1
|
Schwalm S, Manaila R, Oftring A, Schaefer L, von Gunten S, Pfeilschifter J. The contribution of the sphingosine 1-phosphate signaling pathway to chronic kidney diseases: recent findings and new perspectives. Pflugers Arch 2024:10.1007/s00424-024-03029-5. [PMID: 39384640 DOI: 10.1007/s00424-024-03029-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/11/2024]
Abstract
Chronic kidney disease (CKD) is a multifactorial condition with diverse etiologies, such as diabetes mellitus, hypertension, and genetic disorders, often culminating in end-stage renal disease (ESRD). A hallmark of CKD progression is kidney fibrosis, characterized by the excessive accumulation of extracellular matrix components, for which there is currently no effective anti-fibrotic therapy. Recent literature highlights the critical role of sphingosine 1-phosphate (S1P) signaling in CKD pathogenesis and renal fibrosis. This review provides an in-depth analysis of the latest findings on S1P metabolism and signaling in renal fibrosis and in specific CKDs, including diabetic nephropathy (DN), lupus nephritis (LN), focal segmental glomerulosclerosis (FSGS), Fabry disease (FD), and IgA nephropathy (IgAN). Emerging studies underscore the therapeutic potential of modulating S1P signaling with receptor modulators and inhibitors, such as fingolimod (FTY720) and more selective agents like ozanimod and cenerimod. Additionally, the current knowledge about the effects of established kidney protective therapies such as glucocorticoids and SGLT2 and ACE inhibitors on S1P signaling will be summarized. Furthermore, the review highlights the potential role of S1P as a biomarker for disease progression in CKD models, particularly in Fabry disease and diabetic nephropathy. Advanced technologies, including spatial transcriptomics, are further refining our understanding of S1P's role within specific kidney compartments. Collectively, these insights emphasize the need for continued research into S1P signaling pathways as promising targets for CKD treatment strategies.
Collapse
Affiliation(s)
- Stephanie Schwalm
- Institut für Allgemeine Pharmakologie und Toxikologie, Goethe-Universität Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.
| | - Roxana Manaila
- Institut für Pharmakologie, Universität Bern, Inselspital, INO-F, CH-3011, Bern, Switzerland
| | - Anke Oftring
- Institut für Allgemeine Pharmakologie und Toxikologie, Goethe-Universität Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Liliana Schaefer
- Institut für Allgemeine Pharmakologie und Toxikologie, Goethe-Universität Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| | - Stephan von Gunten
- Institut für Pharmakologie, Universität Bern, Inselspital, INO-F, CH-3011, Bern, Switzerland
| | - Josef Pfeilschifter
- Institut für Allgemeine Pharmakologie und Toxikologie, Goethe-Universität Frankfurt Am Main, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany
| |
Collapse
|
2
|
Eggers E, Crouss T, Lipetskaia L, DiSanto M. Urinary Sphingosine-1-Phosphate as a Biomarker for Bladder Pain Syndrome. UROGYNECOLOGY (PHILADELPHIA, PA.) 2024; 30:374-380. [PMID: 38484256 DOI: 10.1097/spv.0000000000001473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
IMPORTANCE Sphingosine-1-phosphate (S1P) is a signaling molecule involved in inflammation and bladder contraction. OBJECTIVES The aims of this case-control pilot study were to compare urinary S1P concentrations in bladder pain syndrome (BPS) participants to controls and determine whether these concentrations correlate with disease severity and duration. STUDY DESIGN Adult females with BPS and controls were enrolled. Bladder pain syndrome participants completed an O'Leary-Sant questionnaire. Information on duration of symptoms and treatment history was obtained. Urinary S1P and creatinine concentrations were determined. Mann-Whitney U tests were used to compare groups, and Spearman correlation was used to test for associations between concentrations and duration and severity of symptoms. RESULTS Twenty-five participants were in each group. Median S1P concentration was 1,225 ng/dL in the BPS group and 2,183 ng/dL in the control group, which was significantly different (P < 0.0001). This difference did not persist when normalized to urinary creatinine (P = 0.58). No differences were noted in urinary S1P concentrations between treated and untreated participants (P = 0.53) or with symptom scores of 13 or greater and less than 13 (P = 0.69). Sphingosine-1-phosphate levels did not correlate with O'Leary-Sant scores (P = 0.08) or duration of symptoms (P = 0.67). Results did not change when using S1P concentrations normalized to creatinine. CONCLUSIONS This study demonstrated successful quantification of human urinary S1P concentrations. A difference in urinary S1P was found between BPS participants and controls but not when normalized to creatinine. While this is the first study to investigate urinary S1P as a biomarker for BPS, results suggest that it may have a potential role as a biomarker requiring further research.
Collapse
Affiliation(s)
- Erica Eggers
- From the Department of Obstetrics and Gynecology, Division of Female Pelvic Medicine and Reconstructive Surgery, Cooper University Healthcare
| | - Tess Crouss
- From the Department of Obstetrics and Gynecology, Division of Female Pelvic Medicine and Reconstructive Surgery, Cooper University Healthcare
| | - Lioudmila Lipetskaia
- From the Department of Obstetrics and Gynecology, Division of Female Pelvic Medicine and Reconstructive Surgery, Cooper University Healthcare
| | - Michael DiSanto
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ
| |
Collapse
|
3
|
Mohammed S, Bindu A, Viswanathan A, Harikumar KB. Sphingosine 1-phosphate signaling during infection and immunity. Prog Lipid Res 2023; 92:101251. [PMID: 37633365 DOI: 10.1016/j.plipres.2023.101251] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Sphingolipids are essential components of all eukaryotic membranes. The bioactive sphingolipid molecule, Sphingosine 1-Phosphate (S1P), regulates various important biological functions. This review aims to provide a comprehensive overview of the role of S1P signaling pathway in various immune cell functions under different pathophysiological conditions including bacterial and viral infections, autoimmune disorders, inflammation, and cancer. We covered the aspects of S1P pathways in NOD/TLR pathways, bacterial and viral infections, autoimmune disorders, and tumor immunology. This implies that targeting S1P signaling can be used as a strategy to block these pathologies. Our current understanding of targeting various components of S1P signaling for therapeutic purposes and the present status of S1P pathway inhibitors or modulators in disease conditions where the host immune system plays a pivotal role is the primary focus of this review.
Collapse
Affiliation(s)
- Sabira Mohammed
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State 695014, India
| | - Anu Bindu
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State 695014, India
| | - Arun Viswanathan
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State 695014, India; Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Kuzhuvelil B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala State 695014, India.
| |
Collapse
|
4
|
Tian J, Chang S, Wang J, Chen J, Xu H, Huang T, Wang J, Kang J, Fan W, Wang Y. S1P/S1PR1 axis promotes macrophage M1 polarization through NLRP3 inflammasome activation in Lupus nephritis. Mol Immunol 2023; 160:55-66. [PMID: 37379683 DOI: 10.1016/j.molimm.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Lupus nephritis (LN) is a common complication of systemic lupus erythematosus (SLE) as well as the leading cause of mortality in patients. Previous studies revealed that S1P level is elevated in plasma samples of SLE patients and murine lupus models. FTY720, targeting S1P receptors, exhibited therapeutic effects in improving the nephritis symptoms of lupus mouse models. However, few studies have discussed the potential relevance of S1P/S1PR to the pathogenesis of LN. Macrophages have been shown to be an important causative agent of renal inflammation, while the pro-inflammatory M1-type promotes kidney injury and inflammation during LN. Importantly, macrophages express various S1P receptors, and how they respond to S1P in the setting of LN remains unclear. Therefore, we examined the level of S1P in the lupus MRL/lpr mice and explored the ensuing interaction of macrophages and S1P. We found that S1P level was elevated in the MRL/lpr mice with a subsequent enhancement of the S1PR1 expression, and blocking S1PR1 by FTY720, the nephritis symptoms of MRL/lpr mice were improved. Mechanistically, we demonstrated that elevated S1P level increase the M1-type macrophage accumulation. And the in-vitro studies proved that S1P/S1PR1 was involved in the promotion of macrophage polarization towards M1 type through activation of NLRP3 inflammasome. These findings confer a novel role to macrophage S1PR1 and provide a new perspective for targeting S1P during LN.
Collapse
Affiliation(s)
- Jihua Tian
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Sijia Chang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jingshu Chen
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huanyu Xu
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Taiping Huang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Juanjuan Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Kang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weiping Fan
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Yanhong Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
5
|
Sphingosine 1-phosphate receptor-targeted therapeutics in rheumatic diseases. Nat Rev Rheumatol 2022; 18:335-351. [PMID: 35508810 DOI: 10.1038/s41584-022-00784-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
Abstract
Sphingosine 1-phosphate (S1P), which acts via G protein-coupled S1P receptors (S1PRs), is a bioactive lipid essential for vascular integrity and lymphocyte trafficking. The S1P-S1PR signalling axis is a key component of the inflammatory response in autoimmune rheumatic diseases. Several drugs that target S1PRs have been approved for the treatment of multiple sclerosis and inflammatory bowel disease and are under clinical testing for patients with systemic lupus erythematosus (SLE). Preclinical studies support the hypothesis that targeting the S1P-S1PR axis would be beneficial to patients with SLE, rheumatoid arthritis (RA) and systemic sclerosis (SSc) by reducing pathological inflammation. Whereas most preclinical research and development efforts are focused on reducing lymphocyte trafficking, protective effects of circulating S1P on endothelial S1PRs, which maintain the vascular barrier and enable blood circulation while dampening leukocyte extravasation, have been largely overlooked. In this Review, we take a holistic view of S1P-S1PR signalling in lymphocyte and vascular pathobiology. We focus on the potential of S1PR modulators for the treatment of SLE, RA and SSc and summarize the rationale, pathobiology and evidence from preclinical models and clinical studies. Improved understanding of S1P pathobiology in autoimmune rheumatic diseases and S1PR therapeutic modulation is anticipated to lead to efficacious and safer management of these diseases.
