in clinics. In the current scenario, most of the countries throughout the globe are unable to meet the medical needs of cancer patients because of the high cost of the available cancerous drugs. Some of these drugs displayed potential anti-cancer activity in preclinic and clinical studies by regulating several key molecular mechanisms and oncogenic pathways in human malignancies. The emerging pieces of evidence indicate that repurposing of drugs is crucial to the faster and cheaper discovery of anti-cancerous drugs.
Collapse
Affiliation(s)
- Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, 201313, India; Equal contribution
| | - Kavita Gala
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India; Equal contribution
| | - Stina George Fernandes
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India; Equal contribution
| | - Gouri Pandya
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, 201313, India; Equal contribution
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Haryana, 122413, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, 201313, India.
| |
Collapse
|
24
|
Laetitia G, Sven S, Fabrice J. Combinatorial Therapies in Thyroid Cancer: An Overview of Preclinical and Clinical Progresses. Cells 2020; 9:E830. [PMID: 32235612 PMCID: PMC7226736 DOI: 10.3390/cells9040830] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/11/2022] Open
Abstract
Accounting for about 2% of cancers diagnosed worldwide, thyroid cancer has caused about 41,000 deaths in 2018. Despite significant progresses made in recent decades in the treatment of thyroid cancer, many resistances to current monotherapies are observed. In our complete review, we report all treatments that were tested in combination against thyroid cancer. Many preclinical studies investigating the effects of inhibitors of the MAPK and PI3K pathways highlighted the importance of mutations in such signaling pathways and their impacts on the subsequent efficacy of targeted therapies, thus reinforcing the need of more personalized therapeutic strategies. Our review also points out the multiple possibilities of combinatory strategies, particularly using therapies targeting proliferation, survival, angiogenesis, and in combination with conventional treatments such as chemotherapies. In any case, resistances to anticancer therapies always develop through the activation of alternative signaling pathways. Combinatory treatments aim to blockade such mechanisms, which are gradually decrypted, thus offering new perspectives for the future. The preclinical and clinical aspects of our review allow us to have a global opinion of the different therapeutic options currently evaluated in combination and to be aware about new perspectives of treatment of thyroid cancer.
Collapse
Affiliation(s)
- Gheysen Laetitia
- Laboratory of Human Anatomy and Experimental Oncology, Faculty of Medicine, Mons University, Avenue du Champ de Mars, 8, B7000 Mons, Belgium; (S.S.); (J.F.)
| | | | | |
Collapse
|
25
|
Davis RT, Blake K, Ma D, Gabra MBI, Hernandez GA, Phung AT, Yang Y, Maurer D, Lefebvre AEYT, Alshetaiwi H, Xiao Z, Liu J, Locasale JW, Digman MA, Mjolsness E, Kong M, Werb Z, Lawson DA. Transcriptional diversity and bioenergetic shift in human breast cancer metastasis revealed by single-cell RNA sequencing. Nat Cell Biol 2020; 22:310-320. [PMID: 32144411 DOI: 10.1038/s41556-020-0477-0] [Citation(s) in RCA: 195] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 02/04/2020] [Indexed: 12/24/2022]
Abstract
Although metastasis remains the cause of most cancer-related mortality, mechanisms governing seeding in distal tissues are poorly understood. Here, we establish a robust method for the identification of global transcriptomic changes in rare metastatic cells during seeding using single-cell RNA sequencing and patient-derived-xenograft models of breast cancer. We find that both primary tumours and micrometastases display transcriptional heterogeneity but micrometastases harbour a distinct transcriptome program conserved across patient-derived-xenograft models that is highly predictive of poor survival of patients. Pathway analysis revealed mitochondrial oxidative phosphorylation as the top pathway upregulated in micrometastases, in contrast to higher levels of glycolytic enzymes in primary tumour cells, which we corroborated by flow cytometric and metabolomic analyses. Pharmacological inhibition of oxidative phosphorylation dramatically attenuated metastatic seeding in the lungs, which demonstrates the functional importance of oxidative phosphorylation in metastasis and highlights its potential as a therapeutic target to prevent metastatic spread in patients with breast cancer.
