1
|
Sekine T, Galgano D, Casoni GP, Meeths M, Cron RQ, Bryceson YT. CD8 + T Cell Biology in Cytokine Storm Syndromes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1448:129-144. [PMID: 39117812 DOI: 10.1007/978-3-031-59815-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Familial forms of hemophagocytic lymphohistiocytosis (HLH) are caused by loss-of-function mutations in genes encoding perforin as well as those required for release of perforin-containing cytotoxic granule constituent. Perforin is expressed by subsets of CD8+ T cells and NK cells, representing lymphocytes that share mechanism of target cell killing yet display distinct modes of target cell recognition. Here, we highlight recent findings concerning the genetics of familial HLH that implicate CD8+ T cells in the pathogenesis of HLH and discuss mechanistic insights from animal models as well as patients that reveal how CD8+ T cells may contribute to or drive disease, at least in part through release of IFN-γ. Intriguingly, CD8+ T cells and NK cells may act differentially in severe hyperinflammatory diseases such as HLH. We also discuss how CD8+ T cells may promote or drive pathology in other cytokine release syndromes (CSS). Moreover, we review the molecular mechanisms underpinning CD8+ T cell-mediated lymphocyte cytotoxicity, key to the development of familial HLH. Together, recent insights to the pathophysiology of CSS in general and HLH in particular are providing promising new therapeutic targets.
Collapse
Affiliation(s)
- Takuya Sekine
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Donatella Galgano
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Giovanna P Casoni
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marie Meeths
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
- Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Randy Q Cron
- Division of Pediatric Rheumatology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Yenan T Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
- Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway.
| |
Collapse
|
2
|
Singh S, Gouri V, Samant M. TGF-β in correlation with tumor progression, immunosuppression and targeted therapy in colorectal cancer. Med Oncol 2023; 40:335. [PMID: 37855975 DOI: 10.1007/s12032-023-02204-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
Colorectal cancer (CRC) is a complex malignancy responsible for the second-highest cancer deaths worldwide. TGF-β maintains normal cellular homeostasis by inhibiting the cell cycle and inducing apoptosis, but its elevated level is correlated with colorectal cancer progression, as TGF-β is a master regulator of the epithelial-to-mesenchymal transition, a critical step of metastasis. Tumors, including CRC, use elevated TGF-β levels to avoid immune surveillance by modulating immune cell differentiation, proliferation, and effector function. Presently, the treatment of advanced CRC is mainly based on chemotherapy, with multiple adverse effects. Thus, there is a need to develop alternate tactics because CRC continue to be mostly resistant to the present therapeutic regimen. TGF-β blockade has emerged as a promising therapeutic target in cancer therapy. Blocking TGF-β with phytochemicals and other molecules, such as antisense oligonucleotides, monoclonal antibodies, and bifunctional traps, alone or in combination, may be a safer and more effective way to treat CRC. Furthermore, combination immunotherapy comprising TGF-β blockers and immune checkpoint inhibitors is gaining popularity because both molecules work synergistically to suppress the immune system. Here, we summarize the current understanding of TGF-β as a therapeutic target for managing CRC and its context-dependent tumor-promoting or tumor-suppressing nature.
Collapse
Affiliation(s)
- Sumeet Singh
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India
| | - Vinita Gouri
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India
- Department of Zoology, Kumaun University, Nainital, Uttarakhand, India
| | - Mukesh Samant
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India.
| |
Collapse
|
3
|
Qin T, Feng D, Zhou B, Bai L, Zhou S, Du J, Xu G, Yin Y. Melatonin attenuates lipopolysaccharide-induced immune dysfunction in dendritic cells. Int Immunopharmacol 2023; 120:110282. [PMID: 37224647 DOI: 10.1016/j.intimp.2023.110282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/26/2023] [Accepted: 05/01/2023] [Indexed: 05/26/2023]
Abstract
Melatonin, a ubiquitous hormone, is principally secreted from pineal gland in mammals and possesses strong antioxidant and anti-inflammatory properties. However, its specific roles in the immune functions of dendritic cells (DCs) during acute lung injury (ALI) remain unknown. In this study, we found that melatonin restored the body weight, decreased the lung weight/body weight ratio, alleviated the histopathological lung injury, and decreased the levels of cytokines (tumor necrosis factor-α (TNF-α), interleukin (IL)-12p70, IL-17, and IL-10) in bronchoalveolar lavage fluid of the lipopolysaccharide (LPS)-induced ALI murine model. Moreover, melatonin inhibited the major histocompatibility complex II (MHCII) expression of lung CD11b+ DCs after LPS challenge in vivo. In vitro, melatonin reversed the shape index, promoted the endocytosis, and inhibited phenotypic expression of MHCII, CD40, CD80, and CD86 in LPS-activated DCs. Furthermore, melatonin decreased the expression of an activated marker, CD69, and the secretion of pro-inflammatory cytokines (TNF-α, IL-12p70, and IL-17) after LPS challenge. It hampered the LPS-activated DCs migration by downregulating the C-C chemokine receptor 7 (CCR7) expression, and then weakened the ability of LPS-induced DCs to stimulate allogeneic CD4+ T cell proliferation. Melatonin shaped the immune function of DCs in a nuclear factor erythroid-2-related factor 2 (Nrf-2)/heme oxygenase-1 (HO-1) axis-dependent manner. These findings indicate that melatonin protects DCs from ALI-induced immunological stress and may be used to develop novel DC-targeting strategies for ALI therapy.
Collapse
Affiliation(s)
- Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Danni Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bangyue Zhou
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Lirong Bai
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shengjie Zhou
- Clinical Medical College, Yangzhou University, Department of Burn and Plastic Surgery, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Jiangtao Du
- Laboratory Animal Center, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Gang Xu
- Clinical Medical College, Yangzhou University, Department of Burn and Plastic Surgery, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China.
| | - Yinyan Yin
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, China; Guangling College, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
4
|
Garofalo C, De Marco C, Cristiani CM. NK Cells in the Tumor Microenvironment as New Potential Players Mediating Chemotherapy Effects in Metastatic Melanoma. Front Oncol 2021; 11:754541. [PMID: 34712615 PMCID: PMC8547654 DOI: 10.3389/fonc.2021.754541] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
Until the last decade, chemotherapy was the standard treatment for metastatic cutaneous melanoma, even with poor results. The introduction of immune checkpoints inhibitors (ICIs) radically changed the outcome, increasing 5-year survival from 5% to 60%. However, there is still a large portion of unresponsive patients that would need further therapies. NK cells are skin-resident innate cytotoxic lymphocytes that recognize and kill virus-infected as well as cancer cells thanks to a balance between inhibitory and activating signals delivered by surface molecules expressed by the target. Since NK cells are equipped with cytotoxic machinery but lack of antigen restriction and needing to be primed, they are nowadays gaining attention as an alternative to T cells to be exploited in immunotherapy. However, their usage suffers of the same limitations reported for T cells, that is the loss of immunogenicity by target cells and the difficulty to penetrate and be activated in the suppressive tumor microenvironment (TME). Several evidence showed that chemotherapy used in metastatic melanoma therapy possess immunomodulatory properties that may restore NK cells functions within TME. Here, we will discuss the capability of such chemotherapeutics to: i) up-regulate melanoma cells susceptibility to NK cell-mediated killing, ii) promote NK cells infiltration within TME, iii) target other immune cell subsets that affect NK cells activities. Alongside traditional systemic melanoma chemotherapy, a new pharmacological strategy based on nanocarriers loaded with chemotherapeutics is developing. The use of nanotechnologies represents a very promising approach to improve drug tolerability and effectiveness thanks to the targeted delivery of the therapeutic molecules. Here, we will also discuss the recent developments in using nanocarriers to deliver anti-cancer drugs within the melanoma microenvironment in order to improve chemotherapeutics effects. Overall, we highlight the possibility to use standard chemotherapeutics, possibly delivered by nanosystems, to enhance NK cells anti-tumor cytotoxicity. Combined with immunotherapies targeting NK cells, this may represent a valuable alternative approach to treat those patients that do not respond to current ICIs.
Collapse
Affiliation(s)
- Cinzia Garofalo
- Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Carmela De Marco
- Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| | - Costanza Maria Cristiani
- Department of Experimental and Clinical Medicine, "Magna Græcia" University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
5
|
Woods E, Zaiatz-Bittencourt V, Bannan C, Bergin C, Finlay DK, Hoffmann M, Brown A, Turner B, Makvandi-Nejad S, Vassilev V, Capone S, Folgori A, Hanke T, Barnes E, Dorrell L, Gardiner CM. Specific human cytomegalovirus signature detected in NK cell metabolic changes post vaccination. NPJ Vaccines 2021; 6:117. [PMID: 34584101 PMCID: PMC8478984 DOI: 10.1038/s41541-021-00381-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022] Open
Abstract
Effective vaccines for human immunodeficiency virus-1 (HIV-1) and hepatitis C virus (HCV) remain a significant challenge for these infectious diseases. Given that the innate immune response is key to controlling the scale and nature of developing adaptive immune responses, targeting natural killer (NK) cells that can promote a T-helper type 1 (Th1)-type immune response through the production of interferon-γ (IFNγ) remains an untapped strategic target for improved vaccination approaches. Here, we investigate metabolic and functional responses of NK cells to simian adenovirus prime and MVA boost vaccination in a cohort of healthy volunteers receiving a dual HCV-HIV-1 vaccine. Early and late timepoints demonstrated metabolic changes that contributed to the sustained proliferation of all NK cells. However, a strong impact of human cytomegalovirus (HCMV) on some metabolic and functional responses in NK cells was observed in HCMV seropositive participants. These changes were not restricted to molecularly defined adaptive NK cells; indeed, canonical NK cells that produced most IFNγ in response to vaccination were equally impacted in individuals with latent HCMV. In summary, NK cells undergo metabolic changes in response to vaccination, and understanding these in the context of HCMV is an important step towards rational vaccine design against a range of human viral pathogens.
