1
|
Iacobescu M, Pop C, Uifălean A, Mogoşan C, Cenariu D, Zdrenghea M, Tănase A, Bergthorsson JT, Greiff V, Cenariu M, Iuga CA, Tomuleasa C, Tătaru D. Unlocking protein-based biomarker potential for graft-versus-host disease following allogenic hematopoietic stem cell transplants. Front Immunol 2024; 15:1327035. [PMID: 38433830 PMCID: PMC10904603 DOI: 10.3389/fimmu.2024.1327035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/01/2024] [Indexed: 03/05/2024] Open
Abstract
Despite the numerous advantages of allogeneic hematopoietic stem cell transplants (allo-HSCT), there exists a notable association with risks, particularly during the preconditioning period and predominantly post-intervention, exemplified by the occurrence of graft-versus-host disease (GVHD). Risk stratification prior to symptom manifestation, along with precise diagnosis and prognosis, relies heavily on clinical features. A critical imperative is the development of tools capable of early identification and effective management of patients undergoing allo-HSCT. A promising avenue in this pursuit is the utilization of proteomics-based biomarkers obtained from non-invasive biospecimens. This review comprehensively outlines the application of proteomics and proteomics-based biomarkers in GVHD patients. It delves into both single protein markers and protein panels, offering insights into their relevance in acute and chronic GVHD. Furthermore, the review provides a detailed examination of the site-specific involvement of GVHD. In summary, this article explores the potential of proteomics as a tool for timely and accurate intervention in the context of GVHD following allo-HSCT.
Collapse
Affiliation(s)
- Maria Iacobescu
- Department of Proteomics and Metabolomics, MEDFUTURE Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Pop
- Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alina Uifălean
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristina Mogoşan
- Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Cenariu
- Department of Translational Medicine, MEDFUTURE Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihnea Zdrenghea
- Department of Hematology, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alina Tănase
- Department of Stem Cell Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Jon Thor Bergthorsson
- Department of Laboratory Hematology, Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University Iceland, Reykjavik, Iceland
| | - Victor Greiff
- Department of Immunology, University of Oslo, Oslo, Norway
| | - Mihai Cenariu
- Department of Animal Reproduction, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Cristina Adela Iuga
- Department of Proteomics and Metabolomics, MEDFUTURE Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Department of Translational Medicine, MEDFUTURE Research Center for Advanced Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Hematology, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Dan Tătaru
- Department of Internal Medicine, Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
2
|
Brodzikowska A, Kochańska B, Bogusławska-Kapała A, Strużycka I, Górski B, Miskiewicz A. Assessment of the Salivary Concentrations of Selected Immunological Components in Adult Patients in the Late Period after Allogeneic Hematopoietic Stem Cell Transplantation-A Translational Study. Int J Mol Sci 2024; 25:1457. [PMID: 38338734 PMCID: PMC10855433 DOI: 10.3390/ijms25031457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024] Open
Abstract
(1) The aim of the study was to analyze the salivary concentrations of lysozyme, lactoferrin, and sIgA antibodies in adult patients in the late period after allogeneic stem cell transplantation (alloHSCT). The relationship between these concentrations and the salivary secretion rate and the time elapsed after alloHSCT was investigated. The relationship between the concentrations of lysozyme, lactoferrin, and sIgA and the titer of the cariogenic bacteria S. mutans and L. acidophilus was assessed. (2) The study included 54 individuals, aged 19 to 67 (SD = 40.06 ± 11.82; Me = 39.5), who were 3 to 96 months after alloHSCT. The concentrations of lysozyme, lactoferrin, and sIgA were assessed in mixed whole resting saliva (WRS) and mixed whole stimulated saliva (WSS). (3) The majority of patients had very low or low concentrations of the studied salivary components (WRS-lysozyme: 52, lactoferrin: 36, sIgA: 49 patients; WSS-lysozyme: 51, lactoferrin: 25, sIgA: 51 patients). The levels of lactoferrin in both WRS and WSS were statistically significantly higher in the alloHSCT group than in the control group (CG) (alloHSCT patients-WRS: M = 40.18 μg/mL; WSS: M = 27.33 μg/mL; CG-WRS: M = 17.58 μg/mL; WSS: 10.69 μg/mL). No statistically significant correlations were observed between lysozyme, lactoferrin, and sIgA concentrations and the time after alloHSCT. In the group of patients after alloHSCT a negative correlation was found between the resting salivary flow rate and the concentration of lactoferrin and sIgA. The stimulated salivary flow rate correlated negatively with lactoferrin and sIgA concentrations. Additionally, the number of S. mutans colonies correlated positively with the concentration of lysozyme and sIgA. (4) The concentrations of non-specific and specific immunological factors in the saliva of patients after alloHSCT may differ when compared to healthy adults; however, the abovementioned differences did not change with the time after transplantation.
