1
|
Wang J, Moody H, Beecher K, Chehrehasa F. Rediscovering a Forgotten Link: TSPO and RIM-BP1 in Appetite Regulation. Nutr Rev 2024:nuae127. [PMID: 39271177 DOI: 10.1093/nutrit/nuae127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024] Open
Abstract
The translocator protein of 18 kDa (TSPO) and RIM binding protein 1 (RIM-BP1) are both heavily expressed in neurons at the olfactory bulb. These proteins have overlapping functional profiles and are both implicated in the development of obesity. Over 20 years ago, a yeast 2-hybrid experiment discovered that RIM-BP1 interacts with a peptide constructed from a fraction of the TSPO sequence. Considering these data, the authors predict that the interaction between RIM-BP1 and TSPO could alter the olfactory system's mediation of appetite. Despite the therapeutic potential of this interaction, it has never been confirmed if the full TSPO protein and RIM-BP1 interact. The interaction is instead often cited as physiologically irrelevant. This commentary revisits the forgotten interaction between TSPO and RIM-BP1, reviewing all relevant literature discussing their relationship. Contrary to common discourse that the RIM-BP1 and TSPO are potential binding partners, while the interaction may regulate many neurological functions, existing evidence suggests that the interaction would have a specific role in odor-guided appetite. Further research into the nutritional neuroscientific consequences of TSPO/RIM-BP1 interactions should therefore be conducted.
Collapse
Affiliation(s)
- Joshua Wang
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Hayley Moody
- Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Kate Beecher
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Herston, QLD 4029, Australia
| | - Fatemeh Chehrehasa
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
2
|
Duport C, Armengaud J, Schmitt C, Morin D, Lacapère JJ. Elucidating the pivotal role of TSPO in porphyrin-related cellular processes, in Bacillus cereus. Biochimie 2024; 224:51-61. [PMID: 38423451 DOI: 10.1016/j.biochi.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
A structural homolog of the mammalian TSPO has been identified in the human pathogen Bacillus cereus. BcTSPO, in its recombinant form, has previously been shown to bind and degrade porphyrins. In this study, we generated a ΔtspO mutant strain in B. cereus ATCC 14579 and assessed the impact of the absence of BcTSPO on cellular proteomics and physiological characteristics. The proteomic analysis revealed correlations between the lack of BcTSPO and the observed growth defects, increased oxygen consumption, ATP deficiency, heightened tryptophan catabolism, reduced motility, and impaired biofilm formation in the ΔtspO mutant strain. Our results also suggested that BcTSPO plays a crucial role in regulating intracellular levels of metabolites from the coproporphyrin-dependent branch of the heme biosynthetic pathway. This regulation potentially underlies alterations in the metabolic landscape, emphasizing the pivotal role of BcTSPO in B. cereus aerobic metabolism. Notably, our study unveils, for the first time, the involvement of TSPO in tryptophan metabolism. These findings underscore the multifaceted role of TSPO, not only in metabolic pathways but also potentially in the microorganism's virulence mechanisms.
Collapse
Affiliation(s)
| | - Jean Armengaud
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200, Bagnols-sur-Cèze, France
| | - Caroline Schmitt
- Assistance Publique Hôpitaux de Paris (AP-HP), Centre Français des Porphyries, Hôpital Louis Mourier, 92700, Colombes, France; INSERM U1149, Center for Research on Inflammation (CRI), Université de Paris, 75018, Paris, France
| | - Didier Morin
- INSERM, U955, équipe 3, Faculté de Médecine, Université Paris Est, 94010, Creteil, France
| | - Jean-Jacques Lacapère
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS UMR 7203, Laboratoire des BioMolécules (LBM), 4 place Jussieu, F-75005, Paris, France
| |
Collapse
|
3
|
Hu B, Yu H, Du S, Li Q. Protoporphyrin IX metabolism mediated via translocator protein (CgTspO) involved in orange shell coloration of pacific oyster (Crassostrea gigas). Int J Biol Macromol 2024; 276:134020. [PMID: 39038584 DOI: 10.1016/j.ijbiomac.2024.134020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Mollusc shell color polymorphism is influenced by various factors. Pigments secreted in vivo by animals play a critical role in shell coloration. Among the different shell-color hues, orange pigmentation has been partially attributed to porphyrins. However, the detailed causal relationship between porphyrins and orange-shell phenotype in molluscs remains largely unexplored. The various strains of Pacific oyster (Crassostrea gigas) with different shell color provide useful models to study the molecular regulation of mollusc coloration. Accordingly, oysters with orange and gold-shells, exhibiting distinct porphyrin distributions, were selected for analysis of total metabolites and gene expression profile through mantle metabolomic and transcriptomic studies. Translocator protein (TspO) and protoporphyrin IX (PPIX) were identified as potential factors influencing oyster shell-color. The concentration of PPIX was measured using HPLC, while expression profiling of CgTspO was analyzed by qPCR, in situ hybridization, Western blotting, and immunofluorescence techniques. Moreover, the roles of CgTspO in regulating PPIX metabolism and affecting the orange-shell-coloration were investigated in vitro and in vivo. These studies indicate that PPIX and its associated metabolic protein, CgTspO may serve as new regulators of orange-shell-coloration in C. gigas. Data of this study offer new insights into oyster shell coloration and enhancing understandings of mollusc shell color polymorphism.