Collapse
|
6
|
Ueda N. A Rheostat of Ceramide and Sphingosine-1-Phosphate as a Determinant of Oxidative Stress-Mediated Kidney Injury. Int J Mol Sci 2022; 23:ijms23074010. [PMID: 35409370 PMCID: PMC9000186 DOI: 10.3390/ijms23074010] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
Reactive oxygen species (ROS) modulate sphingolipid metabolism, including enzymes that generate ceramide and sphingosine-1-phosphate (S1P), and a ROS-antioxidant rheostat determines the metabolism of ceramide-S1P. ROS induce ceramide production by activating ceramide-producing enzymes, leading to apoptosis, while they inhibit S1P production, which promotes survival by suppressing sphingosine kinases (SphKs). A ceramide-S1P rheostat regulates ROS-induced mitochondrial dysfunction, apoptotic/anti-apoptotic Bcl-2 family proteins and signaling pathways, leading to apoptosis, survival, cell proliferation, inflammation and fibrosis in the kidney. Ceramide inhibits the mitochondrial respiration chain and induces ceramide channel formation and the closure of voltage-dependent anion channels, leading to mitochondrial dysfunction, altered Bcl-2 family protein expression, ROS generation and disturbed calcium homeostasis. This activates ceramide-induced signaling pathways, leading to apoptosis. These events are mitigated by S1P/S1P receptors (S1PRs) that restore mitochondrial function and activate signaling pathways. SphK1 promotes survival and cell proliferation and inhibits inflammation, while SphK2 has the opposite effect. However, both SphK1 and SphK2 promote fibrosis. Thus, a ceramide-SphKs/S1P rheostat modulates oxidant-induced kidney injury by affecting mitochondrial function, ROS production, Bcl-2 family proteins, calcium homeostasis and their downstream signaling pathways. This review will summarize the current evidence for a role of interaction between ROS-antioxidants and ceramide-SphKs/S1P and of a ceramide-SphKs/S1P rheostat in the regulation of oxidative stress-mediated kidney diseases.
Collapse
Affiliation(s)
- Norishi Ueda
- Department of Pediatrics, Public Central Hospital of Matto Ishikawa, 3-8 Kuramitsu, Hakusan 924-8588, Japan
| |
Collapse
|
7
|
Hatton SL, Pandey MK. Fat and Protein Combat Triggers Immunological Weapons of Innate and Adaptive Immune Systems to Launch Neuroinflammation in Parkinson's Disease. Int J Mol Sci 2022; 23:1089. [PMID: 35163013 PMCID: PMC8835271 DOI: 10.3390/ijms23031089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 01/27/2023] Open
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative disease in the world, affecting up to 10 million people. This disease mainly happens due to the loss of dopaminergic neurons accountable for memory and motor function. Partial glucocerebrosidase enzyme deficiency and the resultant excess accumulation of glycosphingolipids and alpha-synuclein (α-syn) aggregation have been linked to predominant risk factors that lead to neurodegeneration and memory and motor defects in PD, with known and unknown causes. An increasing body of evidence uncovers the role of several other lipids and their association with α-syn aggregation, which activates the innate and adaptive immune system and sparks brain inflammation in PD. Here, we review the emerging role of a number of lipids, i.e., triglyceride (TG), diglycerides (DG), glycerophosphoethanolamines (GPE), polyunsaturated fatty acids (PUFA), sphingolipids, gangliosides, glycerophospholipids (GPL), and cholesterols, and their connection with α-syn aggregation as well as the induction of innate and adaptive immune reactions that trigger neuroinflammation in PD.
Collapse
Affiliation(s)
- Shelby Loraine Hatton
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Cincinnati, OH 45229, USA;
| | - Manoj Kumar Pandey
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Cincinnati, OH 45229, USA;
- Department of Pediatrics, Division of Human Genetics, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
8
|
Altered serum phospholipids in atopic dermatitis and association with clinical status. JID INNOVATIONS 2021; 2:100092. [PMID: 35199091 PMCID: PMC8844610 DOI: 10.1016/j.xjidi.2021.100092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022] Open
Abstract
Circulating phospholipids have been considered as biomarkers and therapeutic targets in multiple disorders. Atopic dermatitis (AD) is the most common inflammatory skin disease. Although there are numerous studies having addressed stratum corneum lipids in the context of epidermal barrier, little is known about the circulating lipids in patients with AD. In this study, we explored the changes of serum phospholipids in AD using liquid chromatography coupled to tandem mass spectrometry and sought serum lipids’ contribution to clinical status. Several serum levels of phospholipids were altered in the AD group (n = 179) compared with that in healthy controls (n = 47) and patients without AD with atopic comorbidities (n = 22); lipids exhibiting the apparent changes included increased sphingosine, multiple variants of phosphatidylcholine, and decreased ceramide (16:0) in patients with AD. Moreover, serum levels of sphingosine correlated with the severity of AD, and sphingosine and ceramide(16:0) were also detected as the risk-increasing effect and risk-reduction effect of AD, respectively. In summary, alterations in the serum concentration of phospholipids are seen in patients with AD. Although more detailed investigations will be needed to evaluate the significance of the changes in circulating lipids in AD, these findings can provide, to our knowledge, previously unreported insight into AD’s pathogenesis and therapeutic strategies.
Collapse
|
9
|
Tian J, Huang T, Chang S, Wang Y, Fan W, Ji H, Wang J, Yang J, Kang J, Zhou Y. Role of sphingosine-1-phosphate mediated signalling in systemic lupus erythematosus. Prostaglandins Other Lipid Mediat 2021; 156:106584. [PMID: 34352381 DOI: 10.1016/j.prostaglandins.2021.106584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 07/02/2021] [Accepted: 07/26/2021] [Indexed: 12/17/2022]
Abstract
Systemic lupus erythematosus (SLE) is a highly prevalent autoimmune disease characterized by the malfunction of the immune system and the persistent presence of an inflammatory environment. Multiple organs can be affected during SLE, leading to heterogeneous manifestations, which eventually result in the death of patients. Due to the lack of understanding regarding the pathogenesis of SLE, the currently available treatments remain suboptimal. Sphingosine-1-phosphate (S1P) is a central bioactive lipid of sphingolipid metabolism, which serves a pivotal role in regulating numerous physiological and pathological processes. As a well-recognized regulator of lymphocyte trafficking, S1P has been shown to be closely associated with autoimmune diseases, including SLE. Importantly, S1P levels have been found to be elevated in patients with SLE. In murine models of lupus, the increased levels of S1P also contribute to disease activity and organ impairment. Moreover, data from several studies also support the hypothesis that S1P receptors and its producer-sphingosine kinases (SPHK) may serve as the potential targets for the treatment of SLE and its co-morbidities. Given the significant success that intervening with S1P signaling has achieved in treating multiple sclerosis, further exploration of its role in SLE is necessary. Therefore, the aim of the present review is to summarize the recent advances in understanding the potential mechanism by which S1P influences SLE, with a primary focus on its role in immune regulation and inflammatory responses.
Collapse
Affiliation(s)
- Jihua Tian
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China.
| | - Taiping Huang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Sijia Chang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhong Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Weiping Fan
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - He Ji
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Juanjuan Wang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jia Yang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Kang
- Department of Microbiology and Immunology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yun Zhou
- Department of Nephrology, The Affiliated People's Hospital of Shanxi Medical University, Shanxi Provincial People's Hospital, Shanxi Kidney Disease Institute, Taiyuan, Shanxi, China.
| |
Collapse
|
10
|
Ishay Y, Rotnemer-Golinkin D, Ilan Y. The role of the sphingosine axis in immune regulation: A dichotomy in the anti-inflammatory effects between sphingosine kinase 1 and sphingosine kinase 2-dependent pathways. Int J Immunopathol Pharmacol 2021; 35:20587384211053274. [PMID: 34789044 PMCID: PMC8645305 DOI: 10.1177/20587384211053274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/21/2021] [Indexed: 01/05/2023] Open
Abstract
Background: Sphingosine kinase has been identified as playing a central role in the immune cascade, being a common mediator in the cellular response to a variety of signals. The different effects of sphingosine kinase 1 and 2 (SphK1 and SphK2, respectively) activity have not been completely characterized. Aim: To determine the different roles played by SphK1 and SphK2 in the regulation of immune-mediated disorders. Methods: Nine groups of mice were studied. Concanavalin A (ConA) injection was used to induce immune-mediated hepatitis. Mice were treated with SphK1 inhibitor (termed SphK-I) and SphK2 inhibitor (termed ABC294640), prior to ConA injection, and effects of treatment on liver enzymes, subsets of T lymphocytes, and serum levels of cytokines were observed. Results: While liver enzyme elevation was ameliorated by administration of SphK1 inhibitor, SphK2 inhibitor-treated mice did not show this tendency. A marked decrease in expression of CD25+ T-cells and Foxp+ T-cells was observed in mice treated with a high dose of SphK1 inhibitor. Alleviation of liver damage was associated with a statistically significant reduction of serum IFNγ levels in mice treated with SphK1 inhibitor and not in those treated with SphK2 inhibitor. Conclusions: Early administration of SphK1 inhibitor in a murine model of immune-mediated hepatitis alleviated liver damage and inflammation with a statistically significant reduction in IFN-γ levels. The data support a dichotomy in the anti-inflammatory effects of SphK1 and SphK2, and suggests that isoenzyme-directed therapies can improve the effect of targeting these pathways.