Collapse
Affiliation(s)
- Elena Woods
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | - Vanessa Zaiatz-Bittencourt
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | | | | | - David K Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
- School of Pharmacy, Trinity College, Dublin 2, Ireland
| | - Matthias Hoffmann
- Division of Infectious Diseases and Hospital Epidemiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Internal Medicine, Division of Infectious Diseases and Hospital Epidemiology, Kantonsspital Olten, Olten, Switzerland
| | - Anthony Brown
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Bethany Turner
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | - Tomáš Hanke
- The Jenner Institute, University of Oxford, Oxford, UK
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Eleanor Barnes
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lucy Dorrell
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Clair M Gardiner
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
6
|
Hu X, Jia X, Xu C, Wei Y, Wang Z, Liu G, You Q, Lu G, Gong W. Downregulation of NK cell activities in Apolipoprotein C-III-induced hyperlipidemia resulting from lipid-induced metabolic reprogramming and crosstalk with lipid-laden dendritic cells. Metabolism 2021; 120:154800. [PMID: 34051224 DOI: 10.1016/j.metabol.2021.154800] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/02/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Apolipoprotein C-III (Apoc3) is a key component of triglyceride-rich lipoproteins (TRL). The Apoc3-transgenic mice are characterized by high levels of plasma triglyceride and free fatty acids (FFAs). Apoc3 stimulates human monocytes via activation of the NLRP3 inflammasome. Considering the NK cell downregulation in obese individuals and the possible stimulatory-effects of macrophages, variations of NK cell functions and underlying mechanisms were investigated in mice with Apoc3-induced hyperlipidemia. METHODS Variations of activities and glycolipid metabolism in NK cells of the Apoc3-transgenic mice with hyperlipidemia were detected. Molecular mechanisms of lipid-induced metabolic-reprogramming in NK cells were analyzed based on the transcriptome sequencing. Finally, effects of DCs in mice with hyperlipidemia on NK cell functions were determined. RESULTS Impaired number and function of NK cells in Apoc3TG mice was involved with the increased fatty acid oxidation and decreased glycolysis. Increased uptake of FFAs in Apoc3TG-NK cells contributed to the peroxisome proliferator-activated receptor (PPAR) activation and the downstream PTEN-AKT-mTOR/FOXO1 signaling pathway. Inhibition of PPAR or CPT1α only partly reversed the IFN-γ production of Apoc3TG-NK cells, but completely restored IFN-γ secretion by palmitic acid-treated NK cells ex vivo, indicating that other factors contributed to the Apoc3TG-NK cell downregulation. Meanwhile, Apoc3TG-DCs, which contained more lipids in the cytoplasm, depended on reactive oxygen species (ROS) to increase the expressions PD-L1, TGF-β1, and NKG2D ligands and suppress NK cell activities. DCs of the Apoc3TG-CD36-/+ hybrid mice with less intracellular lipids and ROS production could not inhibit NK cells, indicating that intracellular FFAs promoted the immune-modulatory function of DCs. CONCLUSIONS The downregulation of NK cell activities in individuals with Apoc3-induced hyperlipidemia was due to the increased fatty acid oxidation in NK cells and the bystander suppression caused by lipid-laden DCs. The dual recovery function of NK cells and DCs would improve the prognosis of patients with metabolic syndrome.
Collapse
Affiliation(s)
- Xiangyu Hu
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, China
| | - Xiaoqin Jia
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, China
| | - Cong Xu
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, China
| | - Yingying Wei
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, China
| | - Zhengbing Wang
- Department of Gastroenterology, Affiliated Hospital, Yangzhou University, Yangzhou 225001, China
| | - George Liu
- Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Institute of Cardiovascular Science, Peking University, Beijing 100191, China
| | - Qiang You
- Department of Immunology, Guangzhou Medical University, Guangzhou 511436, China
| | - Guotao Lu
- Department of Gastroenterology, Affiliated Hospital, Yangzhou University, Yangzhou 225001, China.
| | - Weijuan Gong
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou 225001, China; Department of Gastroenterology, Affiliated Hospital, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225001, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225001, China.
| |
Collapse
|
7
|
Ferlazzo G. In vivo evidence for dendritic cell lysis by NK cells: Hints on improving cancer vaccines by targeting NK cell activation. Oncoimmunology 2021; 1:1635-1636. [PMID: 23264919 PMCID: PMC3525628 DOI: 10.4161/onci.21682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
By using an experimental model of anticancer vaccination, we have recently lent support to the assumption, so far only sustained by in vitro data, that natural killer cells can restrain less immunogenic, allegedly tolerogenic, dendritic cells (DCs). This in vivo selection of immunogenic DCs appears to depend on perforin and to be associated with a more protective tumor-specific T lymphocyte response.
Collapse
Affiliation(s)
- Guido Ferlazzo
- Laboratory of Immunology and Biotherapy; Department of Human Pathology; University of Messina; Messina, Italy
| |
Collapse
|
8
|
EZH1/2 Inhibitors Favor ILC3 Development from Human HSPC-CD34 + Cells. Cancers (Basel) 2021; 13:cancers13020319. [PMID: 33467134 PMCID: PMC7830003 DOI: 10.3390/cancers13020319] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/19/2023] Open
Abstract
Simple Summary It has been well-demonstrated that EZH1/2 enzymes are involved not only in tumor development and progression, but also in the regulation of normal hematopoiesis from CD34+-HSPC. Given the crucial role of NK cells in tumor immune surveillance, in this study, we investigated whether EZH1/2 inhibitors can interfere with NK cell differentiation and functional maturation. Our results suggest that EZH1/2 inhibitors push CD56+ precursor proliferation, skewing precursor cell lineage commitment towards ILC3. In recent years, several clinical trials on the use of EZH1/2 inhibitors against solid tumors have been carried out. Since these in vitro observations revealed possible epigenetic mechanisms involved in NK/ILC development, it is important to evaluate patient monitoring of competent NK cells repertoire in order to design appropriate therapeutic protocols. Abstract The dysregulation of epigenetic modifications has a well-established role in the development and progression of hematological malignancies and of solid tumors. In this context, EZH1/2 inhibitors have been designed to interfere with EZH1/2 enzymes involved in histone methylation (e.g., H3K27me3), leading to tumor growth arrest or the restoration of tumor suppressor gene transcription. However, these compounds also affect normal hematopoiesis, interfering with self-renewal and differentiation of CD34+-Hematopoietic Stem/Progenitor Cells (HSPC), and, in turn, could modulate the generation of potential anti-tumor effector lymphocytes. Given the important role of NK cells in the immune surveillance of tumors, it would be useful to understand whether epigenetic drugs can modulate NK cell differentiation and functional maturation. CD34+-HSPC were cultured in the absence or in the presence of the EZH1/2 inhibitor UNC1999 and EZH2 inhibitor GSK126. Our results show that UNC1999 and GSK126 increased CD56+ cell proliferation compared to the control condition. However, UNC1999 and GSK 126 favored the proliferation of no-cytotoxic CD56+ILC3, according to the early expression of the AHR and ROR-γt transcription factors. Our results describe novel epigenetic mechanisms involved in the modulation of NK cell maturation that may provide new tools for designing NK cell-based immunotherapy.
Collapse
|
9
|
Vitale M, Cantoni C, Della Chiesa M, Ferlazzo G, Carlomagno S, Pende D, Falco M, Pessino A, Muccio L, De Maria A, Marcenaro E, Moretta L, Sivori S. An Historical Overview: The Discovery of How NK Cells Can Kill Enemies, Recruit Defense Troops, and More. Front Immunol 2019; 10:1415. [PMID: 31316503 PMCID: PMC6611392 DOI: 10.3389/fimmu.2019.01415] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells were originally defined as effector lymphocytes of innate immunity characterized by the unique ability of killing tumor and virally infected cells without any prior priming and expansion of specific clones. The "missing-self" theory, proposed by Klas Karre, the seminal discovery of the first prototypic HLA class I-specific inhibitory receptors, and, later, of the Natural Cytotoxicity Receptors (NCRs) by Alessandro Moretta, provided the bases to understand the puzzling behavior of NK cells. Actually, those discoveries proved crucial also for many of the achievements that, along the years, have contributed to the modern view of these cells. Indeed, NK cells, besides killing susceptible targets, are now known to functionally interact with different immune cells, sense pathogens using TLR, adapt their responses to the local environment, and, even, mount a sort of immunological memory. In this review, we will specifically focus on the main activating NK receptors and on their crucial role in the ever-increasing number of functions assigned to NK cells and other innate lymphoid cells (ILCs).