Collapse
Affiliation(s)
- Biyang Hu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
4
|
Giladi M, Montgomery AP, Kassiou M, Danon JJ. Structure-based drug design for TSPO: Challenges and opportunities. Biochimie 2024; 224:41-50. [PMID: 38782353 DOI: 10.1016/j.biochi.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/27/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
The translocator protein 18 kDa (TSPO) is an evolutionarily conserved mitochondrial transmembrane protein implicated in various neuropathologies and inflammatory conditions, making it a longstanding diagnostic and therapeutic target of interest. Despite the development of various classes of TSPO ligand chemotypes, and the elucidation of bacterial and non-human mammalian experimental structures, many unknowns exist surrounding its differential structural and functional features in health and disease. There are several limitations associated with currently used computational methodologies for modelling the native structure and ligand-binding behaviour of this enigmatic protein. In this perspective, we provide a critical analysis of the developments in the uses of these methods, outlining their uses, inherent limitations, and continuing challenges. We offer suggestions of unexplored opportunities that exist in the use of computational methodologies which offer promise for enhancing our understanding of the TSPO.
Collapse
Affiliation(s)
- Mia Giladi
- School of Chemistry, The University of Sydney, 2050, Sydney, NSW, Australia
| | | | - Michael Kassiou
- School of Chemistry, The University of Sydney, 2050, Sydney, NSW, Australia.
| | - Jonathan J Danon
- School of Chemistry, The University of Sydney, 2050, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Fagunwa O, Davies K, Bradbury J. The Human Gut and Dietary Salt: The Bacteroides/ Prevotella Ratio as a Potential Marker of Sodium Intake and Beyond. Nutrients 2024; 16:942. [PMID: 38612976 PMCID: PMC11013828 DOI: 10.3390/nu16070942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/09/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The gut microbiota is a dynamic ecosystem that plays a pivotal role in maintaining host health. The perturbation of these microbes has been linked to several health conditions. Hence, they have emerged as promising targets for understanding and promoting good health. Despite the growing body of research on the role of sodium in health, its effects on the human gut microbiome remain under-explored. Here, using nutrition and metagenomics methods, we investigate the influence of dietary sodium intake and alterations of the human gut microbiota. We found that a high-sodium diet (HSD) altered the gut microbiota composition with a significant reduction in Bacteroides and inverse increase in Prevotella compared to a low-sodium diet (LSD). However, there is no clear distinction in the Firmicutes/Bacteroidetes (F/B) ratio between the two diet types. Metabolic pathway reconstruction revealed the presence of sodium reabsorption genes in the HSD, but not LSD. Since it is currently difficult in microbiome studies to confidently associate the F/B ratio with what is considered healthy (e.g., low sodium) or unhealthy (e.g., high sodium), we suggest that the use of a genus-based ratio such as the Bacteroides/Prevotella (B/P) ratio may be more beneficial for the application of microbiome studies in health.
