1
|
Hammarin G, Norder P, Harimoorthy R, Chen G, Berntsen P, Widlund PO, Stoij C, Rodilla H, Swenson J, Brändén G, Neutze R. No observable non-thermal effect of microwave radiation on the growth of microtubules. Sci Rep 2024; 14:18286. [PMID: 39112501 PMCID: PMC11306338 DOI: 10.1038/s41598-024-68852-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Despite widespread public interest in the health impact of exposure to microwave radiation, studies of the influence of microwave radiation on biological samples are often inconclusive or contradictory. Here we examine the influence of microwave radiation of frequencies 3.5 GHz, 20 GHz and 29 GHz on the growth of microtubules, which are biological nanotubes that perform diverse functions in eukaryotic cells. Since microtubules are highly polar and can extend several micrometres in length, they are predicted to be sensitive to non-ionizing radiation. Moreover, it has been speculated that tubulin dimers within microtubules might rapidly toggle between different conformations, potentially participating in computational or other cooperative processes. Our data show that exposure to microwave radiation yields a microtubule growth curve that is distorted relative to control studies utilizing a homogeneous temperature jump. However, this apparent effect of non-ionizing radiation is reproduced by control experiments using an infrared laser or hot air to heat the sample and thereby mimic the thermal history of samples exposed to microwaves. As such, no non-thermal effects of microwave radiation on microtubule growth can be assigned. Our results highlight the need for appropriate control experiments in biophysical studies that may impact on the sphere of public interest.
Collapse
Affiliation(s)
- Greger Hammarin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Per Norder
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Rajiv Harimoorthy
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Guo Chen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Peter Berntsen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Monash Health Imaging, Monash Health, Clayton, VIC, Australia
| | - Per O Widlund
- Institution of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | | | - Helena Rodilla
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, Sweden
| | - Jan Swenson
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Gisela Brändén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Richard Neutze
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
2
|
Zolotukhin DB, Horkowitz A, Keidar M. Electromagnetic Nature of Distant Interaction of the Atmospheric Pressure Helium Plasma Discharge Tube with Glioblastoma Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:13597-13610. [PMID: 38453642 DOI: 10.1021/acsami.4c00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Atmospheric pressure coaxial gaseous discharge tubes (DTs) with helium have demonstrated potential for in vitro inactivation or sensitization of glioblastoma cancer cells. Here, we study the effect of two configurations of the DT electrode system on its electromagnetic emissivity as well as other physical factors (heating and UV emission) that form in the vicinity of this device. We demonstrate that the configuration of the DT electrodes that concentrates the discharge streamers near the top of the device has a distant (cm scale) deactivation effect on U87-MG glioblastoma cancer cells when irradiated, without measurable UV components in the DT optical emission spectra. This effect persists even through different barriers such as glass, plastic, or quartz Petri dishes but is eliminated when glass or plastic dishes are filled with water. These findings demonstrate the potential for development of noninvasive, physical-based treatment methods of deep-tissue tumors.
Collapse
Affiliation(s)
- Denis B Zolotukhin
- The George Washington University, 800 22nd Street, Northwest, Washington, District of Columbia 20052, United States
- Tomsk State University of Control Systems and Radioelectronics, 40 Lenin Avenue, Tomsk 634050, Russia
| | - Alex Horkowitz
- The George Washington University, 800 22nd Street, Northwest, Washington, District of Columbia 20052, United States
| | - Michael Keidar
- The George Washington University, 800 22nd Street, Northwest, Washington, District of Columbia 20052, United States
| |
Collapse
|
3
|
Blanco-Angulo C, Martínez-Lozano A, Gutiérrez-Mazón R, Juan CG, García-Martínez H, Arias-Rodríguez J, Sabater-Navarro JM, Ávila-Navarro E. Non-Invasive Microwave-Based Imaging System for Early Detection of Breast Tumours. BIOSENSORS 2022; 12:bios12090752. [PMID: 36140137 PMCID: PMC9496561 DOI: 10.3390/bios12090752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022]
Abstract
This work introduces a microwave-based system able to detect tumours in breast phantoms in a non-invasive way. The data acquisition system is composed of a hardware system which involves high-frequency components (antennas, switches and cables), a microcontroller, a vector network analyser used as measurement instrument and a computer devoted to the control and automation of the operation of the system. Concerning the software system, the computer runs a Python script which is in charge of mastering and automatising all the required stages for the data acquisition, from initialisation of the hardware system to performing and saving the measurements. We also report on the design of the high-performance broadband antenna used to carry out the measurements, as well as on the algorithm employed to build the final medical images, based on an adapted version of the so-called Improved Delay-and-Sum (IDAS) algorithm improved by a Hamming window filter and averaging preprocessing. The calibration and start-up of the system are also described. The experimental validation includes the use of different tumour models with different dielectric properties inside the breast phantom. The results show promising tumour detection capabilities, even when there is low dielectric contrast between the tumoural and healthy tissues, as is the usual case for dense breasts in young women.