Collapse
Affiliation(s)
- Yuval Ishay
- Department of Medicine, Hadassah-Hebrew University Medical
Center, Jerusalem Israel
| | | | - Yaron Ilan
- Department of Medicine, Hadassah-Hebrew University Medical
Center, Jerusalem Israel
| |
Collapse
|
11
|
Drexler Y, Molina J, Mitrofanova A, Fornoni A, Merscher S. Sphingosine-1-Phosphate Metabolism and Signaling in Kidney Diseases. J Am Soc Nephrol 2021; 32:9-31. [PMID: 33376112 PMCID: PMC7894665 DOI: 10.1681/asn.2020050697] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In the past few decades, sphingolipids and sphingolipid metabolites have gained attention because of their essential role in the pathogenesis and progression of kidney diseases. Studies in models of experimental and clinical nephropathies have described accumulation of sphingolipids and sphingolipid metabolites, and it has become clear that the intracellular sphingolipid composition of renal cells is an important determinant of renal function. Proper function of the glomerular filtration barrier depends heavily on the integrity of lipid rafts, which include sphingolipids as key components. In addition to contributing to the structural integrity of membranes, sphingolipid metabolites, such as sphingosine-1-phosphate (S1P), play important roles as second messengers regulating biologic processes, such as cell growth, differentiation, migration, and apoptosis. This review will focus on the role of S1P in renal cells and how aberrant extracellular and intracellular S1P signaling contributes to the pathogenesis and progression of kidney diseases.
Collapse
Affiliation(s)
- Yelena Drexler
- Katz Family Division of Nephrology and Hypertension/Peggy and Harold Katz Family Drug Discovery Center, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | | | | | | | | |
Collapse
|
12
|
Yang CC, Hsiao LD, Su MH, Yang CM. Sphingosine 1-Phosphate Induces Cyclooxygenase-2/Prostaglandin E 2 Expression via PKCα-dependent Mitogen-Activated Protein Kinases and NF-κB Cascade in Human Cardiac Fibroblasts. Front Pharmacol 2020; 11:569802. [PMID: 33192511 PMCID: PMC7662885 DOI: 10.3389/fphar.2020.569802] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
In the regions of tissue injuries and inflammatory diseases, sphingosine 1-phosphate (S1P), a proinflammatory mediator, is increased. S1P may induce the upregulation of cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) system in various types of cells to exacerbate heart inflammation. However, the detailed molecular mechanisms by which S1P induces COX-2 expression in human cardiac fibroblasts (HCFs) remain unknown. HCFs were incubated with S1P and analyzed by Western blotting, real time-Polymerase chain reaction (RT-PCR), and immunofluorescent staining. Our results indicated that S1P activated S1PR1/3-dependent transcriptional activity to induce COX-2 expression and PGE2 production. S1P recruited and activated PTX-sensitive Gi or -insensitive Gq protein-coupled S1PR and then stimulated PKCα-dependent phosphorylation of p42/p44 MAPK, p38 MAPK, and JNK1/2, leading to activating transcription factor NF-κB. Moreover, S1P-activated NF-κB was translocated into the nucleus and bound to its corresponding binding sites on COX-2 promoters determined by chromatin immunoprecipitation (ChIP) and promoter-reporter assays, thereby turning on COX-2 gene transcription associated with PGE2 production in HCFs. These results concluded that in HCFs, activation of NF-κB by PKCα-mediated MAPK cascades was essential for S1P-induced up-regulation of the COX-2/PGE2 system. Understanding the mechanisms of COX-2 expression and PGE2 production regulated by the S1P/S1PRs system on cardiac fibroblasts may provide rationally therapeutic interventions for heart injury or inflammatory diseases.
Collapse
Affiliation(s)
- Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Tao-Yuan, Tao-Yuan, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Li-Der Hsiao
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, Taiwan
| | - Mei-Hsiu Su
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, Taiwan
| | - Chuen-Mao Yang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, Taiwan.,Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Wufeng, Taichung, Taiwan
| |
Collapse
|
13
|
Eckes T, Trautmann S, Djudjaj S, Beyer S, Patyna S, Schwalm S, Gauer S, Thomas D, Schaefer L, Boor P, Koch A, Pfeilschifter J. Consistent alteration of chain length-specific ceramides in human and mouse fibrotic kidneys. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158821. [PMID: 33010454 DOI: 10.1016/j.bbalip.2020.158821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/16/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Several studies revealed alterations of single sphingolipid species, such as chain length-specific ceramides, in plasma and serum of patients with kidney diseases. Here, we investigated whether such alterations occur in kidney tissue from patients and mice suffering from renal fibrosis, the common endpoint of chronic kidney diseases. METHODS Human fibrotic kidney samples were collected from nephrectomy specimens with hydronephrosis and/or pyelonephritis. Healthy parts from tumor nephrectomies served as nonfibrotic controls. Mouse fibrotic kidney samples were collected from male C57BL/6J mice treated with an adenine-rich diet for 14 days or were subjected to 7 days of unilateral ureteral obstruction (UUO). Kidneys of untreated mice and contralateral kidneys (UUO) served as respective controls. Sphingolipid levels were detected by LC-MS/MS. Fibrotic markers were analyzed by TaqMan® analysis and immunohistology. RESULTS Very long-chain ceramides Cer d18:1/24:0 and Cer d18:1/24:1 were significantly downregulated in both fibrotic human kidney cortex and fibrotic murine kidney compared to respective control samples. These effects correlate with upregulation of COL1α1, COL3α1 and αSMA expression in fibrotic human kidney cortex and fibrotic mouse kidney. CONCLUSION We have shown that very long-chain ceramides Cer d18:1/24:0 and Cer d18:1/24:1 are consistently downregulated in fibrotic kidney samples from human and mouse. Our findings support the use of in vivo murine models as appropriate translational means to understand the involvement of ceramides in human kidney diseases. In addition, our study raises interesting questions about the possible manipulation of ceramide metabolism to prevent progression of fibrosis and the use of ceramides as potential biomarkers of chronic kidney disease.
Collapse
Affiliation(s)
- Timon Eckes
- Institute of General Pharmacology and Toxicology, University Hospital, Goethe University Frankfurt am Main, Germany.
| | - Sandra Trautmann
- Institute of Clinical Pharmacology, University Hospital, Goethe University Frankfurt am Main, Germany
| | - Sonja Djudjaj
- Institute of Pathology, University Hospital of the RWTH Aachen, Germany
| | - Sandra Beyer
- Institute of General Pharmacology and Toxicology, University Hospital, Goethe University Frankfurt am Main, Germany
| | - Sammy Patyna
- Department of Nephrology, University Hospital, Goethe University Frankfurt am Main, Germany
| | - Stephanie Schwalm
- Institute of General Pharmacology and Toxicology, University Hospital, Goethe University Frankfurt am Main, Germany
| | - Stefan Gauer
- Department of Nephrology, University Hospital, Goethe University Frankfurt am Main, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, University Hospital, Goethe University Frankfurt am Main, Germany
| | - Liliana Schaefer
- Institute of General Pharmacology and Toxicology, University Hospital, Goethe University Frankfurt am Main, Germany
| | - Peter Boor
- Institute of Pathology, University Hospital of the RWTH Aachen, Germany; Division of Nephrology, University Hospital of the RWTH Aachen, Germany
| | - Alexander Koch
- Institute of General Pharmacology and Toxicology, University Hospital, Goethe University Frankfurt am Main, Germany
| | - Josef Pfeilschifter
- Institute of General Pharmacology and Toxicology, University Hospital, Goethe University Frankfurt am Main, Germany
| |
Collapse
|
14
|
Liu J, Sugimoto K, Cao Y, Mori M, Guo L, Tan G. Serum Sphingosine 1-Phosphate (S1P): A Novel Diagnostic Biomarker in Early Acute Ischemic Stroke. Front Neurol 2020; 11:985. [PMID: 33013650 PMCID: PMC7505997 DOI: 10.3389/fneur.2020.00985] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/28/2020] [Indexed: 01/08/2023] Open
Abstract
Background: Sphingosine 1-phosphate (S1P) is a lipid metabolite that mediates various physiological processes, including vascular endothelial cell function, inflammation, coagulation/thrombosis, and angiogenesis. As a result, S1P may contribute to the pathogenesis of stroke. Objective: This study aimed to evaluate the diagnostic value of serum S1P in acute stroke. Method: A total of 72 patients with ischemic stroke, 36 patients with hemorrhagic stroke, and 65 controls were enrolled. Serum S1P was detected by enzyme-linked immunosorbent assay (ELISA). Results: Receiver operating characteristic curve analysis demonstrated that serum S1P could discriminate ischemic stroke from hemorrhagic stroke in both total population and subgroup analyses of samples obtained within 24 h of symptom onset (subgroup < 24h) (area under curve, AUCTotal = 0.64, P = 0.017; AUCSubgroup < 24h = 0.91, P < 0.001) and controls (AUCTotal = 0.62, P = 0.013; AUCSubgroup <24h = 0.83, P < 0.001). Furthermore, S1P showed higher efficacy than high-density lipoprotein cholesterol (HDL-C) in discriminating ischemic stroke from controls in the total population (PS1P = 0.013, PHDL−C = 0.366) and in the subgroup analysis (i.e., <24 h; PS1P < 0.001, PHDL−C = 0.081). Additionally, lower serum S1P was associated with cervical artery plaques (P = 0.021) in controls and with dyslipidemia (P = 0.036) and milder neurological impairment evaluated by the National Institute of Health Stroke Scale (NIHSS, P = 0.047) in the ischemic stroke group. Conclusions: The present study preliminarily investigated the diagnostic value of serum S1P in acute stroke. Decreased serum S1P may become a potential biomarker for early acute ischemic stroke and can indicate disease severity.