Collapse
Affiliation(s)
- Massimo Vitale
- U.O.C. Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Claudia Cantoni
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Mariella Della Chiesa
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Guido Ferlazzo
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, University of Messina, Messina, Italy
| | - Simona Carlomagno
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Daniela Pende
- U.O.C. Immunologia, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Michela Falco
- Laboratory of Clinical and Experimental Immunology, Integrated Department of Services and Laboratories, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Annamaria Pessino
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Letizia Muccio
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | - Andrea De Maria
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
- Dipartimento di Scienze della Salute (DISSAL), University of Genoa, Genoa, Italy
- Clinica Malattie Infettive, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Emanuela Marcenaro
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Lorenzo Moretta
- Laboratory of Tumor Immunology, Department of Immunology, IRCCS Ospedale Bambino Gesù, Rome, Italy
| | - Simona Sivori
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- Centre of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| |
Collapse
|
10
|
Kumar V. Natural killer cells in sepsis: Underprivileged innate immune cells. Eur J Cell Biol 2019; 98:81-93. [DOI: 10.1016/j.ejcb.2018.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 02/06/2023] Open
|
11
|
NK Cells Accumulate in Infected Tissues and Contribute to Pathogenicity of Ebola Virus in Mice. J Virol 2019; 93:JVI.01703-18. [PMID: 30814283 PMCID: PMC6498052 DOI: 10.1128/jvi.01703-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/10/2019] [Indexed: 01/26/2023] Open
Abstract
Ebola virus (EBOV) outbreaks can claim numerous lives and also devastate the local health infrastructure, as well as the economy, of affected countries. Lethal EBOV infection has been documented to decrease the levels of several immune cells in the blood that are necessary to defend the host. This decrease in immune cells is, however, not observed in individuals who survive EBOV infection. Having a better grasp of how these immune cells are lost is therefore of high importance to develop and improve new and existing therapeutics. The significance of our research is in identifying the mechanism responsible for the apparent loss of immune cells in lethal EBOV infection. This will allow therapeutic options aimed at preventing the loss of these immune cells, therefore allowing infected individuals to better fight the infection. Understanding the immune parameters responsible for survival following Ebola virus (EBOV) infection is paramount for developing countermeasures. In lethal EBOV infections, levels of both NK and T cells decline drastically in the circulation and lymphoid tissues before death. However, the fate of these lymphocytes in viral replication sites remains unknown. In this study, reverse transcription-PCR (RT-PCR) and fluorescence-activated cell sorting (FACS) analysis were used to investigate lymphocyte frequencies in various infected mouse tissues after challenge with mouse-adapted EBOV (MA-EBOV). A decrease in NK cell numbers from systemic circulation was observed concomitant to an increase of these cells in tissues that are supporting active replication of EBOV. Unexpectedly, NK accumulation in virus replication sites correlated with enhanced EBOV disease progression in specific conditions; at a high challenge dose, NK-depleted mice displayed lower viremia and liver damage and higher hepatic T cell levels. Upregulation of UL16 binding protein 1 (ULBP-1) was detected in hepatic T cells, suggesting that NK cells participate in their elimination. Overall, this study supports the concept that NK cells accumulate in EBOV-infected tissues and can contribute to viral pathogenicity. IMPORTANCE Ebola virus (EBOV) outbreaks can claim numerous lives and also devastate the local health infrastructure, as well as the economy, of affected countries. Lethal EBOV infection has been documented to decrease the levels of several immune cells in the blood that are necessary to defend the host. This decrease in immune cells is, however, not observed in individuals who survive EBOV infection. Having a better grasp of how these immune cells are lost is therefore of high importance to develop and improve new and existing therapeutics. The significance of our research is in identifying the mechanism responsible for the apparent loss of immune cells in lethal EBOV infection. This will allow therapeutic options aimed at preventing the loss of these immune cells, therefore allowing infected individuals to better fight the infection.
Collapse
|
12
|
Won HY, Lee JY, Ryu D, Kim HT, Chang SY. The Role of Plasmacytoid Dendritic Cells in Gut Health. Immune Netw 2019; 19:e6. [PMID: 30838161 PMCID: PMC6399095 DOI: 10.4110/in.2019.19.e6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/09/2018] [Accepted: 12/19/2018] [Indexed: 02/08/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a unique subset of cells with different functional characteristics compared to classical dendritic cells. The pDCs are critical for the production of type I IFN in response to microbial and self-nucleic acids. They have an important role for host defense against viral pathogen infections. In addition, pDCs have been well studied as a critical player for breaking tolerance to self-nucleic acids that induce autoimmune disorders such as systemic lupus erythematosus. However, pDCs have an immunoregulatory role in inducing the immune tolerance by generating Tregs and various regulatory mechanisms in mucosal tissues. Here, we summarize the recent studies of pDCs that focused on the functional characteristics of gut pDCs, including interactions with other immune cells in the gut. Furthermore, the dynamic role of gut pDCs will be investigated with respect to disease status including gut infection, inflammatory bowel disease, and cancers.
Collapse
Affiliation(s)
- Hye-Yeon Won
- Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University College of Pharmacy, Suwon, 16499, Korea
| | - Ju-Young Lee
- Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University College of Pharmacy, Suwon, 16499, Korea
| | - Dahye Ryu
- Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University College of Pharmacy, Suwon, 16499, Korea
| | - Hyung-Taek Kim
- Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University College of Pharmacy, Suwon, 16499, Korea
| | - Sun-Young Chang
- Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University College of Pharmacy, Suwon, 16499, Korea
| |
Collapse
|
13
|
Kormi SMA, Seghatchian J. Taming the immune system through transfusion in oncology patients. Transfus Apher Sci 2017; 56:310-316. [PMID: 28651910 DOI: 10.1016/j.transci.2017.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Blood transfusion is a clinical replacement therapy with many successes with some benefit and, also, some harm. Cancer is a multifaceted disease potentially associated with the immune system's weakness where the cancerous tumor cells escape from the immune system. Allogeneic blood transfusion, through five major mechanisms including the lymphocyte-T set, myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages (TAMs), natural killer cells (NKCs), and dendritic cells (DCs) can help the recipient's defense mechanisms. On the other hand, the role for each of the listed items includes activation of the antitumor CD8+ cytotoxic T lymphocytes (CD8+/CTL), temporal inactivation of Tregs, inactivation of the STAT3 signaling pathway, the use of bacteria to enhance the antitumor immune response and cellular immunotherapy. The above issues are concisely addressed in this manuscript based on a literature survey on this topic carried out by the first author.
Collapse
Affiliation(s)
- Seyed Mohammad Amin Kormi
- Cancer Genetics Research Unit, Reza Radiation Oncology Center, Mashhad, Iran; Department of Biology, Faculty of Science, University of Zabol, Zabol, Iran.
| | - Jerard Seghatchian
- International Consultancy in Blood Components Quality/ Safety Improvement, Audit/ Inspection and DDR Strategies, London, United Kingdom.
| |
Collapse
|
14
|
Zanetti SR, Ziblat A, Torres NI, Zwirner NW, Bouzat C. Expression and Functional Role of α7 Nicotinic Receptor in Human Cytokine-stimulated Natural Killer (NK) Cells. J Biol Chem 2016; 291:16541-52. [PMID: 27284006 DOI: 10.1074/jbc.m115.710574] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 12/18/2022] Open
Abstract
The homomeric α7 nicotinic receptor (nAChR) is one of the most abundant nAChRs in the central nervous system where it contributes to cognition, attention, and working memory. α7 nAChR is also present in lymphocytes, dendritic cells (DCs), and macrophages and it is emerging as an important drug target for intervention in inflammation and sepsis. Natural killer (NK) cells display cytotoxic activity against susceptible target cells and modulate innate and adaptive immune responses through their interaction with DCs. We here show that human NK cells also express α7 nAChR. α7 nAChR mRNA is detected by RT-PCR and cell surface expression of α7 nAChR is detected by confocal microscopy and flow cytometry using α-bungarotoxin, a specific antagonist. Both mRNA and protein levels increase during NK stimulation with cytokines (IL-12, IL-18, and IL-15). Exposure of cytokine-stimulated NK cells to PNU-282987, a specific α7 nAChR agonist, increases intracellular calcium concentration ([Ca(2+)]i) mainly released from intracellular stores, indicating that α7 nAChR is functional. Moreover, its activation by PNU-282987 plus a specific positive allosteric modulator greatly enhances the Ca(2+) responses in NK cells. Stimulation of NK cells with cytokines and PNU-282987 decreases NF-κB levels and nuclear mobilization, down-regulates NKG2D receptors, and decreases NKG2D-dependent cell-mediated cytotoxicity and IFN-γ production. Also, such NK cells are less efficient to trigger DC maturation. Thus, our results demonstrate the anti-inflammatory role of α7 nAChR in NK cells and suggest that modulation of its activity in these cells may constitute a novel target for regulation of the immune response.
Collapse
Affiliation(s)
- Samanta R Zanetti
- From the Instituto de Investigaciones Bioquímicas (INIBIBB), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000 Bahía Blanca
| | - Andrea Ziblat
- the Instituto de Biología y Medicina Experimental, CONICET, C1428ADN-Ciudad de Buenos Aires, and
| | - Nicolás I Torres
- the Instituto de Biología y Medicina Experimental, CONICET, C1428ADN-Ciudad de Buenos Aires, and
| | - Norberto W Zwirner
- the Instituto de Biología y Medicina Experimental, CONICET, C1428ADN-Ciudad de Buenos Aires, and the Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1428ADN-Ciudad de Buenos Aires, Argentina
| | - Cecilia Bouzat
- From the Instituto de Investigaciones Bioquímicas (INIBIBB), Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 8000 Bahía Blanca,
| |
Collapse
|
15
|
Shekhar S, Peng Y, Gao X, Joyee AG, Wang S, Bai H, Zhao L, Yang J, Yang X. NK cells modulate the lung dendritic cell-mediated Th1/Th17 immunity during intracellular bacterial infection. Eur J Immunol 2015. [PMID: 26222048 DOI: 10.1002/eji.201445390] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The impact of the interaction between NK cells and lung dendritic cells (LDCs) on the outcome of respiratory infections is poorly understood. In this study, we investigated the effect and mechanism of NK cells on the function of LDCs during intracellular bacterial lung infection of Chlamydia muridarum in mice. We found that the naive mice receiving LDCs from C. muridarum-infected NK-cell-depleted mice (NK-LDCs) showed more serious body weight loss, bacterial burden, and pathology upon chlamydial challenge when compared with the recipients of LDCs from infected sham-treated mice (NK+LDCs). Cytokine analysis of the local tissues of the former compared with the latter exhibited lower levels of Th1 (IFN-γ) and Th17 (IL-17), but higher levels of Th2 (IL-4), cytokines. Consistently, NK-LDCs were less efficient in directing C. muridarum-specific Th1 and Th17 responses than NK+LDCs when cocultured with CD4(+) T cells. In NK cell/LDC coculture experiments, the blockade of NKG2D receptor reduced the production of IL-12p70, IL-6, and IL-23 by LDCs. The neutralization of IFN-γ in the culture decreased the production of IL-12p70 by LDCs, whereas the blockade of TNF-α resulted in diminished IL-6 production. Our findings demonstrate that NK cells modulate LDC function to elicit Th1/Th17 immunity during intracellular bacterial infection.