Collapse
Affiliation(s)
- Carolina Blanco-Angulo
- Department of Materials Science, Optics and Electronic Technology, Miguel Hernández University of Elche, 03202 Elche, Spain
| | - Andrea Martínez-Lozano
- Department of Materials Science, Optics and Electronic Technology, Miguel Hernández University of Elche, 03202 Elche, Spain
| | - Roberto Gutiérrez-Mazón
- Department of Communications Engineering, Miguel Hernández University of Elche, 03202 Elche, Spain
| | - Carlos G. Juan
- Neuroengineering Biomedical Research Group, Institute of Bioengineering, Miguel Hernández University of Elche, 03202 Elche, Spain
- Medical Robotics Research Group, University of Málaga, 29071 Málaga, Spain
- Correspondence:
| | - Héctor García-Martínez
- Department of Materials Science, Optics and Electronic Technology, Miguel Hernández University of Elche, 03202 Elche, Spain
| | - Julia Arias-Rodríguez
- Department of Materials Science, Optics and Electronic Technology, Miguel Hernández University of Elche, 03202 Elche, Spain
| | - José M. Sabater-Navarro
- Neuroengineering Biomedical Research Group, Institute of Bioengineering, Miguel Hernández University of Elche, 03202 Elche, Spain
| | - Ernesto Ávila-Navarro
- Department of Materials Science, Optics and Electronic Technology, Miguel Hernández University of Elche, 03202 Elche, Spain
| |
Collapse
|
4
|
Perez FP, Bandeira JP, Perez Chumbiauca CN, Lahiri DK, Morisaki J, Rizkalla M. Multidimensional insights into the repeated electromagnetic field stimulation and biosystems interaction in aging and age-related diseases. J Biomed Sci 2022; 29:39. [PMID: 35698225 PMCID: PMC9190166 DOI: 10.1186/s12929-022-00825-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/07/2022] [Indexed: 11/25/2022] Open
Abstract
We provide a multidimensional sequence of events that describe the electromagnetic field (EMF) stimulation and biological system interaction. We describe this process from the quantum to the molecular, cellular, and organismal levels. We hypothesized that the sequence of events of these interactions starts with the oscillatory effect of the repeated electromagnetic stimulation (REMFS). These oscillations affect the interfacial water of an RNA causing changes at the quantum and molecular levels that release protons by quantum tunneling. Then protonation of RNA produces conformational changes that allow it to bind and activate Heat Shock Transcription Factor 1 (HSF1). Activated HSF1 binds to the DNA expressing chaperones that help regulate autophagy and degradation of abnormal proteins. This action helps to prevent and treat diseases such as Alzheimer's and Parkinson's disease (PD) by increasing clearance of pathologic proteins. This framework is based on multiple mathematical models, computer simulations, biophysical experiments, and cellular and animal studies. Results of the literature review and our research point towards the capacity of REMFS to manipulate various networks altered in aging (Reale et al. PloS one 9, e104973, 2014), including delay of cellular senescence (Perez et al. 2008, Exp Gerontol 43, 307-316) and reduction in levels of amyloid-β peptides (Aβ) (Perez et al. 2021, Sci Rep 11, 621). Results of these experiments using REMFS at low frequencies can be applied to the treatment of patients with age-related diseases. The use of EMF as a non-invasive therapeutic modality for Alzheimer's disease, specifically, holds promise. It is also necessary to consider the complicated and interconnected genetic and epigenetic effects of the REMFS-biological system's interaction while avoiding any possible adverse effects.
Collapse
Affiliation(s)
- Felipe P Perez
- Indiana University School of Medicine, Indianapolis, IN, USA.