Collapse
Affiliation(s)
- Omololu Fagunwa
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK
| | - Kirsty Davies
- School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK;
| | - Jane Bradbury
- School of Medicine, Edge Hill University, Ormskirk L39 4QP, UK;
| |
Collapse
|
6
|
Yeh PS, Li CC, Lu YS, Chiang YW. Structural Insights into the Binding and Degradation Mechanisms of Protoporphyrin IX by the Translocator Protein TSPO. JACS AU 2023; 3:2918-2929. [PMID: 37885593 PMCID: PMC10598825 DOI: 10.1021/jacsau.3c00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
The 18 kDa translocator protein (TSPO) has gained considerable attention as a clinical biomarker for neuroinflammation and a potential therapeutic target. However, the mechanisms by which TSPO associates with ligands, particularly the endogenous porphyrin ligand protoporphyrin IX (PpIX), remain poorly understood. In this study, we employed mutagenesis- and spectroscopy-based functional assays to investigate TSPO-mediated photo-oxidative degradation of PpIX and identify key residues involved in the reaction. We provide structural evidence using electron spin resonance, which sheds light on the highly conserved intracellular loop (LP1) connecting transmembrane 1 (TM1) and TM2. Our findings show that LP1 does not act as a lid to regulate ligand binding; instead, it interacts strongly with the TM3-TM4 linker (LP3) to stabilize the local structure of LP3. This LP1-LP3 interaction is crucial for maintaining the binding pocket structure, which is essential for proper ligand binding. Our results also demonstrate that PpIX accesses the pocket through the lipid bilayer without requiring conformational changes in TSPO. This study provides an improved understanding of TSPO-mediated PpIX degradation, highlighting potential therapeutic strategies to regulate the reaction.
Collapse
Affiliation(s)
- Pei-Shan Yeh
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Chieh-Chin Li
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Yi-Shan Lu
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| | - Yun-Wei Chiang
- Department of Chemistry, National Tsing Hua University, Hsinchu 300-044, Taiwan
| |
Collapse
|
7
|
Firth W, Robb JL, Stewart D, Pye KR, Bamford R, Oguro-Ando A, Beall C, Ellacott KLJ. Regulation of astrocyte metabolism by mitochondrial translocator protein 18kDa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560159. [PMID: 37873215 PMCID: PMC10592862 DOI: 10.1101/2023.09.29.560159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The mitochondrial translocator protein 18kDa (TSPO) has been linked to a variety of functions from steroidogenesis to regulation of cellular metabolism and is an attractive therapeutic target for chronic CNS inflammation. Studies in the periphery using Leydig cells and hepatocytes, as well as work in microglia, indicate that the function of TSPO may vary between cells depending on their specialised roles. Astrocytes are critical for providing trophic and metabolic support in the brain as part of their role in maintaining brain homeostasis. Recent work has highlighted that TSPO expression increases in astrocytes under inflamed conditions and may drive astrocyte reactivity. However, relatively little is known about the role TSPO plays in regulating astrocyte metabolism and whether this protein is involved in immunometabolic processes in these cells. Using TSPO-deficient (TSPO-/-) mouse primary astrocytes in vitro (MPAs) and a human astrocytoma cell line (U373 cells), we performed metabolic flux analyses. We found that loss of TSPO reduced basal astrocyte respiration and increased the bioenergetic response to glucose reintroduction following glucopenia, while increasing fatty acid oxidation (FAO). Lactate production was significantly reduced in TSPO-/- astrocytes. Co-immunoprecipitation studies in U373 cells revealed that TSPO forms a complex with carnitine palmitoyltransferase 1a, which presents a mechanism wherein TSPO may regulate FAO in astrocytes. Compared to TSPO+/+ cells, inflammation induced by 3h lipopolysaccharide (LPS) stimulation of TSPO-/- MPAs revealed attenuated tumour necrosis factor release, which was enhanced in TSPO-/- MPAs at 24h LPS stimulation. Together these data suggest that while TSPO acts as a regulator of metabolic flexibility in astrocytes, loss of TSPO does not appear to modulate the metabolic response of astrocytes to inflammation, at least in response to the stimulus/time course used in this study.