Collapse
Affiliation(s)
- Aniela Brodzikowska
- Department of Conservative Dentistry, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Barbara Kochańska
- Department of Conservative Dentistry, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | | | - Izabela Strużycka
- Department of Comprehensive Dental Care, Medical University of Warsaw, 02-091 Warsaw, Poland; (A.B.-K.); (I.S.)
| | - Bartłomiej Górski
- Department of Periodontology and Oral Diseases, Medical University of Warsaw, 02-091 Warsaw, Poland; (B.G.); (A.M.)
| | - Andrzej Miskiewicz
- Department of Periodontology and Oral Diseases, Medical University of Warsaw, 02-091 Warsaw, Poland; (B.G.); (A.M.)
| |
Collapse
|
3
|
van Leeuwen SJM, Proctor GB, Staes A, Laheij AMGA, Potting CMJ, Brennan MT, von Bültzingslöwen I, Rozema FR, Hazenberg MD, Blijlevens NMA, Raber-Durlacher JE, Huysmans MCDNJM. The salivary proteome in relation to oral mucositis in autologous hematopoietic stem cell transplantation recipients: a labelled and label-free proteomics approach. BMC Oral Health 2023; 23:460. [PMID: 37420206 PMCID: PMC10329372 DOI: 10.1186/s12903-023-03190-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/30/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Oral mucositis is a frequently seen complication in the first weeks after hematopoietic stem cell transplantation recipients which can severely affects patients quality of life. In this study, a labelled and label-free proteomics approach were used to identify differences between the salivary proteomes of autologous hematopoietic stem cell transplantation (ASCT) recipients developing ulcerative oral mucositis (ULC-OM; WHO score ≥ 2) or not (NON-OM). METHODS In the TMT-labelled analysis we pooled saliva samples from 5 ULC-OM patients at each of 5 timepoints: baseline, 1, 2, 3 weeks and 3 months after ASCT and compared these with pooled samples from 5 NON-OM patients. For the label-free analysis we analyzed saliva samples from 9 ULC-OM and 10 NON-OM patients at 6 different timepoints (including 12 months after ASCT) with Data-Independent Acquisition (DIA). As spectral library, all samples were grouped (ULC-OM vs NON-OM) and analyzed with Data Dependent Analysis (DDA). PCA plots and a volcano plot were generated in RStudio and differently regulated proteins were analyzed using GO analysis with g:Profiler. RESULTS A different clustering of ULC-OM pools was found at baseline, weeks 2 and 3 after ASCT with TMT-labelled analysis. Using label-free analysis, week 1-3 samples clustered distinctly from the other timepoints. Unique and up-regulated proteins in the NON-OM group (DDA analysis) were involved in immune system-related processes, while those proteins in the ULC-OM group were intracellular proteins indicating cell lysis. CONCLUSIONS The salivary proteome in ASCT recipients has a tissue protective or tissue-damage signature, that corresponded with the absence or presence of ulcerative oral mucositis, respectively. TRIAL REGISTRATION The study is registered in the national trial register (NTR5760; automatically added to the International Clinical Trial Registry Platform).