- Division of General Internal Medicine and Geriatrics, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Joseph P Bandeira
- Indiana University School of Medicine, Indianapolis, IN, USA
- Division of General Internal Medicine and Geriatrics, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cristina N Perez Chumbiauca
- Indiana University School of Medicine, Indianapolis, IN, USA
- Division of Rheumatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Debomoy K Lahiri
- Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, Institute of Psychiatric Research, Neuroscience Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jorge Morisaki
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Maher Rizkalla
- Department of Electrical and Computer Engineering, Indiana University-Purdue University, Indianapolis, IN, USA
| |
Collapse
|
5
|
Radiofrequency Electromagnetic Field Exposure and Apoptosis: A Scoping Review of In Vitro Studies on Mammalian Cells. Int J Mol Sci 2022; 23:ijms23042322. [PMID: 35216437 PMCID: PMC8877695 DOI: 10.3390/ijms23042322] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
In the last decades, experimental studies have been carried out to investigate the effects of radiofrequency (RF, 100 kHz–300 GHz) electromagnetic fields (EMF) exposure on the apoptotic process. As evidence-based critical evaluation of RF and apoptosis in vitro is lacking, we performed a scoping literature review with the aim of systematically mapping the research performed in this area and identifying gaps in knowledge. Eligible for inclusion were in vitro studies assessing apoptosis in mammalian cells exposed to RF-EMF, which met basic quality criteria (sham control, at least three independent experiments, appropriate dosimetry analysis and temperature monitoring). We conducted a systematic literature review and charted data in order to overview the main characteristics of included studies. From the 4362 papers retrieved with our search strategy, 121 were pertinent but, among them, only 42 met basic quality criteria. We pooled data with respect to exposure (frequency, exposure level and duration) and biological parameters (cell type, endpoint), and highlighted some qualitative trends with respect to the detection of significant effect of RF-EMF on the apoptotic process. We provided a qualitative picture of the evidence accumulated so far, and highlighted that the quality of experimental methodology still needs to be highly improved.
Collapse
|
6
|
Zhu R, Wang H, Xu X, Zhao L, Zhang J, Dong J, Yao B, Wang H, Zhou H, Gao Y, Peng R. Effects of 1.5 and 4.3 GHz microwave radiation on cognitive function and hippocampal tissue structure in Wistar rats. Sci Rep 2021; 11:10061. [PMID: 33980913 PMCID: PMC8115682 DOI: 10.1038/s41598-021-89348-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 04/05/2021] [Indexed: 12/23/2022] Open
Abstract
Previous studies have shown that single-frequency microwave radiation can lead to cognitive decline in rats. However, few studies have focused on the combined effects of irradiation with different frequencies of microwaves. Our research aimed to investigate the effects of 1.5 GHz and 4.3 GHz microwave radiation, singly and in combination, on cognitive function and hippocampal tissue structure in rats. A total of 140 male Wistar rats were randomly divided into 4 groups: the S group (sham radiation group), L10 group (10 mW/cm2 1.5 GHz group), C10 group (10 mW/cm2 4.3 GHz band group) and LC10 group (10 mW/cm2 1.5 and 4.3 GHz multi-frequency radiation group). For 1–28 days after microwave radiation, we analyzed the average escape latency for the Morris water maze task, electroencephalograms, change in hippocampal tissue structure and ultrastructure, content of the Nissl body in the hippocampus, and activities of lactate dehydrogenase and succinate dehydrogenase. Compared to the S group, all exposure groups showed varying degrees of learning and memory decline and hippocampal structural damage. The results showed that 1.5 GHz and 4.3 GHz microwave radiation was able to induce cognitive impairment and hippocampal tissue damage in rats and combined radiation with both frequencies caused more serious injuries, but none of these damaging effects varied with microwave frequency.
Collapse
Affiliation(s)
- Ruiqing Zhu
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hui Wang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| | - Xinping Xu
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Li Zhao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Jing Zhang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ji Dong
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Binwei Yao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Haoyu Wang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Hongmei Zhou
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Yabing Gao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, China
| | - Ruiyun Peng
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, 100850, China.
| |
Collapse
|
7
|
Jain SS, Suresh A, Pirogova E. Effects of oscillating electric fields on conotoxin peptide conformation: A molecular dynamic simulation study. J Mol Graph Model 2021; 103:107799. [DOI: 10.1016/j.jmgm.2020.107799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
|
8
|
Mazinani SA, Noaman N, Pergande MR, Cologna S, Coorssen J, Yan H. Exposure to microwave irradiation at constant culture temperature slows the growth of Escherichia coliDE3 cells, leading to modified proteomic profiles. RSC Adv 2019; 9:11810-11817. [PMID: 35517035 PMCID: PMC9063421 DOI: 10.1039/c9ra00617f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/07/2019] [Indexed: 11/21/2022] Open