Collapse
Affiliation(s)
- Ryan T Davis
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Kerrigan Blake
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
| | - Dennis Ma
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Mari B Ishak Gabra
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Grace A Hernandez
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Anh T Phung
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Ying Yang
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Dustin Maurer
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
| | - Austin E Y T Lefebvre
- Biomedical Engineering Department, University of California, Irvine, Irvine, CA, USA
- Laboratory for Fluorescence Dynamics, University of California, Irvine, Irvine, CA, USA
| | - Hamad Alshetaiwi
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
- Department of Pathology, University of Hail, Hail, Saudi Arabia
| | - Zhengtao Xiao
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Juan Liu
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Michelle A Digman
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
- Biomedical Engineering Department, University of California, Irvine, Irvine, CA, USA
- Laboratory for Fluorescence Dynamics, University of California, Irvine, Irvine, CA, USA
| | - Eric Mjolsness
- Department of Computer Science, University of California, Irvine, Irvine, CA, USA
| | - Mei Kong
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, CA, USA
| | - Devon A Lawson
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
26
|
Thilakasiri PS, Dmello RS, Nero TL, Parker MW, Ernst M, Chand AL. Repurposing of drugs as STAT3 inhibitors for cancer therapy. Semin Cancer Biol 2019; 68:31-46. [PMID: 31711994 DOI: 10.1016/j.semcancer.2019.09.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/20/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
Abstract
Drug repurposing is a valuable approach in delivering new cancer therapeutics rapidly into the clinic. Existing safety and patient tolerability data for drugs already in clinical use represent an untapped resource in terms of identifying therapeutic agents for off-label protein targets. The multicellular effects of STAT3 mediated by a range of various upstream signaling pathways make it an attractive therapeutic target with utility in a range of diseases including cancer, and has led to the development of a variety of STAT3 inhibitors. Moreover, heightened STAT3 transcriptional activation in tumor cells and within the cells of the tumor microenvironment contribute to disease progression. Consequently, there are many STAT3 inhibitors in preclinical development or under evaluation in clinical trials for their therapeutic efficacy predominantly in inflammatory diseases and cancer. Despite these advances, many challenges remain in ultimately providing STAT3 inhibitors to patients as cancer treatments, highlighting the need not only for a better understanding of the mechanisms associated with STAT3 activation, but also how various pharmaceutical agents suppress STAT3 activity in various cancers. In this review we discuss the importance of STAT3-dependent functions in cancer, review the status of compounds designed as direct-acting STAT3 inhibitors, and describe some of the strategies for repurposing of drugs as STAT3 inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Pathum S Thilakasiri
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia
| | - Rhynelle S Dmello
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia
| | - Tracy L Nero
- ACRF Rational Drug Discovery Centre, St Vincent's Institute, Melbourne, Vic., Australia; Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Vic., Australia
| | - Michael W Parker
- ACRF Rational Drug Discovery Centre, St Vincent's Institute, Melbourne, Vic., Australia; Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, Melbourne, Vic., Australia
| | - Matthias Ernst
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia
| | - Ashwini L Chand
- Cancer and Inflammation Program, Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Heidelberg, Vic., Australia.
| |
Collapse
|
27
|
Uridine Prevents Negative Effects of OXPHOS Xenobiotics on Dopaminergic Neuronal Differentiation. Cells 2019; 8:cells8111407. [PMID: 31717322 PMCID: PMC6912777 DOI: 10.3390/cells8111407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/25/2022] Open
Abstract
Neuronal differentiation appears to be dependent on oxidative phosphorylation capacity. Several drugs inhibit oxidative phosphorylation and might be detrimental for neuronal differentiation. Some pregnant women take these medications during their first weeks of gestation when fetal nervous system is being developed. These treatments might have later negative consequences on the offspring's health. To analyze a potential negative effect of three widely used medications, we studied in vitro dopaminergic neuronal differentiation of cells exposed to pharmacologic concentrations of azidothymidine for acquired immune deficiency syndrome; linezolid for multidrug-resistant tuberculosis; and atovaquone for malaria. We also analyzed the dopaminergic neuronal differentiation in brains of fetuses from pregnant mice exposed to linezolid. The drugs reduced the in vitro oxidative phosphorylation capacity and dopaminergic neuronal differentiation. This differentiation process does not appear to be affected in the prenatally exposed fetus brain. Nevertheless, the global DNA methylation in fetal brain was significantly altered, perhaps linking an early exposure to a negative effect in older life. Uridine was able to prevent the negative effects on in vitro dopaminergic neuronal differentiation and on in vivo global DNA methylation. Uridine could be used as a protective agent against oxidative phosphorylation-inhibiting pharmaceuticals provided during pregnancy when dopaminergic neuronal differentiation is taking place.