Collapse
Affiliation(s)
- Sudhanshu Shekhar
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ying Peng
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xiaoling Gao
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Antony G Joyee
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Shuhe Wang
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hong Bai
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lei Zhao
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Jie Yang
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Xi Yang
- Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada.,Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
16
|
Hydrocortisone prevents immunosuppression by interleukin-10+ natural killer cells after trauma-hemorrhage. Crit Care Med 2015; 42:e752-61. [PMID: 25289930 DOI: 10.1097/ccm.0000000000000658] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Trauma induces a state of immunosuppression, which is responsible for the development of nosocomial infections. Hydrocortisone reduces the rate of pneumonia in patients with trauma. Because alterations of dendritic cells and natural killer cells play a central role in trauma-induced immunosuppression, we investigated whether hydrocortisone modulates the dendritic cell/natural killer cell cross talk in the context of posttraumatic pneumonia. DESIGN Experimental study. SETTINGS Research laboratory from an university hospital. SUBJECTS Bagg Albino/cJ mice (weight, 20-24 g). INTERVENTIONS First, in an a priori substudy of a multicenter, randomized, double-blind, placebo-controlled trial of hydrocortisone (200 mg/d for 7 d) in patients with severe trauma, we have measured the blood levels of five cytokines (tumor necrosis factor-α, interleukin-6, interleukin-10, interleukin-12, interleukin-17) at day 1 and day 8. In a second step, the effects of hydrocortisone on dendritic cell/natural killer cell cross talk were studied in a mouse model of posttraumatic pneumonia. Hydrocortisone (0.6 mg/mice i.p.) was administered immediately after hemorrhage. Twenty-four hours later, the mice were challenged with Staphylococcus aureus (7 × 10 colony-forming units). MEASUREMENTS AND MAIN RESULTS Using sera collected during a multicenter study in patients with trauma, we found that hydrocortisone decreased the blood level of interleukin-10, a cytokine centrally involved in the regulation of dendritic cell/natural killer cell cluster. In a mouse model of trauma-hemorrhage-induced immunosuppression, splenic natural killer cells induced an interleukin-10-dependent elimination of splenic dendritic cell. Hydrocortisone treatment reduced this suppressive function of natural killer cells and increased survival of mice with posthemorrhage pneumonia. The reduction of the interleukin-10 level in natural killer cells by hydrocortisone was partially dependent on the up-regulation of glucocorticoid-induced tumor necrosis factor receptor-ligand (TNFsf18) on dendritic cell. CONCLUSIONS These data demonstrate that trauma-induced immunosuppression is characterized by an interleukin-10-dependent elimination of dendritic cell by natural killer cells and that hydrocortisone improves outcome by limiting this immunosuppressive feedback loop.
Collapse
|
17
|
Bruno A, Ferlazzo G, Albini A, Noonan DM. A think tank of TINK/TANKs: tumor-infiltrating/tumor-associated natural killer cells in tumor progression and angiogenesis. J Natl Cancer Inst 2014; 106:dju200. [PMID: 25178695 PMCID: PMC4344546 DOI: 10.1093/jnci/dju200] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tumor-infiltrating leukocytes are often induced by the cancer microenvironment to display a protumor, proangiogenic phenotype. This “polarization” has been described for several myeloid cells, in particular macrophages. Natural killer (NK) cells represent another population of innate immune cells able to infiltrate tumors. The role of NK in tumor progression and angiogenesis has not yet been fully investigated. Several studies have shown that tumor-infiltrating NK (here referred to as “TINKs”) and tumor-associated NK (altered peripheral NK cells, which here we call “TANKs”) are compromised in their ability to lysew tumor cells. Recent data have suggested that they are potentially protumorigenic and can also acquire a proangiogenic phenotype. Here we review the properties of TINKs and TANKs and compare their activities to that of NK cells endowed with a physiological proangiogenic phenotype, in particular decidual NK cells. We speculate on the potential origins of TINKs and TANKs and on the immune signals involved in their differentiation and polarization. The TINK and TANK phenotype has broad implications in the immune response to tumors, ranging from a deficient control of cancer and cancer stem cells to an altered crosstalk with other relevant players of the immune response, such as dendritic cells, to induction of cancer angiogenesis. With this recently acquired knowledge that has not yet been put into perspective, we point out new potential avenues for therapeutic intervention involving NK cells as a target or an ally in oncology.
Collapse
Affiliation(s)
- Antonino Bruno
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy (AB, DMN); Department of Human Pathology, University of Messina, Messina, Italy (GF); Department of Research and Statistics, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy (AA); Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy (DMN)
| | - Guido Ferlazzo
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy (AB, DMN); Department of Human Pathology, University of Messina, Messina, Italy (GF); Department of Research and Statistics, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy (AA); Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy (DMN)
| | - Adriana Albini
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy (AB, DMN); Department of Human Pathology, University of Messina, Messina, Italy (GF); Department of Research and Statistics, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy (AA); Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy (DMN)
| | - Douglas M Noonan
- Scientific and Technology Park, IRCCS MultiMedica, Milano, Italy (AB, DMN); Department of Human Pathology, University of Messina, Messina, Italy (GF); Department of Research and Statistics, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy (AA); Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy (DMN)
| |
Collapse
|
18
|
Nakanishi T, Inaba M, Inagaki-Katashiba N, Tanaka A, Vien PTX, Kibata K, Ito T, Nomura S. Platelet-derived RANK ligand enhances CCL17 secretion from dendritic cells mediated by thymic stromal lymphopoietin. Platelets 2014; 26:425-31. [PMID: 24867354 DOI: 10.3109/09537104.2014.920081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs) play an integral role in cellular cascade that initiate and maintain Th2 responses in allergy. In this study, we examined the interaction between platelets and DCs to determine the role of platelets in the intervention of immune responses through modulation of DC functions. Blood-purified myeloid DCs, which had been stimulated with thymic stromal lymphopoietin (TSLP-DCs), formed aggregates with activated platelets. TSLP-DC maturation was induced after the interaction with TRAP6-activated platelets as indicated by an increase in the expression of CD86, CD40, and CD83. In addition, production of a Th2 cell-attracting chemokine, CCL17, was clearly upregulated by coculture of TSLP-DCs with TRAP6-activated platelets. We further found that an expression of RANK ligand (RANKL) on platelets was upregulated by the TRAP6 activation, and that, using the neutralizing antibody against RANKL, the platelet-derived RANKL induces the activation of TSLP-DCs. Thus, activated platelets can intervene in adaptive immune responses through induction of functional modulation of TSLP-DCs. Platelets have the ability to enhance the DC-mediated Th2 response and may contribute to the allergic inflammation. In conclusion, our study provides new insights in platelet functions and the possible mechanism of allergic responses that stem from DCs.
Collapse
Affiliation(s)
- Takahisa Nakanishi
- First Department of Internal Medicine, Kansai Medical University , Osaka , Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Carrega P, Bonaccorsi I, Di Carlo E, Morandi B, Paul P, Rizzello V, Cipollone G, Navarra G, Mingari MC, Moretta L, Ferlazzo G. CD56(bright)perforin(low) noncytotoxic human NK cells are abundant in both healthy and neoplastic solid tissues and recirculate to secondary lymphoid organs via afferent lymph. THE JOURNAL OF IMMUNOLOGY 2014; 192:3805-15. [PMID: 24646734 DOI: 10.4049/jimmunol.1301889] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
As limited information is available regarding the distribution and trafficking of NK cells among solid organs, we have analyzed a wide array of tissues derived from different human compartments. NK cells were widely distributed in most solid tissues, although their amount varied significantly depending on the tissue/organ analyzed. Interestingly, the distribution appeared to be subset specific, as some tissues were preferentially populated by CD56(bright)perforin(low) NK cells, with others by the CD56(dim)perforin(high) cytotoxic counterpart. Nevertheless, most tissues were highly enriched in CD56(bright)perforin(low) cells, and the distribution of NK subsets appeared in accordance with tissue gene expression of chemotactic factors, for which receptors are differently represented in the two subsets. Remarkably, chemokine expression pattern of tissues was modified after neoplastic transformation. As a result, although the total amount of NK cells infiltrating the tissues did not significantly change upon malignant transformation, the relative proportion of NK subsets infiltrating the tissues was different, with a trend toward a tumor-infiltrating NK population enriched in noncytotoxic cells. Besides solid tissues, CD56(bright)perforin(low) NK cells were also detected in seroma fluids, which represents an accrual of human afferent lymph, indicating that they may leave peripheral solid tissues and recirculate to secondary lymphoid organs via lymphatic vessels. Our results provide a comprehensive mapping of NK cells in human tissues, demonstrating that discrete NK subsets populate and recirculate through most human tissues and that organ-specific chemokine expression patterns might affect their distribution. In this context, chemokine switch upon neoplastic transformation might represent a novel mechanism of tumor immune escape.
Collapse
|
20
|
Abstract
Advances in immunobiology knowledge as well as in cell culture processes that generate large numbers of purified and functionally mature dendritic cells (DCs) have raised the possibility that DCs might represent promising clinical agents to generate effective immune responses against cancer. Here, we discuss the present pitfalls of dendritic cell vaccines for the treatment of human cancer with regard to the most recent knowledge in the biology of DCs. In particular, we highlight the relevance of improving our current understanding of DC trafficking, functions and interactions with other cells of innate immunity for the development of more effective cancer vaccines.
Collapse
|
21
|
The proangiogenic phenotype of natural killer cells in patients with non-small cell lung cancer. Neoplasia 2013; 15:133-42. [PMID: 23441128 DOI: 10.1593/neo.121758] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/05/2012] [Accepted: 12/10/2012] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment can polarize innate immune cells to a proangiogenic phenotype. Decidual natural killer (dNK) cells show an angiogenic phenotype, yet the role for NK innate lymphoid cells in tumor angiogenesis remains to be defined. We investigated NK cells from patients with surgically resected non-small cell lung cancer (NSCLC) and controls using flow cytometric and functional analyses. The CD56(+)CD16(-) NK subset in NSCLC patients, which represents the predominant NK subset in tumors and a minor subset in adjacent lung and peripheral blood, was associated with vascular endothelial growth factor (VEGF), placental growth factor (PIGF), and interleukin-8 (IL-8)/CXCL8 production. Peripheral blood CD56(+)CD16(-) NK cells from patients with the squamous cell carcinoma (SCC) subtype showed higher VEGF and PlGF production compared to those from patients with adenocarcinoma (AdC) and controls. Higher IL-8 production was found for both SCC and AdC compared to controls. Supernatants derived from NSCLC CD56(+)CD16(-) NK cells induced endothelial cell chemotaxis and formation of capillary-like structures in vitro, particularly evident in SCC patients and absent from controls. Finally, exposure to transforming growth factor-β(1) (TGFβ(1)), a cytokine associated with dNK polarization, upregulated VEGF and PlGF in peripheral blood CD56(+)CD16(-) NK cells from healthy subjects. Our data suggest that NK cells in NSCLC act as proangiogenic cells, particularly evident for SCC and in part mediated by TGFβ(1).