Abstract
E. coligrowth is slowed by exposure to non-lethal microwave irradiation, accompanied by changes in proteomic profiles.
Collapse
Affiliation(s)
- Sina Atrin Mazinani
- Department of Chemistry and Centre for Biotechnology
- Brock University
- Ontario
- Canada
| | - Nour Noaman
- Department of Applied Health Sciences
- Department of Biological Sciences
- Brock University
- Ontario
- Canada
| | | | | | - Jens Coorssen
- Department of Applied Health Sciences
- Department of Biological Sciences
- Brock University
- Ontario
- Canada
| | - Hongbin Yan
- Department of Chemistry and Centre for Biotechnology
- Brock University
- Ontario
- Canada
| |
Collapse
|
9
|
Sella S, Adami V, Amati E, Bernardi M, Chieregato K, Gatto P, Menarin M, Pozzato A, Pozzato G, Astori G. In-vitro analysis of Quantum Molecular Resonance effects on human mesenchymal stromal cells. PLoS One 2018; 13:e0190082. [PMID: 29293552 PMCID: PMC5749755 DOI: 10.1371/journal.pone.0190082] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 12/07/2017] [Indexed: 01/08/2023] Open
Abstract
Electromagnetic fields play an essential role in cellular functions interfering with cellular pathways and tissue physiology. In this context, Quantum Molecular Resonance (QMR) produces waves with a specific form at high-frequencies (4–64 MHz) and low intensity through electric fields. We evaluated the effects of QMR stimulation on bone marrow derived mesenchymal stromal cells (MSC). MSC were treated with QMR for 10 minutes for 4 consecutive days for 2 weeks at different nominal powers. Cell morphology, phenotype, multilineage differentiation, viability and proliferation were investigated. QMR effects were further investigated by cDNA microarray validated by real-time PCR. After 1 and 2 weeks of QMR treatment morphology, phenotype and multilineage differentiation were maintained and no alteration of cellular viability and proliferation were observed between treated MSC samples and controls. cDNA microarray analysis evidenced more transcriptional changes on cells treated at 40 nominal power than 80 ones. The main enrichment lists belonged to development processes, regulation of phosphorylation, regulation of cellular pathways including metabolism, kinase activity and cellular organization. Real-time PCR confirmed significant increased expression of MMP1, PLAT and ARHGAP22 genes while A2M gene showed decreased expression in treated cells compared to controls. Interestingly, differentially regulated MMP1, PLAT and A2M genes are involved in the extracellular matrix (ECM) remodelling through the fibrinolytic system that is also implicated in embryogenesis, wound healing and angiogenesis. In our model QMR-treated MSC maintained unaltered cell phenotype, viability, proliferation and the ability to differentiate into bone, cartilage and adipose tissue. Microarray analysis may suggest an involvement of QMR treatment in angiogenesis and in tissue regeneration probably through ECM remodelling.
Collapse
Affiliation(s)
- Sabrina Sella
- Advanced Cellular Therapy Laboratory, Hematology Unit, Vicenza Hospital, Vicenza, Italy
| | - Valentina Adami
- High Throughput Screening Core Facility, Center for Integrative Biology, University of Trento, Trento, Italy
| | - Eliana Amati
- Advanced Cellular Therapy Laboratory, Hematology Unit, Vicenza Hospital, Vicenza, Italy
| | - Martina Bernardi
- Advanced Cellular Therapy Laboratory, Hematology Unit, Vicenza Hospital, Vicenza, Italy
- Hematology Project Foundation, Vicenza, Italy
| | - Katia Chieregato
- Advanced Cellular Therapy Laboratory, Hematology Unit, Vicenza Hospital, Vicenza, Italy
- Hematology Project Foundation, Vicenza, Italy
| | - Pamela Gatto
- High Throughput Screening Core Facility, Center for Integrative Biology, University of Trento, Trento, Italy
| | - Martina Menarin
- Advanced Cellular Therapy Laboratory, Hematology Unit, Vicenza Hospital, Vicenza, Italy
| | | | | | - Giuseppe Astori
- Advanced Cellular Therapy Laboratory, Hematology Unit, Vicenza Hospital, Vicenza, Italy
- * E-mail:
| |
Collapse
|
10
|
Kuffel A. How water mediates the long-range interactions between remote protein molecules. Phys Chem Chem Phys 2017; 19:5441-5448. [DOI: 10.1039/c6cp05788h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mechanism of the influence of the presence of one protein molecule on the internal dynamics of another is proposed.
Collapse
Affiliation(s)
- Anna Kuffel
- Faculty of Chemistry
- Department of Physical Chemistry
- Gdansk University of Technology
- 80-233 Gdansk
- Poland
| |
Collapse
|