Collapse
Affiliation(s)
- S J M van Leeuwen
- Department of Dentistry, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - G B Proctor
- Centre for Host Microbiome Interactions, King's College London Dental Institute, London, UK
| | - A Staes
- VIB Proteomics Core, VIB Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - A M G A Laheij
- Department of Oral Medicine, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University, Amsterdam, The Netherlands
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University, Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - C M J Potting
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M T Brennan
- Department of Oral Medicine/Oral and Maxillofacial Surgery, Atrium Health Carolinas Medical Centre, NC, Charlotte, USA
- Department of Otolaryngology/Head and Neck Surgery, Wake Forest University School of Medicine, NC, Winston-Salem, USA
| | - I von Bültzingslöwen
- Department of Oral Microbiology and Immunology, Institute of Odontology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - F R Rozema
- Department of Oral Medicine, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University, Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - M D Hazenberg
- Department of Hematology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands
| | - N M A Blijlevens
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J E Raber-Durlacher
- Department of Oral Medicine, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University, Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - M C D N J M Huysmans
- Department of Dentistry, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Applications of Mass Spectrometry in Dentistry. Biomedicines 2023; 11:biomedicines11020286. [PMID: 36830822 PMCID: PMC9953492 DOI: 10.3390/biomedicines11020286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
Mass Spectrometry (MS) is one of the fastest-developing methods in analytical instrumentation. As a highly sensitive, universal detector, it can identify known and unknown compounds, which can indeed be found in a minimal concentration. This review aims to highlight the significant milestones in MS applications in dentistry during recent decades. MS can be applied in three different fields of dentistry: (1) in research of dental materials and chemical agents, (2) in laboratory analysis of biospecimens, and (3) as a real-time diagnostic tool in service of oral surgery and pathology. MS applications on materials and agents may focus on numerous aspects, such as their clinical behavior, possible toxicity, or antimicrobial properties. MS is also a valuable, non-invasive tool for biomarkers' detection in saliva and has found great application in -omics technologies as it achieves efficient structure-finding in metabolites. As metabolites are located beyond the central dogma, this technique can provide a complete understanding of cellular functions. Thus, it is possible to determine the biological profile in normal and pathological conditions, detect various oral or systematic diseases and conditions, and predict their course. Lastly, some promising advances concerning the surgical approach to potentially oral malignant or malignant disorders exist. This breakthrough method provides a comprehensive approach to dental materials research and biomarker discovery in dental and craniofacial tissues. The current availability of various 'OMIC' approaches paves the way for individualized dentistry and provides suggestions for clinical applications in the point-of-care hubs.
Collapse
|
5
|
Peres PEC, Fu J, Zero DT, Cury JA. Effect of phenylmethylsulfonyl fluoride, a protease inhibitor, on enamel surface remineralization. BRAZILIAN JOURNAL OF ORAL SCIENCES 2022. [DOI: 10.20396/bjos.v22i00.8670883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phenylmethylsulfonyl fluoride (PMSF) is a protease inhibitor widely used in research, but fluoride is released during its action and this knowledge has been neglected in dental research. Aim: to evaluate if fluoride released by salivary protease action on PMSF affects enamel remineralization and fluoride uptake. Methods: Groups of 10 enamel slabs, with caries-like lesions and known surface hardness (SH), were subjected to one of the following treatment groups: Stimulated human saliva (SHS), negative control; SHS containing 1.0 μg F/mL (NaF), positive control; and SHS containing 10, 50 or 100 μM PMSF. The slabs were subjected to a pH-cycling regimen consisting of 22 h/day in each treatment solution and 2 h/day in a demineralizing solution. After 12 days, SH was again measured to calculate the percentage of surface hardness recovery (%SHR), followed by enamel fluoride uptake determination. The time-related fluoride release from 100.0 μM PMSF by SHS action was also determined. Data were analyzed by ANOVA followed by Newman-Keuls test. Results: The release of fluoride from PMSF by SHS was rapid, reaching a maximum value after 10 min. Fluoride released from PMSF was more effective in enhancing %SHR and increasing fluoride uptake in enamel compared with SHS alone (p < 0.05); furthermore, it was equivalent to the positive control (p > 0.05). Conclusion: In conclusion, fluoride released by saliva from PMSF is available to react with enamel and needs to be taken into account in research using this protease inhibitor.