Collapse
|
28
|
Vitkevičienė A, Janulis V, Žučenka A, Borutinskaitė V, Kaupinis A, Valius M, Griškevičius L, Navakauskienė R. Oxidative phosphorylation inhibition induces anticancerous changes in therapy-resistant-acute myeloid leukemia patient cells. Mol Carcinog 2019; 58:2008-2016. [PMID: 31385375 DOI: 10.1002/mc.23092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 01/27/2023]
Abstract
Treatment of acute myeloid leukemia (AML) is still a challenge because of common relapses or resistance to treatment. Therefore, the development of new therapeutic approaches is necessary. Various studies have shown that certain cancers, including some chemoresistant AML subsets, have upregulated oxidative phosphorylation. In this study, we aimed to assess treatment-resistant AML patients' cell modulation using oxidative phosphorylation inhibitors metformin and atovaquone alone and in various combinations with cytosine analog cytarabine and apoptosis inducer venetoclax. Metabolic activity analysis using Agilent Seahorse XF Extracellular Flux Analyzer revealed that peripheral blood mononuclear cells' metabolic state was different among treatment-resistant AML patients. We demonstrated that metformin decreased therapy-resistant-AML cell oxidative phosphorylation ex vivo, cotreatment with cytarabine and venetoclax slightly increased the effect. However, treatment with atovaquone did not have a marked effect in our experiment. Cell treatment had a slight effect on cell proliferation inhibition; combination of metformin, cytarabine, and venetoclax had the strongest effect. Moreover, a slightly higher effect on cell proliferation and cell cycle regulation was demonstrated in the cells with higher initial oxidative phosphorylation rate as demonstrated by gene expression analysis using reverse transcription quantitative polymerase chain reaction (RT-qPCR). Proteomic analysis by liquid chromatography-mass spectrometry demonstrated that chemoresistant AML cell treatment with metformin modulated metabolic pathways, while metformin combination with cytarabine and venetoclax boosted the effect. We suggest that oxidative phosphorylation inhibition is effective but not sufficient for chemoresistant AML treatment. Indeed, it causes anticancerous changes that might have an important additive role in combinatory treatment.
Collapse
Affiliation(s)
- Aida Vitkevičienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Vytautas Janulis
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Andrius Žučenka
- Centre of Hematology, Oncology and Transfusion Medicine, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Veronika Borutinskaitė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Algirdas Kaupinis
- Proteomics Centre, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Mindaugas Valius
- Proteomics Centre, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Laimonas Griškevičius
- Centre of Hematology, Oncology and Transfusion Medicine, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Rūta Navakauskienė
- Department of Molecular Cell Biology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
29
|
Gupta N, Srivastava SK. Atovaquone: An Antiprotozoal Drug Suppresses Primary and Resistant Breast Tumor Growth by Inhibiting HER2/β-Catenin Signaling. Mol Cancer Ther 2019; 18:1708-1720. [PMID: 31270151 DOI: 10.1158/1535-7163.mct-18-1286] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/06/2019] [Accepted: 06/28/2019] [Indexed: 12/18/2022]
Abstract
Breast cancer is the second leading cause of cancer-related mortality in women. In the current study, we evaluated the anticancer effects of an antiprotozoal drug, atovaquone, against several breast cancer cell lines. Our results showed that atovaquone treatment induced apoptosis and inhibited the growth of all the breast cancer cell lines tested, including several patient-derived cells. In addition, atovaquone treatment significantly reduced the expression of HER2, β-catenin, and its downstream molecules such as pGSK-3β, TCF-4, cyclin D1, and c-Myc in vitro Efficacy of atovaquone was further evaluated in an in vivo tumor model by orthotropic implantation of two highly aggressive 4T1 and CI66 breast cancer cells in the mammary fat pad of female mice. Our results demonstrated that oral administration of atovaquone suppressed the growth of CI66 and 4T1 tumors by 70% and 60%, respectively. Paclitaxel is the first-line chemotherapeutic agent for metastatic breast cancer. We demonstrate that atovaquone administration suppressed the growth of 4T1 paclitaxel-resistant tumors by 40%. Tumors from atovaquone-treated mice exhibited reduced HER2, β-catenin, and c-Myc levels alongside an increase in apoptosis in all the three tumor models when analyzed by Western blotting, IHC, and TUNEL assay. Taken together, our results indicate that atovaquone effectively reduces the growth of primary and paclitaxel-resistant breast tumors. Atovaquone is already in the clinics with high safety and tolerability profile. Therefore, the findings from our studies will potentially prompt further clinical investigation into repurposing atovaquone for the treatment of patients with advanced breast cancer.