Collapse
Affiliation(s)
- Jia Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Neurological Laboratory of Hebei Province, Shijiazhuang, China.,Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuo Sugimoto
- Department of Neurology, Dongzhimen Affiliated Hospital, Beijing University of Chinese Medicine, Beijing, China.,Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yuanbo Cao
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Masahiro Mori
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Li Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Guojun Tan
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Neurological Laboratory of Hebei Province, Shijiazhuang, China
| |
Collapse
|
15
|
Leuti A, Fazio D, Fava M, Piccoli A, Oddi S, Maccarrone M. Bioactive lipids, inflammation and chronic diseases. Adv Drug Deliv Rev 2020; 159:133-169. [PMID: 32628989 DOI: 10.1016/j.addr.2020.06.028] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Endogenous bioactive lipids are part of a complex network that modulates a plethora of cellular and molecular processes involved in health and disease, of which inflammation represents one of the most prominent examples. Inflammation serves as a well-conserved defence mechanism, triggered in the event of chemical, mechanical or microbial damage, that is meant to eradicate the source of damage and restore tissue function. However, excessive inflammatory signals, or impairment of pro-resolving/anti-inflammatory pathways leads to chronic inflammation, which is a hallmark of chronic pathologies. All main classes of endogenous bioactive lipids - namely eicosanoids, specialized pro-resolving lipid mediators, lysoglycerophopsholipids and endocannabinoids - have been consistently involved in the chronic inflammation that characterises pathologies such as cancer, diabetes, atherosclerosis, asthma, as well as autoimmune and neurodegenerative disorders and inflammatory bowel diseases. This review gathers the current knowledge concerning the involvement of endogenous bioactive lipids in the pathogenic processes of chronic inflammatory pathologies.
Collapse
|
16
|
Ganjali S, Shirmohammadi L, Read MI, Sahebkar A. High-density lipoprotein functionality in systemic lupus erythematosus. Semin Arthritis Rheum 2020; 50:769-775. [PMID: 32531506 DOI: 10.1016/j.semarthrit.2020.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 11/18/2022]
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous disease which is characterized with excessive inflammation and autoantibodies, macrophage and complement activation, and subsequently immunologically mediated tissue damage. In spite of improved treatments of SLE, these patients experience premature atherosclerosis and the rate of mortality among them remains high. Autoantibodies and circulating immune complexes might contribute to the pathogenesis of atherosclerosis by injuring the endothelium, as well as inducing pro-inflammatory and pro-adhesive endothelial cell phenotypes, as well as altering the metabolism of lipoproteins involved in atherogenesis. Hence, high levels of atherogenic lipoproteins (like low-density lipoprotein (LDL) and very low-density lipoprotein (VLDL)) and low levels of high-density lipoprotein (HDL-C) are important risk factors for atherosclerotic cardiovascular complications in SLE patients but these traditional risk factors fail to fully explain the increased risk of cardiovascular disease (CVD) in these patients. The exact mechanism by which inflammation decreases HDL levels is not defined, but decreases in apoA-I production and lecithin cholesterol acyltransferase (LCAT) activity, as well as increased serum amyloid A (SAA), endothelial lipase and secretory phospholipase A2 activity (PLA2) could all contribute. In addition, during inflammation multiple changes in HDL structure occur, leading to alterations in HDL function which may be implicated in the CVD complications of SLE. Therefore, this review will aim to identify the mechanisms implicated in HDL dysfunction which occurs in SLE patients.
Collapse
Affiliation(s)
- Shiva Ganjali
- Department of Medical Biotechnology & Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Shirmohammadi
- Department of Medical Biotechnology & Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morgayn I Read
- Department of Pharmacology, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | - Amirhossein Sahebkar
- Halal Research Center of IRI, FDA, Tehran, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Cas MD, Roda G, Li F, Secundo F. Functional Lipids in Autoimmune Inflammatory Diseases. Int J Mol Sci 2020; 21:E3074. [PMID: 32349258 PMCID: PMC7246500 DOI: 10.3390/ijms21093074] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/27/2022] Open
Abstract
Lipids are apolar small molecules known not only as components of cell membranes but also, in recent literature, as modulators of different biological functions. Herein, we focused on the bioactive lipids that can influence the immune responses and inflammatory processes regulating vascular hyperreactivity, pain, leukocyte trafficking, and clearance. In the case of excessive pro-inflammatory lipid activity, these lipids also contribute to the transition from acute to chronic inflammation. Based on their biochemical function, these lipids can be divided into different families, including eicosanoids, specialized pro-resolving mediators, lysoglycerophospholipids, sphingolipids, and endocannabinoids. These bioactive lipids are involved in all phases of the inflammatory process and the pathophysiology of different chronic autoimmune diseases such as rheumatoid arthritis, multiple sclerosis, type-1 diabetes, and systemic lupus erythematosus.
Collapse
Affiliation(s)
- Michele Dei Cas
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy
| | - Gabriella Roda
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milan, Italy
| | - Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Francesco Secundo
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 20131 Milan, Italy
| |
Collapse
|
18
|
The epigenetic face of lupus: Focus on antigen-presenting cells. Int Immunopharmacol 2020; 81:106262. [PMID: 32045873 DOI: 10.1016/j.intimp.2020.106262] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/19/2022]
Abstract
In recent years, epigenetic mechanisms became widely known due to their ability to regulate and maintain physiological processes such as cell growth, development, differentiation and genomic stability. When dysregulated, epigenetic mechanisms, may introduce gene expression changes and disturbance in immune homeostasis leading to autoimmune diseases. Systemic lupus erythematosus (SLE), the most extensively studied autoimmune disorder, has already been correlated with epigenetic modifications, especially in T cells. Since these cell rely on antigen presentation, it may be assumed that erroneous activity of antigen-presenting cells (APCs), culminates in T cell abnormalities. In this review we summarize and discuss the epigenetic modifications in SLE affected APCs, with the focus on dendritic cells (DCs), B cells and monocytes. Unravelling this aspect of SLE pathogenesis, might result in identification of new disease biomarkers and putative therapeutic approaches.
Collapse
|
19
|
Mohammed S, Vineetha NS, James S, Aparna JS, Babu Lankadasari M, Maeda T, Ghosh A, Saha S, Li QZ, Spiegel S, Harikumar KB. Regulatory role of SphK1 in TLR7/9-dependent type I interferon response and autoimmunity. FASEB J 2020; 34:4329-4347. [PMID: 31971297 DOI: 10.1096/fj.201902847r] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/16/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) express Toll like receptors (TLRs) that modulate the immune response by production of type I interferons. Here, we report that sphingosine kinase 1 (SphK1) which produces the bioactive sphingolipid metabolite, sphingosine 1-phosphate (S1P), plays a critical role in the pDC functions and interferon production. Although dispensable for the pDC development, SphK1 is essential for the pDC activation and production of type I IFN and pro-inflammatory cytokines stimulated by TLR7/9 ligands. SphK1 interacts with TLRs and specific inhibition or deletion of SphK1 in pDCs mitigates uptake of CpG oligonucleotide ligands by TLR9 ligand. In the pristane-induced murine lupus model, pharmacological inhibition of SphK1 or its genetic deletion markedly decreased the IFN signature, pDC activation, and glomerulonephritis. Moreover, increases in the SphK1 expression and S1P levels were observed in human lupus patients. Taken together, our results indicate a pivotal regulatory role for the SphK1/S1P axis in maintaining the balance between immunosurveillance and immunopathology and suggest that specific SphK1 inhibitors might be a new therapeutic avenue for the treatment of type I IFN-linked autoimmune disorders.