Collapse
|
6
|
Khan H, Shah MR, Barek J, Malik MI. Cancer biomarkers and their biosensors: A comprehensive review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Costa-da-Silva AC, Aure MH, Dodge J, Martin D, Dhamala S, Cho M, Rose JJ, Bassim CW, Ambatipudi K, Hakim FT, Pavletic SZ, Mays JW. Salivary ZG16B expression loss follows exocrine gland dysfunction related to oral chronic graft-versus-host disease. iScience 2022; 25:103592. [PMID: 35005541 PMCID: PMC8718990 DOI: 10.1016/j.isci.2021.103592] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/01/2021] [Accepted: 12/06/2021] [Indexed: 11/15/2022] Open
Abstract
Chronic graft-versus-host disease (cGVHD) targets include the oral mucosa and salivary glands after allogeneic hematopoietic stem cell transplant (HSCT). Without incisional biopsy, no diagnostic test exists to confirm oral cGVHD. Consequently, therapy is often withheld until severe manifestations develop. This proteomic study examined saliva and human salivary gland for a biomarker profile at first onset of oral cGVHD prior to initiation of topical steroid therapy. Whole saliva collected at onset of biopsy-proven oral GVHD was assessed using liquid chromatography-coupled tandem mass spectrometry with identification of 569 proteins, of which 77 significantly changed in abundance. ZG16B, a secretory lectin protein, was reduced 2-fold in oral cGVHD saliva (p <0.05), and significantly decreased in salivary gland secretory cells affected by cGVHD. Single-cell RNA-seq analysis of healthy MSG localized ZG16B expression to two discrete acinar cell populations. Reduced ZG16B expression may indicate specific cGVHD activity and possibly general salivary gland dysfunction.
Collapse
Affiliation(s)
- Ana Caroline Costa-da-Silva
- National Institute of Dental and Craniofacial Research, NIH, Building 30, MSC 4340, 30 Convent Drive, Bethesda, MD 20892, USA
| | - Marit H. Aure
- National Institute of Dental and Craniofacial Research, NIH, Building 30, MSC 4340, 30 Convent Drive, Bethesda, MD 20892, USA
| | - Joshua Dodge
- National Institute of Dental and Craniofacial Research, NIH, Building 30, MSC 4340, 30 Convent Drive, Bethesda, MD 20892, USA
| | - Daniel Martin
- National Institute of Dental and Craniofacial Research, NIH, Building 30, MSC 4340, 30 Convent Drive, Bethesda, MD 20892, USA
| | - Susan Dhamala
- National Institute of Dental and Craniofacial Research, NIH, Building 30, MSC 4340, 30 Convent Drive, Bethesda, MD 20892, USA
- National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Monica Cho
- National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | - Carol W. Bassim
- National Institute of Dental and Craniofacial Research, NIH, Building 30, MSC 4340, 30 Convent Drive, Bethesda, MD 20892, USA
| | - Kiran Ambatipudi
- National Institute of Dental and Craniofacial Research, NIH, Building 30, MSC 4340, 30 Convent Drive, Bethesda, MD 20892, USA
| | | | | | - Jacqueline W. Mays
- National Institute of Dental and Craniofacial Research, NIH, Building 30, MSC 4340, 30 Convent Drive, Bethesda, MD 20892, USA
| |
Collapse
|
8
|
Souza MM, Coutinho-Camillo CM, de Paula FM, de Paula F, Bologna SB, Lourenço SV. Relevant proteins for the monitoring of engraftment phases after allogeneic hematopoietic stem cell transplantation. Clinics (Sao Paulo) 2022; 77:100134. [PMID: 36403426 PMCID: PMC9678684 DOI: 10.1016/j.clinsp.2022.100134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Hematopoietic Stem Cell Transplant (HSCT) has been successfully used as standard therapy for hematological disorders. After conditioning therapy, patients undergoing allogeneic HSCT, present three different phases of engraftment: early pre-engraftment, early post-engraftment, and late engraftment. Severe complications are associated with morbidity, mortality, and malignancies in these phases, which include effects on the oral