Collapse
|
22
|
Dongarrà ML, Rizzello V, Muccio L, Fries W, Cascio A, Bonaccorsi I, Ferlazzo G. Mucosal immunology and probiotics. Curr Allergy Asthma Rep 2013; 13:19-26. [PMID: 23054627 DOI: 10.1007/s11882-012-0313-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cross-talk between the mucosa-associated immune system and microbiota is critical in mucosal tissue homeostasis as well as in protection against infectious and inflammatory diseases occurring at mucosal sites. This recent evidence has paved the way to therapeutic approaches aimed at modulating the mucosa-associated immune system using probiotics. Different strains of probiotics possess the ability to finely regulate dendritic cell (DC) activation, polarizing the subsequent T cell activity toward Th1 (e.g. Lactobacillus (Lb) acidophilus), Th2 (Lb.reuteri and Bifidobacterium bifidum) or, as more recently demonstrated, Th17 responses induced by specific strains such as Lb.rhamnosus GG and Lac23a, the latter isolated in our laboratory. Here, we review some recent advances in our understanding of probiotics effects on mucosal immunology, particularly on cells of the innate immunity such as DCs. We also highlight our own experiences in modulating DC functions by commensal bacteria and discuss the relevance of probiotics administration in the treatment of human immunopathologies.
Collapse
Affiliation(s)
- Maria Luisa Dongarrà
- Laboratory of Immunology and Biotherapy, Dept. of Human Pathology, University of Messina, A.O.U. Policlinico, Via Consolare Valeria 1, Messina, Italy.
| | | | | | | | | | | | | |
Collapse
|
23
|
Wu Y, Kuang DM, Pan WD, Wan YL, Lao XM, Wang D, Li XF, Zheng L. Monocyte/macrophage-elicited natural killer cell dysfunction in hepatocellular carcinoma is mediated by CD48/2B4 interactions. Hepatology 2013; 57:1107-16. [PMID: 23225218 DOI: 10.1002/hep.26192] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 09/19/2012] [Indexed: 12/12/2022]
Abstract
UNLABELLED Defects in natural killer (NK) cell functions are necessary for tumor immune escape, but their underlying regulatory mechanisms in human cancers remain largely unknown. Here we show, in detailed studies of NK cells in 294 untreated patients with hepatocellular carcinoma (HCC), that accumulation of functional NK cells in HCC tissues could predict improved survival of patients. However, in patients with advanced-stage HCC, NK cells were significantly decreased in number with impaired tumor necrosis factor alpha (TNF-α) and interferon-gamma (IFN-γ) production. High infiltration of peritumoral stroma monocytes/macrophages was positively correlated with impaired functional activities of NK cells in intratumoral areas. Further kinetic experiments revealed that soon after exposure to tumor-derived monocytes, NK cells underwent a rapid, transient activation, but then they became exhausted, and eventually died. The monocytes from HCC tissues, but not from nontumoral liver, strongly express CD48 proteins; and such monocyte-induced NK cell dysfunction was markedly attenuated by blocking CD48 receptor 2B4 on NK cells, but not by blockade of NKG2D and NKp30. CONCLUSION These data reveal that human NK cells are regulated by a fine-tuned collaborative action between different types of immune cells, which may reflect a novel immune-escape mechanism by which tumors dynamically regulate their functions at distinct tumor microenvironments.
Collapse
Affiliation(s)
- Yan Wu
- Key Laboratory of Gene Engineering of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Suthar MS, Brassil MM, Blahnik G, McMillan A, Ramos HJ, Proll SC, Belisle SE, Katze MG, Gale M. A systems biology approach reveals that tissue tropism to West Nile virus is regulated by antiviral genes and innate immune cellular processes. PLoS Pathog 2013; 9:e1003168. [PMID: 23544010 PMCID: PMC3567171 DOI: 10.1371/journal.ppat.1003168] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 12/18/2012] [Indexed: 12/13/2022] Open
Abstract
The actions of the RIG-I like receptor (RLR) and type I interferon (IFN) signaling pathways are essential for a protective innate immune response against the emerging flavivirus West Nile virus (WNV). In mice lacking RLR or IFN signaling pathways, WNV exhibits enhanced tissue tropism, indicating that specific host factors of innate immune defense restrict WNV infection and dissemination in peripheral tissues. However, the immune mechanisms by which the RLR and IFN pathways coordinate and function to impart restriction of WNV infection are not well defined. Using a systems biology approach, we defined the host innate immune response signature and actions that restrict WNV tissue tropism. Transcriptional profiling and pathway modeling to compare WNV-infected permissive (spleen) and nonpermissive (liver) tissues showed high enrichment for inflammatory responses, including pattern recognition receptors and IFN signaling pathways, that define restriction of WNV replication in the liver. Assessment of infected livers from Mavs−/−×Ifnar−/− mice revealed the loss of expression of several key components within the natural killer (NK) cell signaling pathway, including genes associated with NK cell activation, inflammatory cytokine production, and NK cell receptor signaling. In vivo analysis of hepatic immune cell infiltrates from WT mice demonstrated that WNV infection leads to an increase in NK cell numbers with enhanced proliferation, maturation, and effector action. In contrast, livers from Mavs−/−×Ifnar−/− infected mice displayed reduced immune cell infiltration, including a significant reduction in NK cell numbers. Analysis of cocultures of dendritic and NK cells revealed both cell-intrinsic and -extrinsic roles for the RLR and IFN signaling pathways to regulate NK cell effector activity. Taken together, these observations reveal a complex innate immune signaling network, regulated by the RLR and IFN signaling pathways, that drives tissue-specific antiviral effector gene expression and innate immune cellular processes that control tissue tropism to WNV infection. West Nile virus (WNV), a mosquito-transmitted RNA flavivirus, is an NIAID Category B infectious agent that has emerged in the Western hemisphere as a serious public health threat. The innate immune effectors that impart restriction of WNV infection are not well defined. WNV infection is sensed by the host RIG-I like receptors (RLR), a class of pattern recognition receptors, to trigger type I interferon (IFN) and related innate immune defense programs. Using a systems biology approach, we evaluated the contribution of the RLR and type I IFN signaling pathways in controlling tissue tropism. WNV infection triggers tissue-specific innate immune responses, specifically antiviral effector genes and natural killer (NK) cell signaling related genes, which are directly regulated by the combined actions of the RLR and type I IFN signaling pathways. Cocultures of dendritic and NK cells revealed that RLR and type I IFN signaling pathways are essential in promoting NK cell activation during WNV infection. Our observations indicate that combined RLR- and type I IFN-dependent signaling programs drive specific antiviral effector gene expression and programs NK cell responses that, together, serve to restrict WNV tissue tropism.
Collapse
Affiliation(s)
- Mehul S. Suthar
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Margaret M. Brassil
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Gabriele Blahnik
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Aimee McMillan
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Hilario J. Ramos
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Sean C. Proll
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Sarah E. Belisle
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Michael G. Katze
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Michael Gale
- Department of Immunology, University of Washington School of Medicine, Seattle, Washington, United States of America
- Department of Microbiology, University of Washington School of Medicine, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
25
|
|
26
|
Carrega P, Ferlazzo G. Natural killer cell distribution and trafficking in human tissues. Front Immunol 2012; 3:347. [PMID: 23230434 PMCID: PMC3515878 DOI: 10.3389/fimmu.2012.00347] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/03/2012] [Indexed: 12/31/2022] Open
Abstract
Few data are available regarding the recirculation of natural killer (NK) cells among human organs. Earlier studies have been often impaired by the use of markers then proved to be either not sufficiently specific for NK cells (e.g., CD57, CD56) or expressed only by subsets of NK cells (e.g., CD16). At the present, available data confirmed that human NK cells populate blood, lymphoid organs, lung, liver, uterus (during pregnancy), and gut. Several studies showed that NK cell homing appears to be subset-specific, as secondary lymphoid organs and probably several solid tissues are preferentially inhabited by CD56brightCD16neg/dull non-cytotoxic NK cells. Similar studies performed in the mouse model showed that lymph node and bone marrow are preferentially populated by CD11bdull NK cells while blood, spleen, and lung by CD27dull NK cells. Therefore, an important topic to be addressed in the human system is the contribution of factors that regulate NK cell tissue homing and egress, such as chemotactic receptors or homeostatic mechanisms. Here, we review the current knowledge on NK cell distribution in peripheral tissues and, based on recent acquisitions, we propose our view regarding the recirculation of NK cells in the human body.
Collapse
|
27
|
Wei J, Bhatt S, Chang LM, Sampson HA, Masilamani M. Isoflavones, genistein and daidzein, regulate mucosal immune response by suppressing dendritic cell function. PLoS One 2012; 7:e47979. [PMID: 23110148 PMCID: PMC3478285 DOI: 10.1371/journal.pone.0047979] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 09/25/2012] [Indexed: 11/24/2022] Open
Abstract
Lipopolysaccharide (LPS), a component of gram-negative bacterial cell walls, has been shown to have a strong adjuvant effect towards inhaled antigens contributing to airway inflammation. Isoflavones are anti-inflammatory molecules present in abundant quantities in soybeans. We investigated the effect of isoflavones on human dendritic cell (DC) activation via LPS stimulation and subsequent DC-mediated effector cell function both in vitro and in a mouse model of upper airway inflammation. Human monocyte-derived DCs (MDDC) were matured with LPS (or TNF-α) +/− isoflavones (genistein or daidzein). The surface expression levels of DC activation markers were analyzed by flow cytometry. Mature DCs +/− isoflavones were washed and cultured with freshly-isolated allogenic naïve CD4+ T cells for 5 days or with autologous natural killer (NK) cells for 2 hours. The percentages of proliferating IFN-γ+ CD4+ T cells and cytokine levels in culture supernatants were assessed. NK cell degranulation and DC cytotoxicity were measured by flow cytometry. Isoflavones significantly suppressed the activation-induced expression of DC maturation markers (CD83, CD80, CD86) and MHC class I but not MHC class II molecules in vitro. Isoflavone treatment inhibited the ability of LPS-DCs to induce IFN-γ in CD4+ T cells. NK cell degranulation and the percentage of dead DCs were significantly increased in isoflavone-treated DC-NK co-culture experiments. Dietary isoflavones suppressed the mucosal immune response to intra-nasal sensitization of mice to ovalbumin. Similar results were obtained when isoflavones were co-administered during sensitization. These results demonstrate that soybean isoflavones suppress immune sensitization by suppressing DC-maturation and its subsequent DC-mediated effector cell functions.