Collapse
Affiliation(s)
- Sabira Mohammed
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Nalanda S Vineetha
- Department of Nephrology, Government Medical College, Thiruvananthapuram, India
| | - Shirley James
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Jayasekharan S Aparna
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | - Manendra Babu Lankadasari
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Takahiro Maeda
- Department of Island and Community Medicine, Island Medical Research Institute, Nagasaki University Graduate School of Biomedical Science, Nagasaki, Japan
| | | | - Sudipto Saha
- Bioinformatics Center, Bose Institute, Kolkata, India
| | - Quan-Zhen Li
- Department of Immunology & Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA
| | - Kuzhuvelil B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| |
Collapse
|
20
|
The contribution of macrophages to systemic lupus erythematosus. Clin Immunol 2019; 207:1-9. [DOI: 10.1016/j.clim.2019.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/25/2019] [Accepted: 06/26/2019] [Indexed: 12/11/2022]
|
21
|
Patyna S, Büttner S, Eckes T, Obermüller N, Bartel C, Braner A, Trautmann S, Thomas D, Geiger H, Pfeilschifter J, Koch A. Blood ceramides as novel markers for renal impairment in systemic lupus erythematosus. Prostaglandins Other Lipid Mediat 2019; 144:106348. [PMID: 31301404 DOI: 10.1016/j.prostaglandins.2019.106348] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 05/29/2019] [Accepted: 06/19/2019] [Indexed: 01/06/2023]
Abstract
BACKGROUND Lupus nephritis (LN) is the most common organ manifestation in systemic lupus erythematosus (SLE) and associated with a poor prognosis. Still, a noninvasive but reliable method to diagnose LN has not been established. Thus, we evaluated whether blood sphingolipids could serve as valid biomarkers for renal injury. METHODS In this cross-sectional study, 82 participants were divided into three groups: 36 healthy controls and 17 SLE patients without renal injury (both: estimated glomerular filtration rate (eGFR) ≥ 80 ml/min/1.73 m2 and albumin/creatinine ≤ 30 mg/g) and 29 LN patients. LN patients were identified by renal biopsies and impaired renal function (eGFR < 80 ml/min/1.73 m2 and albumin/creatinine ratio > 30 mg/g). Venous blood was collected from all participants and sphingolipid levels in plasma and serum were measured by LC-MS/MS. RESULTS Most interesting, concentrations of some specific ceramides, C16ceramide (Cer), C18Cer, C20Cer and C24:1Cer, were elevated in both, plasma and serum samples of patients suffering from biopsy-proven LN and impaired renal function, compared to healthy controls as well as SLE patients without renal injury. C24:1dhCer levels were elevated in plasma and serum samples from LN patients compared to SLE patients. Sphingosine levels were higher in plasma and serum of LN patients compared to healthy controls, but not compared to SLE patients. Sphinganine concentrations were significantly elevated in serum samples from LN patients compared to healthy controls and SLE. S1P and SA1P levels were higher in plasma samples of SLE and LN patients compared to healthy controls. Subsequent ROC analyses of plasma and serum data of the most altered ceramide species (C16Cer, C18Cer, C20Cer, C24:1Cer) between LN patients and SLE patients display a high diagnostic differentiation with significant AUCs especially for C24:1Cer serum levels. Further, C24:1Cer serum levels were not affected by glucocorticoid treatment and did not correlate with other renal markers, such as serum creatinine, eGFR and albumin/creatinine ratio. CONCLUSION Our data reveal that chain-length specific ceramides in blood, most likely C24:1Cer levels in serum, could act as potent biomarkers for renal impairment in patients suffering from SLE.
Collapse
Affiliation(s)
- Sammy Patyna
- Department of General Pharmacology and Toxicology, Goethe University Hospital and Goethe University Frankfurt, Frankfurt am Main, Germany; Department of Nephrology, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Stefan Büttner
- Department of Nephrology, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Timon Eckes
- Department of General Pharmacology and Toxicology, Goethe University Hospital and Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Nicholas Obermüller
- Department of Nephrology, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Christine Bartel
- Department of Nephrology, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Axel Braner
- Department of Rheumatology, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Sandra Trautmann
- Department of Clinical Pharmacology, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Dominique Thomas
- Department of Clinical Pharmacology, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Helmut Geiger
- Department of Nephrology, Goethe University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Josef Pfeilschifter
- Department of General Pharmacology and Toxicology, Goethe University Hospital and Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Alexander Koch
- Department of General Pharmacology and Toxicology, Goethe University Hospital and Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
22
|
Mohammed S, Vineetha NS, James S, Aparna JS, Lankadasari MB, Allegood JC, Li QZ, Spiegel S, Harikumar KB. Examination of the role of sphingosine kinase 2 in a murine model of systemic lupus erythematosus. FASEB J 2019; 33:7061-7071. [PMID: 30840833 DOI: 10.1096/fj.201802535r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Systemic lupus erythematosus is an autoimmune disease characterized by overproduction of type 1 IFN that causes multiple organ dysfunctions. Plasmacytoid dendritic cells (pDCs) that secrete large amounts of IFN have recently been implicated in the initiation of the disease in preclinical mouse models. Sphingosine-1-phosphate, a bioactive sphingolipid metabolite, is produced by 2 highly conserved isoenzymes, sphingosine kinase (SphK) 1 and SphK2, and regulates diverse processes important for immune responses and autoimmunity. However, not much is known about the role of SphK2 in autoimmune disorders. In this work, we examined the role of SphK2 in pDC development and activation and in the pristane-induced lupus model in mice that mimics the hallmarks of the human disease. Increases in pDC-specific markers were observed in peripheral blood of SphK2 knockout mice. In agreement, the absence of SphK2 increased the differentiation of FMS-like tyrosine kinase 3 ligand dendritic cells as well as expression of endosomal TLRs, TLR7 and TLR9, that modulate production of IFN. Surprisingly, however, SphK2 deficiency did not affect the initiation or progression of pristane-induced lupus. Moreover, although absence of SphK2 increased pDC frequency in pristane-induced lupus, there were no major changes in their activation status. Additionally, SphK2 expression was unaltered in lupus patients. Taken together, our results suggest that SphK2 may play a role in dendritic cell development. Yet, because its deletion had no effect on the clinical lupus parameters in this preclinical model, inhibitors of SphK2 might not be useful for treatment of this devastating disease.-Mohammed, S., Vineetha, N. S., James, S., Aparna, J. S., Lankadasari, M. B., Allegood, J. C., Li, Q.-Z., Spiegel, S., Harikumar, K. B. Examination of the role of sphingosine kinase 2 in a murine model of systemic lupus erythematosus.
Collapse
Affiliation(s)
- Sabira Mohammed
- Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Nalanda S Vineetha
- Department of Nephrology, Government Medical College, Thiruvananthapuram, India
| | - Shirley James
- Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India
| | | | - Manendra Babu Lankadasari
- Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, India.,Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Jeremy C Allegood
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA; and
| | - Quan-Zhen Li
- Department of Immunology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Richmond, VA, USA; and
| | | |
Collapse
|
23
|
Smith EMD, Eleuteri A, Goilav B, Lewandowski L, Phuti A, Rubinstein T, Wahezi D, Jones CA, Marks SD, Corkhill R, Pilkington C, Tullus K, Putterman C, Scott C, Fisher AC, Beresford MW. A Markov Multi-State model of lupus nephritis urine biomarker panel dynamics in children: Predicting changes in disease activity. Clin Immunol 2019; 198:71-78. [PMID: 30391651 DOI: 10.1016/j.clim.2018.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/28/2018] [Accepted: 10/31/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND A urine 'biomarker panel' comprising alpha-1-acid-glycoprotein, ceruloplasmin, transferrin and lipocalin-like-prostaglandin-D synthase performs to an 'excellent' level for lupus nephritis identification in children cross-sectionally. The aim of this study was to assess if this biomarker panel predicts lupus nephritis flare/remission longitudinally. METHODS The novel urinary biomarker panel was quantified by enzyme linked immunoabsorbant assay in participants of the United Kingdom Juvenile Systemic Lupus Erythematosus (UK JSLE) Cohort Study, the Einstein Lupus Cohort, and the South African Paediatric Lupus Cohort. Monocyte chemoattractant protein-1 and vascular cell adhesion molecule-1 were also quantified in view of evidence from other longitudinal studies. Serial urine samples were collected during routine care with detailed clinical and demographic data. A Markov Multi-State model of state transitions was fitted, with predictive clinical/biomarker factors assessed by a corrected Akaike Information Criterion (AICc) score (the better the model, the lower the AICc score). RESULTS The study included 184 longitudinal observations from 80 patients. The homogeneous multi-state Markov model of lupus nephritis activity AICc score was 147.85. Alpha-1-acid-glycoprotein and ceruloplasmin were identified to be the best predictive factors, reducing the AICc score to 139.81 and 141.40 respectively. Ceruloplasmin was associated with the active-to-inactive transition (hazard ratio 0.60 (95% confidence interval [0.39, 0.93])), and alpha-1-acid-glycoprotein with the inactive-to-active transition (hazard ratio 1.49 (95% confidence interval [1.10, 2.02])). Inputting individual alpha-1-acid-glycoprotein/ceruloplasmin values provides 3, 6 and 12 months probabilities of state transition. CONCLUSIONS Alpha-1-acid-glycoprotein was predictive of active lupus nephritis flare, whereas ceruloplasmin was predictive of remission. The Markov state-space model warrants testing in a prospective clinical trial of lupus nephritis biomarker led monitoring.