cavity. OBJECTIVES The changes in the salivary composition after HSCT may contribute to identifying relevant proteins that could map differences among the phases of diseases, driven for personalized diagnostics and therapy. METHODS Unstimulated whole saliva was collected from patients submitted to HSCT. The samples were submitted to trypsin digestion for a Mass spectrometry analysis. MaxQuant processed the Data analysis, and the relevant expressed proteins were subjected to pathway and network analyses. RESULTS Differences were observed in the most identified proteins, specifically in proteins involved with the regulation of body fluid levels and the mucosal immune response. The heatmap showed a list of proteins exclusively expressed during the different phases of HSCT: HBB, KNG1, HSPA, FGB, APOA1, PFN1, PRTN3, TMSB4X, YWHAZ, CAP1, ACTN1, CLU and ALDOA. Bioinformatics analysis implicated pathways involved in protein processing in the endoplasmic reticulum, complement and coagulation cascades, apoptosis signaling, and cholesterol metabolism. CONCLUSION The compositional changes in saliva reflected the three phases of HSCT and demonstrated the usefulness of proteomics and computational approaches as a revolutionary field in diagnostic methods.
Collapse
Affiliation(s)
- Milena Monteiro Souza
- Department of Dermatology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil; Department of General Pathology, Faculdade de Odontologia da Universidade de São Paulo, São Paulo, SP, Brazil; International Research Center, A.C. Camargo Cancer Center, São Paulo, SP, Brazil
| | | | - Fabiana Martins de Paula
- Medical Research Laboratory, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fernanda de Paula
- Department of General Pathology, Faculdade de Odontologia da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Sheyla Batista Bologna
- Department of General Pathology, Faculdade de Odontologia da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Silvia Vanessa Lourenço
- Department of General Pathology, Faculdade de Odontologia da Universidade de São Paulo, São Paulo, SP, Brazil; Medical Research Laboratory, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
9
|
Shakshouk H, Tkaczyk ER, Cowen EW, El-Azhary RA, Hashmi SK, Kenderian SJ, Lehman JS. Methods to Assess Disease Activity and Severity in Cutaneous Chronic Graft-versus-Host Disease: A Critical Literature Review. Transplant Cell Ther 2021; 27:738-746. [PMID: 34107339 DOI: 10.1016/j.jtct.2021.05.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/26/2022]
Abstract
Chronic graft-versus-host disease (cGVHD), a potentially debilitating complication of hematopoietic cell transplantation, confers increased risk for mortality. Whereas treatment decisions rely on an accurate assessment of disease activity/severity, validated methods of assessing cutaneous cGVHD activity/severity appear to be limited. In this study, we aimed to identify and evaluate current data on the assessment of disease activity/severity in cutaneous cGVHD. Using modified PRISMA methods, we performed a critical literature review for relevant articles. Our literature search identified 1741 articles, of which 1635 were excluded as duplicates or failure to meet inclusion criteria. Of the included studies (n = 106), 39 (37%) addressed clinical and/or histopathologic parameters, 53 (50%) addressed serologic parameters, 8 (7.5%) addressed imaging parameters, and 6 (5.5%) addressed computer-based technologies. The only formally validated metric of disease activity/severity assessment in cutaneous cGVHD is the National Institutes of Health consensus scoring system, which is founded on clinical assessment alone. The lack of an objective marker for cGVHD necessitates further studies. An evaluation of the potential contributions of serologic, imaging, and/or computer-based technologies is warranted.