Collapse
Affiliation(s)
- John Wei
- The Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Shiven Bhatt
- The Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Lisa M. Chang
- The Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Hugh A. Sampson
- The Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Mount Sinai School of Medicine, New York, New York, United States of America
- Immunology Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Madhan Masilamani
- The Jaffe Food Allergy Institute, Division of Allergy and Immunology, Department of Pediatrics, Mount Sinai School of Medicine, New York, New York, United States of America
- Immunology Institute, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
28
|
Vicetti Miguel RD, Hendricks RL, Aguirre AJ, Melan MA, Harvey SAK, Terry-Allison T, St Leger AJ, Thomson AW, Cherpes TL. Dendritic cell activation and memory cell development are impaired among mice administered medroxyprogesterone acetate prior to mucosal herpes simplex virus type 1 infection. THE JOURNAL OF IMMUNOLOGY 2012; 189:3449-61. [PMID: 22942424 DOI: 10.4049/jimmunol.1103054] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Epidemiological studies indicate that the exogenous sex steroid medroxyprogesterone acetate (MPA) can impair cell-mediated immunity, but mechanisms responsible for this observation are not well defined. In this study, MPA administered to mice 1 wk prior to HSV type 1 (HSV-1) infection of their corneal mucosa impaired initial expansion of viral-specific effector and memory precursor T cells and reduced the number of viral-specific memory T cells found in latently infected mice. MPA treatment also dampened expression of the costimulatory molecules CD40, CD70, and CD80 by dendritic cells (DC) in lymph nodes draining acute infection, whereas coculture of such DC with T cells from uninfected mice dramatically impaired ex vivo T cell proliferation compared with the use of DC from mice that did not receive MPA prior to HSV-1 infection. In addition, T cell expansion was comparable to that seen in untreated controls if MPA-treated mice were administered recombinant soluble CD154 (CD40L) concomitant with their mucosal infection. In contrast, the immunomodulatory effects of MPA were infection site dependent, because MPA-treated mice exhibited normal expansion of virus-specific T cells when infection was systemic rather than mucosal. Taken together, our results reveal that the administration of MPA prior to viral infection of mucosal tissue impairs DC activation, virus-specific T cell expansion, and development of virus-specific immunological memory.
Collapse
Affiliation(s)
- Rodolfo D Vicetti Miguel
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lion E, Smits ELJM, Berneman ZN, Van Tendeloo VFI. NK cells: key to success of DC-based cancer vaccines? Oncologist 2012; 17:1256-70. [PMID: 22907975 DOI: 10.1634/theoncologist.2011-0122] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The cytotoxic and regulatory antitumor functions of natural killer (NK) cells have become attractive targets for immunotherapy. Manipulation of specific NK cell functions and their reciprocal interactions with dendritic cells (DCs) might hold therapeutic promise. In this review, we focus on the engagement of NK cells in DC-based cancer vaccination strategies, providing a comprehensive overview of current in vivo experimental and clinical DC vaccination studies encompassing the monitoring of NK cells. From these studies, it is clear that NK cells play a key regulatory role in the generation of DC-induced antitumor immunity, favoring the concept that targeting both innate and adaptive immune mechanisms may synergistically promote clinical outcome. However, to date, DC vaccination trials are only infrequently accompanied by NK cell monitoring. Here, we discuss different strategies to improve DC vaccine preparations via exploitation of NK cells and provide a summary of relevant NK cell parameters for immune monitoring. We underscore that the design of DC-based cancer vaccines should include the evaluation of their NK cell stimulating potency both in the preclinical phase and in clinical trials.
Collapse
Affiliation(s)
- Eva Lion
- Vaccine & Infectious Disease Institute (Vaxinfectio), Laboratory of Experimental Hematology, TIGR, University of Antwerp (UA), Antwerp University Hospital (UZA), Wilrijkstraat 10, B-2650 Antwerp, Belgium.
| | | | | | | |
Collapse
|
30
|
Ge MQ, Ho AWS, Tang Y, Wong KHS, Chua BYL, Gasser S, Kemeny DM. NK cells regulate CD8+ T cell priming and dendritic cell migration during influenza A infection by IFN-γ and perforin-dependent mechanisms. THE JOURNAL OF IMMUNOLOGY 2012; 189:2099-109. [PMID: 22869906 DOI: 10.4049/jimmunol.1103474] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An effective immune response against influenza A infection depends on the generation of virus-specific T cells. NK cells are one of the first-line defenses against influenza A infection. We set out to delineate the role of NK cells in T cell immunity using a murine model of influenza A infection with A/PR/8/34. We show that early T cell recruitment mainly occurs in the posterior mediastinal lymph node (pMLN). Depletion of NK cells significantly impaired both dendritic cell (DC) and T cell recruitment into the pMLN. A similar reduction of T cell recruitment was observed when migration was blocked by pertussis toxin, suggesting that migration of pulmonary NK cells and DCs regulates cell recruitment to the pMLN. T cell recruitment was dependent on IFN-γ, and transfer of IFN-γ-competent naive NK cells into IFN-γ-/- mice restored T cell recruitment, whereas IFN-γ-deficient NK cells failed to do so. In addition, NK cell depletion reduced the uptake and transport of influenza A virus by DCs, and significantly impaired the virus-specific T cell response. Both IFN-γ-/- and perforin-/- mice showed reduced viral Ag transport by DCs, suggesting that the ability of NK cells to influence virus transport depends on IFN-γ and perforin. In summary, our data suggest that NK cells play a critical role in the initiation and shaping of the T cell response after influenza A infection.
Collapse
Affiliation(s)
- Moyar Qing Ge
- Immunology Program, Centre for Life Sciences, National University of Singapore, Singapore 117456
| | | | | | | | | | | | | |
Collapse
|
31
|
Herszényi L, Lakatos G, Hritz I, Varga MZ, Cierny G, Tulassay Z. The role of inflammation and proteinases in tumor progression. Dig Dis 2012; 30:249-54. [PMID: 22722549 DOI: 10.1159/000336914] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Chronic inflammation is an important risk factor for the development of cancers. The link between chronic inflammation and the risk of developing cancer is now well established. At least 20% of all cancers arise in association with infection and chronic inflammation. Inflammation and cancer are linked both along intrinsic (driven by genetic events causing malignancy) and extrinsic (driven by inflammatory conditions predisposing to tumor) pathways. Proteinases are key contributors to the breakdown and reconstitution of extracellular matrix components in physiological processes and pathological conditions, including destructive diseases and tumor progression. Matrix metalloproteinases are especially essential in the complex process of coregulation between cellular components of the tumor environment, and they are considered as potential diagnostic and prognostic biomarkers in many types and stages of cancer. Although the link between chronic inflammation, proteinases and risk of developing cancer is now well established, several open questions remain. The most exciting challenge is to find the best approach to target cancer-associated inflammation in patients with cancer. With respect to matrix metalloproteinases, the development of a new generation of selective inhibitors is a promising area of research.
Collapse
Affiliation(s)
- László Herszényi
- 2nd Department of Medicine, Semmelweis University, Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
32
|
NK cells are not required for spontaneous autoimmune diabetes in NOD mice. PLoS One 2012; 7:e36011. [PMID: 22558306 PMCID: PMC3338490 DOI: 10.1371/journal.pone.0036011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Accepted: 03/27/2012] [Indexed: 11/20/2022] Open
Abstract
NK cells have been shown to either promote or protect from autoimmune diseases. Several studies have examined the role of receptors preferentially expressed by NK cells in the spontaneous disease of NOD mice or the direct role of NK cells in acute induced disease models of diabetes. Yet, the role of NK cells in spontaneous diabetes has not been directly addressed. Here, we used the NOD.NK1.1 congenic mouse model to examine the role of NK cells in spontaneous diabetes. Significant numbers of NK cells were only seen in the pancreas of mice with disease. Pancreatic NK cells displayed an activated surface phenotype and proliferated more than NK cells from other tissues in the diseased mice. Nonetheless, depletion of NK cells had no effect on dendritic cell maturation or T cell proliferation. In spontaneous disease, the deletion of NK cells had no significant impact on disease onset. NK cells were also not required to promote disease induced by adoptively transferred pathogenic CD4+ T cells. Thus, NK cells are not required for spontaneous autoimmune diabetes in NOD mice.
Collapse
|
33
|
Krebs DL, Chehal MK, Sio A, Huntington ND, Da ML, Ziltener P, Inglese M, Kountouri N, Priatel JJ, Jones J, Tarlinton DM, Anderson GP, Hibbs ML, Harder KW. Lyn-Dependent Signaling Regulates the Innate Immune Response by Controlling Dendritic Cell Activation of NK Cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:5094-105. [DOI: 10.4049/jimmunol.1103395] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
34
|
Schmidt RL, Filak HC, Lemon JD, Potter TA, Lenz LL. A LysM and SH3-domain containing region of the Listeria monocytogenes p60 protein stimulates accessory cells to promote activation of host NK cells. PLoS Pathog 2011; 7:e1002368. [PMID: 22072975 PMCID: PMC3207947 DOI: 10.1371/journal.ppat.1002368] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 09/22/2011] [Indexed: 11/21/2022] Open
Abstract
Listeria monocytogenes (Lm) infection induces rapid and robust activation of host natural killer (NK) cells. Here we define a region of the abundantly secreted Lm endopeptidase, p60, that potently but indirectly stimulates NK cell activation in vitro and in vivo. Lm expression of p60 resulted in increased IFNγ production by naïve NK cells co-cultured with treated dendritic cells (DCs). Moreover, recombinant p60 protein stimulated activation of naive NK cells when co-cultured with TLR or cytokine primed DCs in the absence of Lm. Intact p60 protein weakly digested bacterial peptidoglycan (PGN), but neither muropeptide recognition by RIP2 nor the catalytic activity of p60 was required for NK cell activation. Rather, the immune stimulating activity mapped to an N-terminal region of p60, termed L1S. Treatment of DCs with a recombinant L1S polypeptide stimulated them to activate naïve NK cells in a cell culture model. Further, L1S treatment activated NK cells in vivo and increased host resistance to infection with Francisella tularensis live vaccine strain (LVS). These studies demonstrate an immune stimulating function for a bacterial LysM domain-containing polypeptide and suggest that recombinant versions of L1S or other p60 derivatives can be used to promote NK cell activation in therapeutic contexts.