Collapse
Affiliation(s)
- E M D Smith
- Department of Women's & Children's Health, University of Liverpool, Liverpool, UK; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK.
| | - A Eleuteri
- Medical Physics and Clinical Engineering, and Department of Physics, University of Liverpool, Liverpool, UK.
| | - B Goilav
- Department of Paediatric Nephrology, Albert Einstein College of Medicine, New York, USA.
| | | | - A Phuti
- Paediatric Rheumatology, University of Cape Town, Cape Town, South Africa.
| | - T Rubinstein
- Department of Paediatric Rheumatology, Albert Einstein College of Medicine, New York, USA.
| | - D Wahezi
- Department of Paediatric Rheumatology, Albert Einstein College of Medicine, New York, USA.
| | - C A Jones
- Department of Paediatric Nephrology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK.
| | - S D Marks
- Paediatric Nephrology, Great Ormond Street Hospital, London, UK.
| | - R Corkhill
- Department of Women's & Children's Health, University of Liverpool, Liverpool, UK.
| | - C Pilkington
- Paediatric Rheumatology, Great Ormond Street Hospital, London, UK.
| | - K Tullus
- Paediatric Nephrology, Great Ormond Street Hospital, London, UK.
| | - C Putterman
- Department of Rheumatology, Albert Einstein College of Medicine, New York, USA.
| | - C Scott
- Paediatric Rheumatology, University of Cape Town, Cape Town, South Africa.
| | - A C Fisher
- Medical Physics and Clinical Engineering, and Department of Physics, University of Liverpool, Liverpool, UK.
| | - M W Beresford
- Department of Women's & Children's Health, University of Liverpool, Liverpool, UK; Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust, Liverpool, UK.
| |
Collapse
|
24
|
Huang N, Perl A. Metabolism as a Target for Modulation in Autoimmune Diseases. Trends Immunol 2018; 39:562-576. [PMID: 29739666 DOI: 10.1016/j.it.2018.04.006] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/21/2018] [Accepted: 04/18/2018] [Indexed: 12/20/2022]
Abstract
Metabolic pathways are now well recognized as important regulators of immune differentiation and activation, and thus influence the development of autoimmune diseases such as systemic lupus erythematosus (SLE). The mechanistic target of rapamycin (mTOR) has emerged as a key sensor of metabolic stress and an important mediator of proinflammatory lineage specification. Metabolic pathways control the production of mitochondrial reactive oxygen species (ROS), which promote mTOR activation and also modulate the antigenicity of proteins, lipids, and DNA, thus placing ROS at the heart of metabolic disturbances during pathogenesis of SLE. Therefore, we review here the pathways that control ROS production and mTOR activation and identify targets for safe therapeutic modulation of the signaling network that underlies autoimmune diseases, focusing on SLE.
Collapse
Affiliation(s)
- Nick Huang
- Departments of Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, NY 13210, USA
| | - Andras Perl
- Departments of Medicine, Microbiology and Immunology, Biochemistry and Molecular Biology, State University of New York, Upstate Medical University, College of Medicine, Syracuse, NY 13210, USA.
| |
Collapse
|
25
|
Bhat OM, Yuan X, Li G, Lee R, Li PL. Sphingolipids and Redox Signaling in Renal Regulation and Chronic Kidney Diseases. Antioxid Redox Signal 2018; 28:1008-1026. [PMID: 29121774 PMCID: PMC5849286 DOI: 10.1089/ars.2017.7129] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/30/2017] [Accepted: 11/04/2017] [Indexed: 01/04/2023]
Abstract
Significance: Sphingolipids play critical roles in the membrane biology and intracellular signaling events that influence cellular behavior and function. Our review focuses on the cellular mechanisms and functional relevance of the cross talk between sphingolipids and redox signaling, which may be critically implicated in the pathogenesis of different renal diseases. Recent Advances: Reactive oxygen species (ROS) and sphingolipids can regulate cellular redox homeostasis through the regulation of NADPH oxidase, mitochondrial integrity, nitric oxide synthase (NOS), and antioxidant enzymes. Over the last two decades, there have been significant advancements in the field of sphingolipid research, and it was in 2010 for the first time that sphingolipid receptor modulator was exploited as a therapeutic in humans. The cross talk of sphingolipids with redox signaling pathways becomes an important mechanism in the development of many different diseases such as renal diseases. Critical Issues: The critical issues to be addressed in this review are how sphingolipids interact with the redox signaling pathway to regulate renal function and even result in chronic kidney diseases. Ceramide, sphingosine, and sphingosine-1-phosphate (S1P) as main signaling sphingolipids are discussed in more detail. Future Directions: Although sphingolipids and ROS may mediate or modulate cellular responses to physiological and pathological stimuli, more translational studies and mechanistic pursuit in a tissue- or cell-specific way are needed to enhance our understanding of this important topic and to develop effective therapeutic strategies to treat diseases associated with redox signaling and sphingolipid cross talk. Antioxid. Redox Signal. 28, 1008-1026.
Collapse
Affiliation(s)
- Owais M Bhat
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Xinxu Yuan
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Guangbi Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - RaMi Lee
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
26
|
Sun XJ, Wang C, Zhang LX, Yu F, Chen M, Zhao MH. Sphingosine-1-phosphate and its receptors in anti-neutrophil cytoplasmic antibody-associated vasculitis. Nephrol Dial Transplant 2018; 32:1313-1322. [PMID: 28206609 DOI: 10.1093/ndt/gfw427] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 11/02/2016] [Indexed: 11/13/2022] Open
Abstract
Background C5a plays a crucial role in anti-neutrophil cytoplasmic antibody (ANCA)-mediated neutrophil recruitment and activation. Our previous studies found that the interaction between sphingosine-1-phosphate (S1P) and C5a plays an important role in the ANCA-mediated activation of neutrophils. In the current study, the expression levels of S1P in plasma and its receptors (S1PR1-5) in kidneys were analysed in patients with ANCA-associated vasculitis (AAV). Methods Plasma samples from 32 AAV patients in active stage and 20 AAV patients in remission were collected. The plasma levels of S1P were determined by an enzyme-linked immunosorbent assay (ELISA). The expression of S1PR1-5 in the renal specimens from 24 AAV patients was detected by immunohistochemistry. The associations of the plasma levels of S1P and renal expression of S1PRs with clinical and pathological parameters were analysed. Results The level of plasma S1P was significantly higher in AAV patients in active stage than it was in both patients in remission and in normal controls. Correlation analysis showed that the plasma levels of S1P correlated with the initial serum creatinine levels (r = 0.502, P = 0.003) and inversely correlated with the estimated glomerular filtration rate (eGFR; r = -0.358, P = 0.044) in AAV patients. Double-labelling immunofluorescence assay suggested that S1PR1-5 were expressed on endothelial cells in the glomeruli and that S1PR1, 4 and 5 were expressed on neutrophils. Conclusions In AAV patients, the circulating S1P levels were elevated and the renal expression of S1PR2-5 was upregulated. The levels of circulating S1P and the renal expression of S1PR were associated with the renal involvement and disease activity of AAV.
Collapse
Affiliation(s)
- Xiao-Jing Sun
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education; Peking-Tsinghua Center for Life Sciences, No.8, Xishiku Street, Xicheng District, Beijing, China
| | - Chen Wang
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education; Peking-Tsinghua Center for Life Sciences, No.8, Xishiku Street, Xicheng District, Beijing, China
| | - Lu-Xia Zhang
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education; Peking-Tsinghua Center for Life Sciences, No.8, Xishiku Street, Xicheng District, Beijing, China
| | - Feng Yu
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education; Peking-Tsinghua Center for Life Sciences, No.8, Xishiku Street, Xicheng District, Beijing, China
| | - Min Chen
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education; Peking-Tsinghua Center for Life Sciences, No.8, Xishiku Street, Xicheng District, Beijing, China
| | - Ming-Hui Zhao
- Renal Division, Department of Medicine, Peking University First Hospital; Peking University Institute of Nephrology; Key Laboratory of Renal Disease, Ministry of Health of China; Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education; Peking-Tsinghua Center for Life Sciences, No.8, Xishiku Street, Xicheng District, Beijing, China
| |
Collapse
|
27
|
Arish M, Alaidarous M, Ali R, Akhter Y, Rub A. Implication of sphingosine-1-phosphate signaling in diseases: molecular mechanism and therapeutic strategies. J Recept Signal Transduct Res 2017; 37:437-446. [PMID: 28758826 DOI: 10.1080/10799893.2017.1358282] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Sphingosine-1-phosphate signaling is emerging as a critical regulator of cellular processes that is initiated by the intracellular production of bioactive lipid molecule, sphingosine-1-phosphate. Binding of sphingosine-1-phosphate to its extracellular receptors activates diverse downstream signaling that play a critical role in governing physiological processes. Increasing evidence suggests that this signaling pathway often gets impaired during pathophysiological and diseased conditions and hence manipulation of this signaling pathway may be beneficial in providing treatment. In this review, we summarized the recent findings of S1P signaling pathway and the versatile role of the participating candidates in context with several disease conditions. Finally, we discussed its possible role as a novel drug target in different diseases.