Collapse
Affiliation(s)
- Hadir Shakshouk
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota; Department of Dermatology, Andrology and Venerology, Alexandria University, Alexandria, Egypt
| | - Eric R Tkaczyk
- Dermatology and Research Services, Tennessee Valley Healthcare System, Department of Veterans Affairs, Nashville, TN; Department of Dermatology, Vanderbilt University Medical Center, Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Edward W Cowen
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland
| | | | - Shahrukh K Hashmi
- Division of Hematology, Mayo Clinic, Rochester, Minnesota; Department of Medicine, Sheikh Shakhbout Medical City, Abu Dhabi, UAE
| | | | - Julia S Lehman
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
10
|
Fall-Dickson JM, Pavletic SZ, Mays JW, Schubert MM. Oral Complications of Chronic Graft-Versus-Host Disease. J Natl Cancer Inst Monogr 2020; 2019:5551350. [PMID: 31425593 DOI: 10.1093/jncimonographs/lgz007] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/15/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023] Open
Abstract
The increasing clinical indications for hematopoietic stem cell transplantation (HSCT) and improved clinical care throughout and following HSCT have led to not only long-term survival but also to an increasing incidence and prevalence of graft-versus-host disease (GVHD). Chronic GVHD (cGVHD) affects almost 50% of adult patients post-HSCT, with increasing incidence in pediatric patients as well. Oral cGVHD specifically has a reported prevalence ranging from 45% to 83% in patients who develop cGVHD and is more extensive in adult patients than in children. Oral cGVHD affects patients through clinically significant oral symptoms that may lead to significantly decreased caloric intake, oral infections, and increased health service utilization, and may thus affect overall health and survival. The most commonly used therapy for mucosal involvement of oral cGVHD is topical high-dose and ultra-high potency corticosteroids, and calcineurin inhibitors. This review of oral complications of cGVHD presents the clinical significance of oral cGVHD to HSCT survivors, our current understanding of the pathobiology of oral cGVHD and gaps in this evidence, and the global targeted interdisciplinary clinical research efforts, including the National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease. Current challenges regarding the management of oral cGVHD and strategies to advance our scientific understanding of this clinically significant chronic oral disease are presented.
Collapse
Affiliation(s)
- Jane M Fall-Dickson
- Department of Professional Nursing Practice, Georgetown University School of Nursing & Health Studies, Washington, DC
| | - Steven Z Pavletic
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Jacqueline W Mays
- Experimental Transplantation and Immunology Branch, National Cancer Institute, Division of Intramural Research, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Mark M Schubert
- Department of Oral Medicine, University of Washington, School of Dentistry and Seattle Cancer Care Alliance and Oral Medicine, Fred Hutchinson Cancer Research Center, Seattle, WA
| |
Collapse
|
11
|
Burbelo PD, Ferré EMN, Chaturvedi A, Chiorini JA, Alevizos I, Lionakis MS, Warner BM. Profiling Autoantibodies against Salivary Proteins in Sicca Conditions. J Dent Res 2019; 98:772-778. [PMID: 31095438 DOI: 10.1177/0022034519850564] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Salivary gland dysfunction occurs in several autoimmune and immune-related conditions, including Sjögren syndrome (SS); immune checkpoint inhibitor-induced sicca (ICIS) that develops in some cancer patients and is characterized by severe, sudden-onset dry mouth; and autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). Although subjects with these conditions present with oral dryness and often exhibit inflammatory infiltration of the salivary gland, little is known about the B-cell humoral responses directed against salivary gland protein targets. In this study, autoantibodies were evaluated against Ro52, Ro60, and La, as well as against a panel of 22 proteins derived from the salivary proteome. The tested cohort included healthy volunteers and subjects with SS, ICIS, and APECED without and with sicca. As expected, a high percentage of autoantibody seropositivity was detected against Ro52, Ro60, and La in SS, but only a few ICIS patients were seropositive for these autoantigens. A few APECED subjects also harbored autoantibodies to Ro52 and La, but only Ro60 autoantibodies were weakly associated with a small subset of APECED patients with sicca. Additional testing of the salivary panel failed to detect seropositive autoantibodies against any of the salivary-enriched proteins in the SS and ICIS subjects. However, APECED subjects selectively demonstrated seropositivity against BPI fold containing family A member 1 (BPIFA1), BPI fold containing family A member 2 (BPIFA2)/parotid salivary protein (PSP), and lactoperoxidase, 3 salivary-enriched proteins. Moreover, high levels of serum autoantibodies against BPIFA1 and BPIFA2/PSP occurred in 30% and 67% of the APECED patients with sicca symptoms, respectively, and were associated with an earlier age onset of oral dryness (P = 0.001). These findings highlight the complexity of humoral responses in different sicca diseases and provide new insights and biomarkers for APECED-associated sicca (ClinicalTrials.gov: NCT00001196; NCT00001390; NCT01425892; NCT01386437).