Collapse
Affiliation(s)
- Wyn Firth
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Josephine L Robb
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Daisy Stewart
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Katherine R Pye
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Rosemary Bamford
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Asami Oguro-Ando
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Craig Beall
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Kate LJ Ellacott
- University of Exeter Medical School, Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
8
|
Liu J, Hiser C, Li F, Hall R, Garavito RM, Ferguson-Miller S. New TSPO Crystal Structures of Mutant and Heme-Bound Forms with Altered Flexibility, Ligand Binding, and Porphyrin Degradation Activity. Biochemistry 2023; 62:1262-1273. [PMID: 36947867 PMCID: PMC10077581 DOI: 10.1021/acs.biochem.2c00612] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/09/2023] [Indexed: 03/24/2023]
Abstract
The ancient protein TSPO (translocator protein 18kD) is found in all kingdoms and was originally identified as a binding site of benzodiazepine drugs. Its physiological function remains unclear, although porphyrins are conserved ligands. Several crystal structures of bacterial TSPO and nuclear magnetic resonance structures of a mouse form have revealed monomer and dimer configurations, but there have been no reports of structures with a physiological ligand. Here, we present the first X-ray structures of Rhodobacter sphaeroides TSPO with a physiological ligand bound. Two different variants (substituting threonine for alanine at position 139 (A139T) and phenylalanine for alanine at position 138 (A138F)) yielded well-diffracting crystals giving structures of both apo- and heme-containing forms. Both variants have wild-type micromolar affinity for heme and protoporphyrin IX, but A139T has very low ability to accelerate the breakdown of porphyrin in the presence of light and oxygen. The binding of heme to one protomer of the dimer of either mutant induces a more rigid structure, both in the heme-binding protomer and the protomer without heme bound, demonstrating an allosteric response. Ensemble refinement of the X-ray data reveals distinct regions of altered flexibility in response to single heme binding to the dimer. The A139T variant shows a more rigid structure overall, which may relate to extra hydrogen bonding of waters captured in the heme crevice. As TSPO has been suggested to have a role in heme delivery from mitochondria to the cytoplasm, the new structures provide potential clues regarding the structural basis of such activity.
Collapse
Affiliation(s)
- Jian Liu
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Carrie Hiser
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Fei Li
- Amgen
Inc., San Francisco, California 94080, United States
| | - Robert Hall
- Pharmacology
and Chemical Biology, University of Pittsburgh
School of Medicine, Pittsburgh, Pennsylvania 15213, United States
| | - R. Michael Garavito
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| | - Shelagh Ferguson-Miller
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
9
|
Baburina YL, Zvyagina AI, Odinokova IV, Krestinina OV. [Effect of erastin and G3139 on rat liver mitochondria in chronic alcoholic intoxication]. BIOMEDITSINSKAIA KHIMIIA 2023; 69:62-71. [PMID: 36857428 DOI: 10.18097/pbmc20236901062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The effect of modulators of VDAC channels - G3139 and erastin on the mitochondrial permeability transition pore (mPTP) functioning and changes in the content of proteins involved in regulation of mPTP (VDAC, CNPase, and TSPO) has been investigated in liver mitochondria of rats with chronic alcohol intoxication. It was shown that the mitochondria of rats treated with ethanol were more sensitive to mPTP induction. Moreover, ethanol induced changes in the expression of mPTP regulator proteins. G3139 and erastin were also able to influence the studied mitochondrial parameters, and they increased their effect in the liver mitochondria of rats treated with ethanol, as compared to the mitochondria of control rats. We hypothesize that the results of this study may help to elucidate the mechanisms of chronic action of ethanol on mitochondria and contribute to the development of new therapeutic strategies for treating the consequences of ethanol-related diseases.
Collapse
Affiliation(s)
- Yu L Baburina
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Science, Pushchino, Russia
| | - A I Zvyagina
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Science, Pushchino, Russia
| | - I V Odinokova
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Science, Pushchino, Russia
| | - O V Krestinina
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Science, Pushchino, Russia
| |
Collapse
|
10
|
Liere P, Liu GJ, Pianos A, Middleton RJ, Banati RB, Akwa Y. The Comprehensive Steroidome in Complete TSPO/PBR Knockout Mice under Basal Conditions. Int J Mol Sci 2023; 24:ijms24032474. [PMID: 36768796 PMCID: PMC9916858 DOI: 10.3390/ijms24032474] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The 18 kDa translocator protein (TSPO/PBR) is a multifunctional evolutionary highly conserved outer mitochondrial membrane protein. Decades of research has reported an obligatory role of TSPO/PBR in both mitochondrial cholesterol transport and, thus, steroid production. However, the strict dependency of steroidogenesis on TSPO/PBR has remained controversial. The aim of this study was to provide insight into the steroid profile in complete C57BL/6-Tspotm1GuWu(GuwiyangWurra)-knockout male mice (TSPO-KO) under basal conditions. The steroidome in the brain, adrenal glands, testes and plasma was measured by gas chromatography coupled to tandem mass spectrometry (GC-MS/MS). We found that steroids present in wild-type (WT) mice were also detected in TSPO-KO mice, including pregnenolone (PREG), progestogens, mineralo-glucocorticosteroids and androgens. The concentrations of PREG and most metabolites were similar between genotypes, except a significant decrease in the levels of the 5α-reduced metabolites of progesterone (PROG) in adrenal glands and plasma and of the 5α-reduced metabolites of corticosterone (B) in plasma in TSPO-KO compared to WT animals, suggesting other regulatory functions for the TSPO/PBR. The expression levels of the voltage-dependent anion-selective channel (VDAC-1), CYP11A1 and 5α-reductase were not significantly different between both groups. Thus, the complete deletion of the tspo gene in male mice does not impair de novo steroidogenesis in vivo.