Collapse
Affiliation(s)
- Mohd Arish
- a Infection and Immunity Lab, Department of Biotechnology , Jamia Millia Islamia (A Central University) , New Delhi , India
| | - Mohammed Alaidarous
- b Department of Medical Laboratory Sciences, College of Applied Medical Sciences , Majmaah University , Al Majmaah , Saudi Arabia
| | - Rahat Ali
- a Infection and Immunity Lab, Department of Biotechnology , Jamia Millia Islamia (A Central University) , New Delhi , India
| | - Yusuf Akhter
- c Centre for Computational Biology & Bioinformatics, School of Life Sciences , Central University of Himachal Pradesh , Shahpur, Kangra , India
| | - Abdur Rub
- a Infection and Immunity Lab, Department of Biotechnology , Jamia Millia Islamia (A Central University) , New Delhi , India.,b Department of Medical Laboratory Sciences, College of Applied Medical Sciences , Majmaah University , Al Majmaah , Saudi Arabia
| |
Collapse
|
28
|
Punsawad C, Viriyavejakul P. Reduction in serum sphingosine 1-phosphate concentration in malaria. PLoS One 2017; 12:e0180631. [PMID: 28666023 PMCID: PMC5493422 DOI: 10.1371/journal.pone.0180631] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 06/19/2017] [Indexed: 11/29/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a lipid mediator formed by the metabolism of sphingomyelin which is involved in the endothelial permeability and inflammation. Although the plasma S1P concentration is reportedly decreased in patients with cerebral malaria, the role of S1P in malaria is still unclear. The purpose of this study was to examine the impact of malaria on circulating S1P concentration and its relationship with clinical data in malaria patients. Serum S1P levels were measured in 29 patients with P. vivax, 30 patients with uncomplicated P. falciparum, and 13 patients with complicated P. falciparum malaria on admission and on day 7, compared with healthy subjects (n = 18) as control group. The lowest level of serum S1P concentration was found in the complicated P. falciparum malaria group, compared with P. vivax, uncomplicated P. falciparum patients and healthy controls (all p < 0.001). In addition, serum S1P level was positively correlated with platelet count, hemoglobin and hematocrit levels in malaria patients. In conclusions, low levels of S1P are associated with the severity of malaria, and are correlated with thrombocytopenia and anemia. These findings highlight a role of S1P in the severity of malaria and support the use of S1P and its analogue as a novel adjuvant therapy for malaria complications.
Collapse
Affiliation(s)
- Chuchard Punsawad
- School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Tropical Diseases and Parasitic Infectious Diseases Research Group, Walailak University, Nakhon Si Thammarat, Thailand
| | - Parnpen Viriyavejakul
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
29
|
Sphingosine-1-phosphate is involved in inflammatory reactions in patients with Graves’ orbitopathy. Inflamm Res 2017; 66:535-545. [DOI: 10.1007/s00011-017-1037-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/08/2017] [Accepted: 03/13/2017] [Indexed: 01/06/2023] Open
|
30
|
Wu H, Fu S, Zhao M, Lu L, Lu Q. Dysregulation of Cell Death and Its Epigenetic Mechanisms in Systemic Lupus Erythematosus. Molecules 2016; 22:E30. [PMID: 28035990 PMCID: PMC6155917 DOI: 10.3390/molecules22010030] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/26/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a systemic autoimmune disease involving multiple organs and tissues, which is characterized by the presence of excessive anti-nuclear autoantibodies. The pathogenesis of SLE has been intensively studied but remains far from clear. Increasing evidence has shown that the genetic susceptibilities and environmental factors-induced abnormalities in immune cells, dysregulation of apoptosis, and defects in the clearance of apoptotic materials contribute to the development of SLE. As the main source of auto-antigens, aberrant cell death may play a critical role in the pathogenesis of SLE. In this review, we summarize up-to-date research progress on different levels of cell death-including increasing rate of apoptosis, necrosis, autophagy and defects in clearance of dying cells-and discuss the possible underlying mechanisms, especially epigenetic modifications, which may provide new insight in the potential development of therapeutic strategies for SLE.
Collapse
Affiliation(s)
- Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China.
| | - Siqi Fu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China.
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China.
| | - Liwei Lu
- Department of Pathology and Center for Infection and Immunology, the University of Hong Kong, Hong Kong, China.
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha 410011, China.
| |
Collapse
|
31
|
Sphingosine-1-Phosphate (S1P) and S1P Signaling Pathway: Therapeutic Targets in Autoimmunity and Inflammation. Drugs 2016; 76:1067-79. [DOI: 10.1007/s40265-016-0603-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Lysophospholipid Receptors, as Novel Conditional Danger Receptors and Homeostatic Receptors Modulate Inflammation-Novel Paradigm and Therapeutic Potential. J Cardiovasc Transl Res 2016; 9:343-59. [PMID: 27230673 DOI: 10.1007/s12265-016-9700-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/19/2016] [Indexed: 12/29/2022]
Abstract
There are limitations in the current classification of danger-associated molecular patterns (DAMP) receptors. To overcome these limitations, we propose a new paradigm by using endogenous metabolites lysophospholipids (LPLs) as a prototype. By utilizing a data mining method we pioneered, we made the following findings: (1) endogenous metabolites such as LPLs at basal level have physiological functions; (2) under sterile inflammation, expression of some LPLs is elevated. These LPLs act as conditional DAMPs or anti-inflammatory homeostasis-associated molecular pattern molecules (HAMPs) for regulating the progression of inflammation or inhibition of inflammation, respectively; (3) receptors for conditional DAMPs and HAMPs are differentially expressed in human and mouse tissues; and (4) complex signaling mechanism exists between pro-inflammatory mediators and classical DAMPs that regulate the expression of conditional DAMPs and HAMPs. This novel insight will facilitate identification of novel conditional DAMPs and HAMPs, thus promote development of new therapeutic targets to treat inflammatory disorders.
Collapse
|
33
|
Hao J, Huang YM, Zhao MH, Chen M. The interaction between C5a and sphingosine-1-phosphate in neutrophils for antineutrophil cytoplasmic antibody mediated activation. Arthritis Res Ther 2014; 16:R142. [PMID: 25000985 PMCID: PMC4227110 DOI: 10.1186/ar4604] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 07/01/2014] [Indexed: 12/17/2022] Open
Abstract
Introduction C5a plays an crucial role in antineutrophil cytoplasmic antibody (ANCA)-mediated neutrophil recruitment and activation. The current study further investigated the interaction between C5a and sphingosine-1-phosphate (S1P) in neutrophils for ANCA-mediated activation. Methods The plasma levels of S1P from 29 patients with ANCA-associated vasculitis (AAV) in active stage and in remission were tested by enzyme-linked immunosorbent assay (ELISA). The generation of S1P was tested in C5a-triggered neutrophils. The effect S1P receptor antagonist was tested on respiratory burst and degranulation of C5a-primed neutrophils activated with ANCA. Results The plasma level of circulating S1P was significantly higher in patients with AAV with active disease compared with patients in remission (2034.2 ± 438.5 versus 1489.3 ± 547.4 nmol/L, P < 0.001). S1P can prime neutrophils for ANCA-induced respiratory burst and degranulation. Compared with non-triggered neutrophils, the mean fluorescence intensity (MFI) value for CD88 expression was up-regulated significantly in S1P-triggered neutrophils. S1P receptor antagonist decreased oxygen radical production in C5a primed neutrophils induced by ANCA-positive IgG from patients. Blocking S1P inhibited C5a-primed neutrophil migration. Conclusions S1P triggered by C5a-primed neutrophils could further activate neutrophils. Blocking S1P could attenuate C5a-induced activation of neutrophils by ANCA. The interaction between S1P and C5a plays an important role in neutrophils for ANCA-mediated activation.
Collapse
|
34
|
Merscher S, Fornoni A. Podocyte pathology and nephropathy - sphingolipids in glomerular diseases. Front Endocrinol (Lausanne) 2014; 5:127. [PMID: 25126087 PMCID: PMC4115628 DOI: 10.3389/fendo.2014.00127] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/14/2014] [Indexed: 01/10/2023] Open
Abstract
Sphingolipids are components of the lipid rafts in plasma membranes, which are important for proper function of podocytes, a key element of the glomerular filtration barrier. Research revealed an essential role of sphingolipids and sphingolipid metabolites in glomerular disorders of genetic and non-genetic origin. The discovery that glucocerebrosides accumulate in Gaucher disease in glomerular cells and are associated with clinical proteinuria initiated intensive research into the function of other sphingolipids in glomerular disorders. The accumulation of sphingolipids in other genetic diseases including Tay-Sachs, Sandhoff, Fabry, hereditary inclusion body myopathy 2, Niemann-Pick, and nephrotic syndrome of the Finnish type and its implications with respect to glomerular pathology will be discussed. Similarly, sphingolipid accumulation occurs in glomerular diseases of non-genetic origin including diabetic kidney disease (DKD), HIV-associated nephropathy, focal segmental glomerulosclerosis (FSGS), and lupus nephritis. Sphingomyelin metabolites, such as ceramide, sphingosine, and sphingosine-1-phosphate have also gained tremendous interest. We recently described that sphingomyelin phosphodiesterase acid-like 3b (SMPDL3b) is expressed in podocytes where it modulates acid sphingomyelinase activity and acts as a master modulator of danger signaling. Decreased SMPDL3b expression in post-reperfusion kidney biopsies from transplant recipients with idiopathic FSGS correlates with the recurrence of proteinuria in patients and in experimental models of xenotransplantation. Increased SMPDL3b expression is associated with DKD. The consequences of differential SMPDL3b expression in podocytes in these diseases with respect to their pathogenesis will be discussed. Finally, the role of sphingolipids in the formation of lipid rafts in podocytes and their contribution to the maintenance of a functional slit diaphragm in the glomerulus will be discussed.