Collapse
Affiliation(s)
- Rebecca L. Schmidt
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, United States of America
| | - Holly C. Filak
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, United States of America
| | - Jack D. Lemon
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, United States of America
| | - Terry A. Potter
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, United States of America
| | - Laurel L. Lenz
- Integrated Department of Immunology, National Jewish Health and University of Colorado School of Medicine, Denver, Colorado, United States of America
| |
Collapse
|
35
|
Cytoskeletal stabilization of inhibitory interactions in immunologic synapses of mature human dendritic cells with natural killer cells. Blood 2011; 118:6487-98. [PMID: 21917751 DOI: 10.1182/blood-2011-07-366328] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human mature dendritic cells (DCs) can efficiently stimulate natural killer (NK)-cell responses without being targeted by their cytotoxicity. To understand this important regulatory crosstalk, we characterized the development of the immunologic synapse between mature DCs and resting NK cells. Conjugates between these 2 innate leukocyte populations formed rapidly, persisted for prolonged time periods and matured with DC-derived f-actin polymerization at the synapse. Polarization of IL-12 and IL-12R to the synapse coincided with f-actin polymerization, while other activating and inhibitory molecules were enriched at the interface between DCs and NK cells earlier. Functional assays revealed that inhibition of f-actin polymerization in mature synapses led to an increase of IFN-γ secretion and cytotoxicity by NK cells. This elevated NK-cell reactivity resulted from decreased inhibitory signaling in the absence of MHC class I polarization at the interface, which was observed on inhibition of f-actin polymerization in DCs. Thus, inhibitory signaling is stabilized by f-actin at the synapse between mature DCs and resting NK cells.
Collapse
|
36
|
Lion E, Anguille S, Berneman ZN, Smits ELJM, Van Tendeloo VFI. Poly(I:C) enhances the susceptibility of leukemic cells to NK cell cytotoxicity and phagocytosis by DC. PLoS One 2011; 6:e20952. [PMID: 21698118 PMCID: PMC3117863 DOI: 10.1371/journal.pone.0020952] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 05/13/2011] [Indexed: 12/20/2022] Open
Abstract
α Active specific immunotherapy aims at stimulating the host's immune system to recognize and eradicate malignant cells. The concomitant activation of dendritic cells (DC) and natural killer (NK) cells is an attractive modality for immune-based therapies. Inducing immunogenic cell death to facilitate tumor cell recognition and phagocytosis by neighbouring immune cells is of utmost importance for guiding the outcome of the immune response. We previously reported that acute myeloid leukemic (AML) cells in response to electroporation with the synthetic dsRNA analogue poly(I:C) exert improved immunogenicity, demonstrated by enhanced DC-activating and NK cell interferon-γ-inducing capacities. To further invigorate the potential of these immunogenic tumor cells, we explored their effect on the phagocytic and cytotoxic capacity of DC and NK cells, respectively. Using single-cell analysis, we assessed these functionalities in two- and three-party cocultures. Following poly(I:C) electroporation AML cells become highly susceptible to NK cell-mediated killing and phagocytosis by DC. Moreover, the enhanced killing and the improved uptake are strongly correlated. Interestingly, tumor cell killing, but not phagocytosis, is further enhanced in three-party cocultures provided that these tumor cells were upfront electroporated with poly(I:C). Altogether, poly(I:C)-electroporated AML cells potently activate DC and NK cell functions and stimulate NK-DC cross-talk in terms of tumor cell killing. These data strongly support the use of poly(I:C) as a cancer vaccine component, providing a way to overcome immune evasion by leukemic cells.
Collapse
Affiliation(s)
- Eva Lion
- Vaccine & Infectious Disease Institute (Vaxinfectio), Laboratory of Experimental Hematology, Faculty of Medicine, University of Antwerp, Antwerp, Belgium.
| | | | | | | | | |
Collapse
|
37
|
Denkert C, Darb-Esfahani S, Loibl S, Anagnostopoulos I, Jöhrens K. Anti-cancer immune response mechanisms in neoadjuvant and targeted therapy. Semin Immunopathol 2011; 33:341-51. [PMID: 21499853 DOI: 10.1007/s00281-011-0261-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 03/07/2011] [Indexed: 02/04/2023]
Abstract
Several studies suggest that the progression of malignant tumors as well as the response to chemotherapy and targeted therapy is critically dependent on the immunological parameters that are derived from the host immune system as well as a modulation of the immune system by therapeutic antibodies. It has been shown for many tumor types that the presence of a lymphocytic infiltrate in different types of cancers is a positive factor for clinical outcome and that the response to neoadjuvant chemotherapy is increased in a tumor with a prominent pretherapeutic infiltrate. Furthermore, new targeted therapies in breast cancer, such as trastuzumab, as well as in hematological malignancies, such as rituximab and alemtuzumab, have been shown to interact with immunological pathways, and this interaction is critical for response and clinical outcome. In neoplasms of lymphoid and hematopoietic tissues, targeted therapies not only reduce toxic effects on normal tissues but also lead to modulations of the immune system depending on the target molecule, its physiological function and cellular distribution. This review gives an overview on clinical data on response to classical chemotherapy as well as molecular targeted therapy and its interaction with the immune system.
Collapse
Affiliation(s)
- Carsten Denkert
- Institute of Pathology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany.
| | | | | | | | | |
Collapse
|
38
|
Shimizu K, Asakura M, Fujii SI. Prolonged antitumor NK cell reactivity elicited by CXCL10-expressing dendritic cells licensed by CD40L+ CD4+ memory T cells. THE JOURNAL OF IMMUNOLOGY 2011; 186:5927-37. [PMID: 21460206 DOI: 10.4049/jimmunol.1003351] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immunotherapy using dendritic cells (DCs) has the potential to activate both T cells and NK cells. We previously demonstrated the long-lasting antitumor responses by NK cells following immunization with bone marrow-derived DCs. In the current study, we demonstrate that long-term antitumor NK responses require endogenous DCs and a subset of effector memory CD4(+) T (CD4(+) T(EM)) cells. One month after DC immunization, injection of a tumor into DC-immunized mice leads to an increase in the expression of CXCL10 by endogenous DCs, thus directing NK cells into the white pulp where the endogenous DCs bridged CD4(+) T(EM) cells and NK cells. In this interaction, CD4(+) T(EM) cells express CD40L, which matures the endogenous DCs, and produce cytokines, such as IL-2, which activates NK cells. These findings suggest that DC vaccination can sustain long-term innate NK cell immunity but requires the participation of the adaptive immune system.
Collapse
Affiliation(s)
- Kanako Shimizu
- Research Unit for Cellular Immunotherapy, Research Center for Allergy and Immunology, The Institute of Physical and Chemical Research (RIKEN), Yokohama, Kanagawa 230-0045, Japan
| | | | | |
Collapse
|
39
|
Interactions of human myeloid cells with natural killer cell subsets in vitro and in vivo. J Biomed Biotechnol 2011; 2011:251679. [PMID: 21541250 PMCID: PMC3085306 DOI: 10.1155/2011/251679] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 02/07/2011] [Indexed: 11/18/2022] Open
Abstract
In both human and mouse it has been recently realized that natural killer (NK) cells do not emerge from the bone marrow with full functional competence but rather acquire functions in interaction with antigen-presenting cells (APCs), primarily dendritic cells (DCs). Here we review the mechanisms and the consequences of this NK-cell preactivation, as well as discuss new experimental models that now allow investigating these interactions for human NK cells and their response to human pathogens in vivo. These investigations will allow harnessing NK cells during vaccination for improved innate and adaptive immunity.
Collapse
|
40
|
Bryceson YT, Chiang SCC, Darmanin S, Fauriat C, Schlums H, Theorell J, Wood SM. Molecular mechanisms of natural killer cell activation. J Innate Immun 2011; 3:216-26. [PMID: 21454962 DOI: 10.1159/000325265] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 02/12/2011] [Indexed: 12/21/2022] Open
Abstract
With an array of activating and inhibitory receptors, natural killer (NK) cells can specifically eradicate infected and transformed cells. Target cell killing is achieved through directed release of lytic granules. Recognition of target cells also induces production of chemokines and cytokines that can coordinate immune responses. Upon contact with susceptible cells, a multiplicity of activating receptors can induce signals for adhesion. Engagement of the integrin leukocyte functional antigen-1 mediates firm adhesion, provides signals for granule polarization and orchestrates the structure of an immunological synapse that facilitates efficient target cell killing. Other activating receptors apart from leukocyte functional antigen-1 signal for lytic granule exocytosis, a process that requires overcoming a threshold for activation of phospholipase C-γ, which in turn induces STIM1- and ORAI1-dependent store-operated Ca²+ entry as well as exocytosis mediated by the SNARE-containing protein syntaxin-11 and regulators thereof. Cytokine and chemokine release follows a different secretory pathway which also requires phospholipase C-γ activation and store-operated Ca²+ entry. Recent studies of human NK cells have provided insights into a hierarchy of effector functions that result in graded responses by NK cell populations. Responses display cellular heterogeneity and are influenced by environmental cues. This review highlights recent knowledge gained on the molecular pathways for and regulation of NK cell activation.