Collapse
Affiliation(s)
- P D Burbelo
- 1 Dental Clinical Research Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - E M N Ferré
- 2 Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - A Chaturvedi
- 1 Dental Clinical Research Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - J A Chiorini
- 3 Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - I Alevizos
- 4 Sjogren's Clinic, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - M S Lionakis
- 2 Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - B M Warner
- 3 Adeno-Associated Virus Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA.,4 Sjogren's Clinic, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
12
|
van Leeuwen SJM, Potting CMJ, Huysmans MCDNJM, Blijlevens NMA. Salivary Changes before and after Hematopoietic Stem Cell Transplantation: A Systematic Review. Biol Blood Marrow Transplant 2019; 25:1055-1061. [PMID: 30710684 DOI: 10.1016/j.bbmt.2019.01.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022]
Abstract
Severe oral problems, including oral mucositis (OM) and xerostomia, often occur after conditioning therapy for hematopoietic stem cell transplantation (HSCT). Saliva plays a major role in protecting the oral mucosa and teeth. Alterations in salivary flow rate or salivary components resulting in decreased salivary defence mechanisms may affect oral/mucosal health and may influence the severity of OM. A systematic review was conducted to assess the current scientific knowledge on changes in salivary function and composition before and after HSCT. All English or Dutch articles examining salivary flow rate or salivary components before and after HSCT were included after title/abstract selection by 2 independent reviewers (weighted κ = .91). After quality assessment and exclusion of all research groups with both children age <14 years and adults, 33 articles were included for data analysis. Overall, the salivary flow rate was decreased at several days and months after HSCT. Although several salivary components were studied, most components were examined in only 1 or 2 studies with different patient populations or at different time points after HSCT. At 7 days after HSCT, albumin and proinflammatory cytokines were increased, whereas secretory IgA and components of the salivary antioxidant system were decreased. Secretory IgA levels were still reduced at 1 month after HSCT but returned to pre-HSCT values at 6 months after HSCT. Lactoferrin, secretory leukocyte protease inhibitor, and β2-microglobulin levels were increased at 6 months after HSCT. Our findings show that changes in saliva reflect an inflammatory response occurring immediately after HSCT, followed by evidence of increased salivary antimicrobial defense mechanisms by 6 months after HSCT.
Collapse
Affiliation(s)
| | - Carin M J Potting
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Nicole M A Blijlevens
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
13
|
Khurshid Z, Zafar MS, Khan RS, Najeeb S, Slowey PD, Rehman IU. Role of Salivary Biomarkers in Oral Cancer Detection. Adv Clin Chem 2018; 86:23-70. [PMID: 30144841 DOI: 10.1016/bs.acc.2018.05.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Oral cancers are the sixth most frequent cancer with a high mortality rate. Oral squamous cell carcinoma accounts for more than 90% of all oral cancers. Standard methods used to detect oral cancers remain comprehensive clinical examination, expensive biochemical investigations, and invasive biopsy. The identification of biomarkers from biological fluids (blood, urine, saliva) has the potential of early diagnosis. The use of saliva for early cancer detection in the search for new clinical markers is a promising approach because of its noninvasive sampling and easy collection methods. Human whole-mouth saliva contains proteins, peptides, electrolytes, organic, and inorganic salts secreted by salivary glands and complimentary contributions from gingival crevicular fluids and mucosal transudates. This diagnostic modality in the field of molecular biology has led to the discovery and potential of salivary biomarkers for the detection of oral cancers. Biomarkers are the molecular signatures and indicators of normal biological, pathological process, and pharmacological response to treatment hence may provide useful information for detection, diagnosis, and prognosis of the disease. Saliva's direct contact with oral cancer lesions makes it more specific and potentially sensitive screening tool, whereas more than 100 salivary biomarkers (DNA, RNA, mRNA, protein markers) have already been identified, including cytokines (IL-8, IL-1b, TNF-α), defensin-1, P53, Cyfra 21-1, tissue polypeptide-specific antigen, dual specificity phosphatase, spermidine/spermineN1-acetyltransferase , profilin, cofilin-1, transferrin, and many more. However, further research is still required for the reliability and validation of salivary biomarkers for clinical applications. This chapter provides the latest up-to-date list of known and emerging potential salivary biomarkers for early diagnosis of oral premalignant and cancerous lesions and monitoring of disease activity.