Collapse
Affiliation(s)
- Philippe Liere
- Disease and Hormones of the Nervous System, U1195 Inserm-Université Paris Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France
| | - Guo-Jun Liu
- Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee, NSW 2232, Australia
- Faculty of Medicine and Health, Medical Imaging Sciences, Brain and Mind Centre, University of Sydney, Camperdown, NSW 2006, Australia
| | - Antoine Pianos
- Disease and Hormones of the Nervous System, U1195 Inserm-Université Paris Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France
| | - Ryan J. Middleton
- Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee, NSW 2232, Australia
| | - Richard B. Banati
- Australian Nuclear Science and Technology Organisation (ANSTO), Kirrawee, NSW 2232, Australia
- Faculty of Medicine and Health, Medical Imaging Sciences, Brain and Mind Centre, University of Sydney, Camperdown, NSW 2006, Australia
| | - Yvette Akwa
- Disease and Hormones of the Nervous System, U1195 Inserm-Université Paris Saclay, 80 rue du Général Leclerc, 94276 Kremlin-Bicêtre, France
- Correspondence: ; Tel.: +33-(0)1-49591878
| |
Collapse
|
11
|
Janisch N, Levendosky K, Budell WC, Quadri LEN. Genetic Underpinnings of Carotenogenesis and Light-Induced Transcriptome Remodeling in the Opportunistic Pathogen Mycobacterium kansasii. Pathogens 2023; 12:86. [PMID: 36678434 PMCID: PMC9861118 DOI: 10.3390/pathogens12010086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023] Open
Abstract
Mycobacterium kansasii (Mk) causes opportunistic pulmonary infections with tuberculosis-like features. The bacterium is well known for its photochromogenicity, i.e., the production of carotenoid pigments in response to light. The genetics defining the photochromogenic phenotype of Mk has not been investigated and defined pigmentation mutants to facilitate studies on the role of carotenes in the bacterium's biology are not available thus far. In this study, we set out to identify genetic determinants involved in Mk photochromogenicity. We screened a library of ~150,000 transposon mutants for colonies with pigmentation abnormalities. The screen rendered a collection of ~200 mutants. Each of these mutants could be assigned to one of four distinct phenotypic groups. The insertion sites in the mutant collection clustered in three chromosomal regions. A combination of phenotypic analysis, sequence bioinformatics, and gene expression studies linked these regions to carotene biosynthesis, carotene degradation, and monounsaturated fatty acid biosynthesis. Furthermore, introduction of the identified carotenoid biosynthetic gene cluster into non-pigmented Mycobacterium smegmatis endowed the bacterium with photochromogenicity. The studies also led to identification of MarR-type and TetR/AcrR-type regulators controlling photochromogenicity and carotenoid breakdown, respectively. Lastly, the work presented also provides a first insight into the Mk transcriptome changes in response to light.