Collapse
Affiliation(s)
- Yenan T Bryceson
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
41
|
The interaction of human natural killer cells with either unpolarized or polarized macrophages results in different functional outcomes. Proc Natl Acad Sci U S A 2010; 107:21659-64. [PMID: 21118979 DOI: 10.1073/pnas.1007654108] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The cross-talk among cells of the innate immunity can greatly affect both innate and adaptive responses. Here we analyzed the molecular interactions between human natural killer (NK) cells and autologous macrophages. Activated NK cells killed M0 and M2, whereas M1 macrophages were more resistant to lysis because of their higher expression of HLA class I molecules. Following exposure to LPS or bacillus Calmette-Guérin, M0 and M2, but not polarized (endotoxin tolerant) M1 macrophages, induced strong activation of resting NK cells. The expression of CD69 and CD25 activation markers and the acquisition of cytotoxicity against tumor cells and immature dendritic cells required soluble factors being mostly contact independent. On the contrary, IFN-γ production was contact dependent and required the interaction of DNAM-1 and 2B4 (on NK) with their ligands on macrophages as well as IL-18. IL-18 was involved also in the acquisition of CCR7 by NK cells. Interestingly, M0 and M2 cells expressed a membrane-bound form of IL-18, which was released in small amounts after LPS treatment. Our data indicate that, upon interaction with M0 macrophages exposed to microbial products, NK cells may amplify classical type 1 immune responses. In addition, M1-polarizing stimuli can rescue M2 macrophages from their immunomodulatory state and shape their functional behavior toward NK stimulatory capability.
Collapse
|
42
|
Park KU, Jin P, Sabatino M, Feng J, Civini S, Khuu H, Berg M, Childs R, Stroncek D. Gene expression analysis of ex vivo expanded and freshly isolated NK cells from cancer patients. J Immunother 2010; 33:945-55. [PMID: 20948442 PMCID: PMC3096009 DOI: 10.1097/cji.0b013e3181f71b81] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The infusion of natural killer (NK) cells is a promising therapy for patients with advanced malignancies. Clinical expanded NK-cell products were compared with freshly isolated NK cells. Autologous peripheral blood mononuclear cells were collected by apheresis from 8 patients. NK cells were isolated by anti-CD3-negative selection followed by anti-CD56-positive selection. They were then expanded by co-culture with interleukin-2 and an irradiated Epstein-Barr virus (EBV)-transformed lymphoblastoid cell line (EBV-TM-LCL) to produce 14 NK-cell products. Molecular changes in the 14 NK-cell products were characterized using gene and microRNA expression microarrays. EBV-TM-LCL feeder cells from 3 lots were also analyzed as they were expanded for over 90 days and each lot was used for multiple NK-cell expansions. The gene expression profiles among the 3 EBV-TM-LCL lots used showed no differences and were not affected by their time in culture. Freshly isolated and expanded NK cells had distinct gene and microRNA expression profiles. Compared with fresh NK cells, expanded NK cells overexpressed 1098 genes and 28 human microRNAs. Genes in the crosstalk between dendritic and NK cells and metabolic pathways were up-regulated in expanded NK cells, whereas genes in a number of immune function pathways were down-regulated. Among all the most up-regulated genes were the NK cell-activating receptor natural cytotoxicity triggering receptor 3, myxovirus restistance 1, lymphotoxin β, and BCL2-associated X protein. Although some expanded NK-cell product variability was observed, perhaps related to patient factors, further studies on larger numbers of products will be needed to determine the impact of these differences on clinical outcomes.
Collapse
Affiliation(s)
- Kyoung Un Park
- Department of Transfusion Medicine, Clinical Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Flavell RA, Sanjabi S, Wrzesinski SH, Licona-Limón P. The polarization of immune cells in the tumour environment by TGFbeta. Nat Rev Immunol 2010; 10:554-67. [PMID: 20616810 PMCID: PMC3885992 DOI: 10.1038/nri2808] [Citation(s) in RCA: 709] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transforming growth factor-beta (TGFbeta) is an immunosuppressive cytokine produced by tumour cells and immune cells that can polarize many components of the immune system. This Review covers the effects of TGFbeta on natural killer (NK) cells, dendritic cells, macrophages, neutrophils, CD8(+) and CD4(+) effector and regulatory T cells, and NKT cells in animal tumour models and in patients with cancer. Collectively, many recent studies favour the hypothesis that blocking TGFbeta-induced signalling in the tumour microenvironment enhances antitumour immunity and may be beneficial for cancer therapy. An overview of the current drugs and reagents available for inhibiting TGFbeta-induced signalling and their phase in clinical development is also provided.
Collapse
Affiliation(s)
- Richard A Flavell
- Yale University School of Medicine, 300 Cedar Street, TAC S-569, PO BOX 208011, New Haven, Connecticut 06520, USA.
| | | | | | | |
Collapse
|
44
|
Human NK cells of mice with reconstituted human immune system components require preactivation to acquire functional competence. Blood 2010; 116:4158-67. [PMID: 20671122 DOI: 10.1182/blood-2010-02-270678] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
To investigate human natural killer (NK)-cell reactivity in vivo we have reconstituted human immune system components by transplantation of human hematopoietic progenitor cells into NOD-scid IL2Rγ(null) mice. We demonstrate here that this model allows the development of all NK-cell subsets that are also found in human adult peripheral and cord blood, including NKp46(+)CD56(-) NK cells. Similar to human cord blood, NK cells from these reconstituted mice require preactivation by interleukin-15 to reach the functional competence of human adult NK cells. Mainly the terminally differentiated CD16(+) NK cells demonstrate lower reactivity without this stimulation. After preactivation, both CD16(+) and CD16(-) NK cells efficiently produce interferon-γ and degranulate in response to stimulation with NK cell-susceptible targets, including K562 erythroleukemia cells. NK-cell lines, established from reconstituted mice, demonstrate cytotoxicity against this tumor cell line. Importantly, preactivation can as well be achieved by bystander cell maturation via poly I:C stimulation in vitro and injection of this maturation stimulus in vivo. Preactivation in vivo enhances killing of human leukocyte antigen class I negative tumor cells after their adoptive transfer. These data suggest that a functional, but resting, NK-cell compartment can be established in immune-compromised mice after human hematopoietic progenitor cell transfer.
Collapse
|
45
|
Konjević G, Mirjačić Martinović K, Vuletić A, Radenković S. Novel aspects of in vitro IL-2 or IFN-α enhanced NK cytotoxicity of healthy individuals based on NKG2D and CD161 NK cell receptor induction. Biomed Pharmacother 2010; 64:663-71. [PMID: 20800424 DOI: 10.1016/j.biopha.2010.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 06/21/2010] [Indexed: 01/03/2023] Open
Abstract
As IL-2 and IFN-α modulate NK cell activity it was of interest to investigate the expression of newly defined NK cell receptors and augmented NK cell activity in healthy individuals after cytokine in vitro treatment. Peripheral blood lymphocytes (PBL) obtained from 31 healthy volunteers treated for 18 h with 200 IU/ml IL-2 and 250 IU/ml IFN-α were evaluated for NK cell cytotoxicity. Expression of NKG2D, CD161, CD158a, CD158b receptors was analyzed on CD3⁻CD16+ NK cells, cytotoxic CD16(bright) and regulatory CD16(dim) subsets by FACS flow. The found induced significant in vitro enhancement of NK cell activity by both cytokines is supported by specific cytokine induction in PBL of pSTAT1 and pSTAT5, determined by Western blotting, as well as induction of IRF-1 transcription. Both cytokines induce significant up-regulation of NKG2D expression while only IFN-α induced significant up-regulation of CD161, with no alteration in KIR expression by either cytokine on CD3⁻CD16+ NK cells. Investigated cytokines did not induce change in NK cell bright and dim subset distribution. Moreover, we find that, not only cytokine receptor induction on the CD3⁻CD16+ NK cells, but also simultaneous increase in their percentage and/or density on CD16(bright) and CD16(dim) subsets, represent good indicators of receptor cytokine-susceptibility. As the role of NK cells has been shown in the loss of tolerance, infection and cancer, the data obtained in this study may be of help in NK cell profiling, by giving referent values of cytokine-induced novel NK cell receptor expression either in evaluation of these diseases or in immunomonitoring during cytokine immunotherapy.
Collapse
Affiliation(s)
- G Konjević
- Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia.
| | | | | | | |
Collapse
|
46
|
Alter G, Kavanagh D, Rihn S, Luteijn R, Brooks D, Oldstone M, van Lunzen J, Altfeld M. IL-10 induces aberrant deletion of dendritic cells by natural killer cells in the context of HIV infection. J Clin Invest 2010; 120:1905-13. [PMID: 20440075 DOI: 10.1172/jci40913] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 03/03/2010] [Indexed: 01/12/2023] Open
Abstract
Persistent levels of IL-10 play a central role in progressive immune dysfunction associated with chronic viral infections such as HIV, but the underlying mechanisms are poorly understood. Because IL-10 affects the phenotypic and functional properties of DCs, which are responsible for initiating adaptive immune responses, we investigated whether IL-10 induces changes in DC phenotype and function in the context of HIV infection. Here, we show that IL-10 treatment of immature and mature human DCs in culture induced contrasting phenotypic changes in these populations: immature DCs exhibited aberrant resistance to NK cell-mediated elimination, whereas mature DCs exhibited increased susceptibility to NKG2D-dependent NK elimination. Treatment of immature and mature DCs with HIV resulted in potent IL-10 secretion and the same phenotypic and functional changes observed in the IL-10-treated cells. Consistent with these in vitro data, LNs isolated from individuals infected with HIV exhibited aberrant accumulation of a partially "immature" DC population. Together, these data suggest that the progressive immune dysfunction observed in chronic viral infections might be caused in part by IL-10-induced reversal of DC susceptibility to NK cell-mediated elimination, resulting in the accumulation of poorly immunogenic DCs in LNs, the sites of adaptive immune response induction.
Collapse
Affiliation(s)
- Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Charlestown, Massachusetts 02129, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
The natural killer cell: a further innate mediator of gouty inflammation? Immunol Cell Biol 2009; 88:24-31. [DOI: 10.1038/icb.2009.91] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|