Collapse
Affiliation(s)
- Sandra Merscher
- Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology, Department of Medicine, University of Miami, Miami, FL, USA
- *Correspondence: Sandra Merscher, Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology, Department of Medicine, University of Miami, 1580 NW 10th Avenue, Batchelor Building, Room 628, Miami, FL 33136, USA e-mail: ; Alessia Fornoni, Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology, Department of Medicine, University of Miami, 1580 NW 10th Avenue, Batchelor Building, Room 633, Miami, FL 33136, USA e-mail:
| | - Alessia Fornoni
- Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology, Department of Medicine, University of Miami, Miami, FL, USA
- *Correspondence: Sandra Merscher, Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology, Department of Medicine, University of Miami, 1580 NW 10th Avenue, Batchelor Building, Room 628, Miami, FL 33136, USA e-mail: ; Alessia Fornoni, Peggy and Harold Katz Family Drug Discovery Center and Division of Nephrology, Department of Medicine, University of Miami, 1580 NW 10th Avenue, Batchelor Building, Room 633, Miami, FL 33136, USA e-mail:
| |
Collapse
|
35
|
Barsalou J, Levy DM, Silverman ED. An update on childhood-onset systemic lupus erythematosus. Curr Opin Rheumatol 2013; 25:616-22. [DOI: 10.1097/bor.0b013e328363e868] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Snider AJ. Sphingosine kinase and sphingosine-1-phosphate: regulators in autoimmune and inflammatory disease. ACTA ACUST UNITED AC 2013; 8. [PMID: 24416079 DOI: 10.2217/ijr.13.40] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Sphingolipids and their metabolizing enzymes are beginning to be recognized as critical mediators in biological processes, specifically in inflammation and autoimmunity. Sphingosine kinases (SKs) and their lipid product sphingosine-1-phosphate (S1P) play essential roles in inflammatory signaling processes, as well as disease development and progression. SKs can be activated by numerous growth factors and cytokines, including TNF-α and IL-1β, leading to the generation of S1P. S1P exerts its biological effects on intracellular and extracellular targets, such as S1P receptors. In addition to roles in inflammatory signaling pathways SKs, S1P and S1P receptors have been implicated in immune cell function and trafficking, specifically in lymphocytes. This review will discuss the contribution of the bioactive sphingolipid S1P, its generating enzyme SK, and its cell surface receptors in the inflammatory and autoimmune diseases systemic lupus erythematosus, arthritis and inflammatory bowel disease.
Collapse
Affiliation(s)
- Ashley J Snider
- Northport Veterans Affairs Medical Center, Northport, NY 11768, USA and Department of Medicine, Stony Brook University, 100 Nicolls Road, Health Sciences Center L15-023, Stony Brook, NY 11794, USA
| |
Collapse
|
37
|
O'Sullivan C, Dev KK. The structure and function of the S1P1 receptor. Trends Pharmacol Sci 2013; 34:401-12. [PMID: 23763867 DOI: 10.1016/j.tips.2013.05.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 04/27/2013] [Accepted: 05/07/2013] [Indexed: 12/18/2022]
Abstract
Sphingosine 1-phosphate (S1P) receptors (S1PRs) belong to the class A family of G protein-coupled receptors (GPCRs). S1PRs are widely expressed on many cell types, including those of the immune, cardiovascular, and central nervous systems. The S1PR family is rapidly gaining attention as an important mediator of many cellular processes, including cell differentiation, migration, survival, angiogenesis, calcium homeostasis, inflammation and immunity. Importantly, S1PRs are known drug targets for multiple sclerosis (MS), for which the newly developed oral therapy fingolimod, an S1PR modulator, has recently been approved for clinical use. Much progress has also recently been made in the field of structural biology and in the modeling of heterotrimeric GPCRs allowing the crystal structure of the S1PR1 subtype to be elucidated and key interactions defined. Here, we outline the structure and function of S1PR1, highlighting the key residues involved in receptor activation, signaling, transmembrane interactions, ligand binding, post-translational modification, and protein-protein interactions.
Collapse
Affiliation(s)
- Catherine O'Sullivan
- Molecular Neuropharmacology, Department of Physiology, School of Medicine, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
38
|
Sultan A, Ling B, Zhang H, Ma B, Michel D, Alcorn J, Yang J. Synergistic Effect between Sphingosine-1-Phosphate and Chemotherapy Drugs against Human Brain-metastasized Breast Cancer MDA-MB-361 cells. J Cancer 2013; 4:315-9. [PMID: 23569464 PMCID: PMC3619092 DOI: 10.7150/jca.5956] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/15/2013] [Indexed: 11/25/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) is an important sphingolipid metabolite regulating key physiological and pathophysiological processes such as cell growth and survival and tumor angiogenesis. Significant research evidence links elevated cellular S1P concentration to cancer cell proliferation, migration and angiogenesis. Physiological levels of S1P are tightly regulated and maintained at the low nanomolar level. In cancer, S1P may exist well beyond the low nanomolar level. Recently, we reported that S1P selectively induces cell apoptosis of the breast cancer MCF7 cell line at concentrations higher than 1 µM and co-administration of 1 µM S1P significantly increased the cytotoxicity of chemotherapy drug docetaxel. In this study, we show that S1P caused minor increases in cell proliferation or apoptosis, in a concentration-dependent manner, yet co-administration of 10 µM S1P exhibited a significant synergistic effect with chemotherapy drugs docetaxel, doxorubicin and cyclophosphamide. S1P increased the cytotoxic potential of each drug by 2-fold, 3-fold, and 10-fold, respectively, against the breast cancer metastatic cell line MDA-MB-361. This synergism may suggest improved anticancer drug therapy by co-administration of exogenous S1P.
Collapse
Affiliation(s)
- Ahlam Sultan
- 1. Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | | | | | | | | | | | | |
Collapse
|
39
|
Snider AJ, Ruiz P, Obeid LM, Oates JC. Inhibition of sphingosine kinase-2 in a murine model of lupus nephritis. PLoS One 2013; 8:e53521. [PMID: 23301082 PMCID: PMC3536755 DOI: 10.1371/journal.pone.0053521] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 12/03/2012] [Indexed: 01/13/2023] Open
Abstract
Sphingosine-1-phosphate (S1P), a potent bioactive lipid, is emerging as a central mediator in inflammation and immune responses. We have previously implicated S1P and its synthetic enzyme sphingosine kinase (SK) in inflammatory and autoimmune disorders, including inflammatory bowel disease and rheumatoid arthritis. Generation of S1P requires phosphorylation of sphingosine by SK, of which there are two isoforms. Numerous studies have implicated SK1 in immune cell trafficking, inflammation and autoimmune disorders. In this study, we set out to determine the role of SK and S1P in lupus nephritis (LN). To this end, we examined S1P and dihydro-S1P (dh-S1P) levels in serum and kidney tissues from a mouse model of LN. Interestingly dh-S1P was significantly elevated in serum and kidney tissue from LN mice, which is more readily phosphorylated by SK2. Therefore, we employed the use of the specific SK2 inhibitor, ABC294640 in our murine model of LN. Treatment with ABC294640 did not improve vascular or interstitial pathology associated with LN. However, mice treated with the SK2 inhibitor did demonstrate decreases in glomerular pathology and accumulation of B and T cells in the spleen these were not statistically different from lpr mice treated with vehicle. LN mice treated with ABC294640 did not have improved urine thromboxane levels or urine proteinuria measurements. Both S1P and dh-S1P levels in circulation were significantly reduced with ABC294640 treatment; however, dh-S1P was actually elevated in kidneys from LN mice treated with ABC294640. Together these data demonstrate a role for SKs in LN; however, they suggest that inhibition of SK1 or perhaps both SK isoforms would better prevent elevations in S1P and dh-S1P and potentially better protect against LN.
Collapse
Affiliation(s)
- Ashley J. Snider
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Phillip Ruiz
- Division of Immunopathology, Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Lina M. Obeid
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Molecular and Cellular Biology and Pathobiology, Medical University of South Carolina, South Carolina, United States of America
| | - Jim C. Oates
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina, United States of America
- Division of Rheumatology and Immunology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| |
Collapse
|