Collapse
Affiliation(s)
- Niklas Janisch
- Department of Biology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Biology Program, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Keith Levendosky
- Department of Biology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Biology Program, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - William C. Budell
- Department of Biology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Biology Program, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Luis E. N. Quadri
- Department of Biology, Brooklyn College, City University of New York, 2900 Bedford Avenue, Brooklyn, NY 11210, USA
- Biology Program, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
- Biochemistry Program, Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| |
Collapse
|
12
|
Garza S, Chen L, Galano M, Cheung G, Sottas C, Li L, Li Y, Zirkin BR, Papadopoulos V. Mitochondrial dynamics, Leydig cell function, and age-related testosterone deficiency. FASEB J 2022; 36:e22637. [PMID: 36349989 DOI: 10.1096/fj.202201026r] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/04/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022]
Abstract
The mitochondrial translocator protein (18 kDa; TSPO) is a high-affinity cholesterol-binding protein that is an integral component of the cholesterol trafficking scaffold responsible for determining the rate of cholesterol import into the mitochondria for steroid biosynthesis. Previous studies have shown that TSPO declines in aging Leydig cells (LCs) and that its decline is associated with depressed circulating testosterone levels in aging rats. However, TSPO's role in the mechanistic decline in LC function is not fully understood. To address the role of TSPO depletion in LC function, we first examined mitochondrial quality in Tspo knockout mouse tumor MA-10 nG1 LCs compared to wild-type MA-10 cells. Tspo deletion caused a disruption in mitochondrial function and membrane dynamics. Increasing mitochondrial fusion via treatment with the mitochondrial fusion promoter M1 or by optic atrophy 1 (OPA1) overexpression resulted in the restoration of mitochondrial function and mitochondrial morphology as well as in steroid formation in TSPO-depleted nG1 LCs. LCs isolated from aged rats form less testosterone than LCs isolated from young rats. Treatment of aging LCs with M1 improved mitochondrial function and increased androgen formation, suggesting that aging LC dysfunction may stem from compromised mitochondrial dynamics caused by the age-dependent LC TSPO decline. These results, taken together, suggest that maintaining or enhancing mitochondrial fusion may provide therapeutic strategies to maintain or restore testosterone levels with aging.
Collapse
Affiliation(s)
- Samuel Garza
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Liting Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Melanie Galano
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Garett Cheung
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Chantal Sottas
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Lu Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Yuchang Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Barry R Zirkin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Vassilios Papadopoulos
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
13
|
Vakhitova YV, Zainullina LF, Sadovskii MS, Mokrov GV, Seredenin SB. Analysis of the Mechanisms of Action of a TSPO Ligand (GML-3 Compound) in a Model of Lipopolysaccharide-Induced Cell Damage. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02681-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Guilarte TR, Rodichkin AN, McGlothan JL, Acanda De La Rocha AM, Azzam DJ. Imaging neuroinflammation with TSPO: A new perspective on the cellular sources and subcellular localization. Pharmacol Ther 2021; 234:108048. [PMID: 34848203 DOI: 10.1016/j.pharmthera.2021.108048] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022]
Abstract
Translocator Protein 18 kDa (TSPO), previously named Peripheral Benzodiazepine Receptor, is a well-validated and widely used biomarker of neuroinflammation to assess diverse central nervous system (CNS) pathologies in preclinical and clinical studies. Many studies have shown that in animal models of human neurological and neurodegenerative disease and in the human condition, TSPO levels increase in the brain neuropil, and this increase is driven by infiltration of peripheral inflammatory cells and activation of glial cells. Therefore, a clear understanding of the dynamics of the cellular sources of the TSPO response is critically important in the interpretation of Positron Emission Tomography (PET) studies and for understanding the pathophysiology of CNS diseases. Within the normal brain compartment, there are tissues and cells such as the choroid plexus, ependymal cells of the lining of the ventricles, and vascular endothelial cells that also express TSPO at even higher levels than in glial cells. However, there is a paucity of knowledge if these cell types respond and increase TSPO in the diseased brain. These cells do provide a background signal that needs to be accounted for in TSPO-PET imaging studies. More recently, there are reports that TSPO may be expressed in neurons of the adult brain and TSPO expression may be increased by neuronal activity. Therefore, it is essential to study this topic with a great deal of detail, methodological rigor, and rule out alternative interpretations and imaging artifacts. High levels of TSPO are present in the outer mitochondrial membrane. Recent studies have provided evidence of its localization in other cellular compartments including the plasma membrane and perinuclear regions which may define functions that are different from that in mitochondria. A greater understanding of the TSPO subcellular localization in glial cells and infiltrating peripheral immune cells and associated function(s) may provide an additional layer of information to the understanding of TSPO neurobiology. This review is an effort to outline recent advances in understanding the cellular sources and subcellular localization of TSPO in brain cells and to examine remaining questions that require rigorous investigation.
Collapse
Affiliation(s)
- Tomás R Guilarte
- Brain, Behavior, & the Environment Program, Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, United States of America.
| | - Alexander N Rodichkin
- Brain, Behavior, & the Environment Program, Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, United States of America
| | - Jennifer L McGlothan
- Brain, Behavior, & the Environment Program, Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, United States of America
| | - Arlet Maria Acanda De La Rocha
- Brain, Behavior, & the Environment Program, Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, United States of America
| | - Diana J Azzam
- Brain, Behavior, & the Environment Program, Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, United States of America
| |
Collapse
|