Collapse
Affiliation(s)
- Nehal Gupta
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas.,Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, Texas
| | - Sanjay K Srivastava
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas. .,Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, Texas
| |
Collapse
|
30
|
Sun Y, Xu H, Chen X, Li X, Luo B. Inhibition of mitochondrial respiration overcomes hepatocellular carcinoma chemoresistance. Biochem Biophys Res Commun 2018; 508:626-632. [PMID: 30522865 DOI: 10.1016/j.bbrc.2018.11.182] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 11/28/2018] [Indexed: 02/07/2023]
Abstract
The clinical management of advanced hepatocellular carcinoma (HCC) is challenging due to its resistance to chemotherapy. In our work, we demonstrate that an antiparasitic drug atovaquone at clinically relevant concentrations is active against chemoresistant HCC. We show that atovaquone inhibits proliferation and induces apoptosis in not only HCC parental cells but also cells exposed to long time culture of chemotherapeutic agents. Consistently, the combination of atovaquone with cisplatin or doxorubicin achieved remarkably greater efficacy than single drug alone. Mechanistically, atovaquone overcomes HCC chemoresistance via supressing mitochondrial respiration and inducing oxidative stress. Atovaquone but not cisplatin or doxorubicin is ineffective in mitochondrial respiration-deficient ρ0, confirming mitochondria as a specific upstream target of atovaquone. Interestingly, we show that prolonged exposure of HCC cells to chemotherapeutic agents induces higher level of mitochondrial respiration, suggesting that tumors which develop chemoresistance after chemotherapy might be more dependent on mitochondrial respiration than primary tumors and explaining the sensitivity of chemoresistant HCC cells to atovaquone. We further show that atovaquone at tolerable does significantly inhibits chemoresistant HCC growth in mice throughout the duration of treatment. In line with in vitro data, we observe the increased oxidative stress in atovaquone-treated tumors. Our findings highlight the dependency of chemoresistant HCC on mitochondrial respiration and demonstrate that atovaquone is a potential drug to overcome HCC chemoresistance.
Collapse
Affiliation(s)
- Yuan Sun
- College of Pharmacy, Hubei University of Traditional Chinese Medicine, Wuhan, 430070, China
| | - Hai Xu
- Huangjiahu Hospital of Hubei University of Chinese Medicine, Wuhan, 430070, China
| | - Xinju Chen
- The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, China
| | - Xiaodong Li
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430070, China
| | - Baoping Luo
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430070, China.
| |
Collapse
|
31
|
Ke F, Yu J, Chen W, Si X, Li X, Yang F, Liao Y, Zuo Z. The anti-malarial atovaquone selectively increases chemosensitivity in retinoblastoma via mitochondrial dysfunction-dependent oxidative damage and Akt/AMPK/mTOR inhibition. Biochem Biophys Res Commun 2018; 504:374-379. [DOI: 10.1016/j.bbrc.2018.06.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 06/10/2018] [Indexed: 12/21/2022]
|
32
|
Nayak AP, Kapur A, Barroilhet L, Patankar MS. The fiber arrangement of the pathological human tympanic membrane. Cancers (Basel) 1981; 10:cancers10090337. [PMID: 30231564 PMCID: PMC6162441 DOI: 10.3390/cancers10090337] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/13/2018] [Accepted: 09/17/2018] [Indexed: 01/16/2023] Open
Abstract
Aerobic glycolysis is an important metabolic adaptation of cancer cells. There is growing evidence that oxidative phosphorylation is also an active metabolic pathway in many tumors, including in high grade serous ovarian cancer. Metastasized ovarian tumors use fatty acids for their energy needs. There is also evidence of ovarian cancer stem cells privileging oxidative phosphorylation (OXPHOS) for their metabolic needs. Metformin and thiazolidinediones such as rosiglitazone restrict tumor growth by inhibiting specific steps in the mitochondrial electron transport chain. These observations suggest that strategies to interfere with oxidative phosphorylation should be considered for the treatment of ovarian tumors. Here, we review the literature that supports this hypothesis and describe potential agents and critical control points in the oxidative phosphorylation pathway that can be targeted using small molecule agents. In this review, we also discuss potential barriers that can reduce the efficacy of the inhibitors of oxidative phosphorylation.
Collapse
Affiliation(s)
- Amruta P Nayak
- Indian Institute of Science Education and Research, Pune 411008, India.
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 54911, USA.
| | - Arvinder Kapur
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 54911, USA.
| | - Lisa Barroilhet
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 54911, USA.
| | - Manish S Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 54911, USA.
| |
Collapse
|