Collapse
Affiliation(s)
- Zohaib Khurshid
- Department of Prosthodontics, College of Dentistry, King Faisal University, Al-Hofuf, Saudi Arabia
| | - Muhammad S Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Saudi Arabia; Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad, Pakistan
| | - Rabia S Khan
- Materials Science and Engineering Department, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| | - Shariq Najeeb
- Restorative Dental Sciences, Al-Farabi Colleges, Riyadh, Saudi Arabia
| | - Paul D Slowey
- Oasis Diagnostics Corporation, Vancouver, WA, United States
| | - Ihtesham U Rehman
- Materials Science and Engineering Department, Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
14
|
Wolff D, Greinix H, Lee SJ, Gooley T, Paczesny S, Pavletic S, Hakim F, Malard F, Jagasia M, Lawitschka A, Hansen JA, Pulanic D, Holler E, Dickinson A, Weissinger E, Edinger M, Sarantopoulos S, Schultz KR. Biomarkers in chronic graft-versus-host disease: quo vadis? Bone Marrow Transplant 2018; 53:832-837. [PMID: 29367715 PMCID: PMC6041126 DOI: 10.1038/s41409-018-0092-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 12/11/2022]
Abstract
Biomarkers are increasingly used for diagnosis and treatment of transplant-related complications including the first biomarker-driven interventional trials of acute graft-versus-host disease (GvHD). In contrast, the development of biomarkers of chronic GvHD (cGvHD) has lagged behind due to a broader variety of manifestations, overlap with acute GvHD, a greater variation in time to onset and maximum severity, and lack of sufficient patient numbers within prospective trials. An international workshop organized by a North-American and European consortium was held in Marseille in March 2017 with the goal to discuss strategies for future biomarker development to guide cGvHD therapy. As a result of this meeting, two areas were prioritized: the development of prognostic biomarkers for subsequent onset of moderate/severe cGvHD, and in parallel, the development of qualified clinical-grade assays for biomarker quantification. The most promising prognostic serum biomarkers are CXCL9, ST2, matrix metalloproteinase-3, osteopontin, CXCL10, CXCL11, and CD163. Urine-proteomics and cellular subsets (CD4+ T-cell subsets, NK cell subsets, and CD19+CD21low B cells) represent additional potential prognostic biomarkers of cGvHD. A joint effort is required to verify the results of numerous exploratory trials before any of the potential candidates is ready for validation and subsequent clinical application.
Collapse
Affiliation(s)
- D Wolff
- Department of Internal Medicine III, University Hospital of Regensburg, Regensburg, Germany.
| | - H Greinix
- Division of Haematology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - S J Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - T Gooley
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - S Paczesny
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - S Pavletic
- Experimental Transplantation and Immunology Branch, Center of Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - F Hakim
- Experimental Transplantation and Immunology Branch, Center of Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - F Malard
- Hematology Department, Hôpital Saint-Antoine; Université Pierre & Marie Curie; and INSERM, Centre de Recherche Saint-Antoine, UMRS U938, Paris, France
| | - M Jagasia
- Department of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - A Lawitschka
- St. Anna Children's Hospital, Medical University Vienna, Vienna, Austria
| | - J A Hansen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - D Pulanic
- Division of Hematology, Department of Internal Medicine, University Hospital Center Zagreb, and Medical School University of Zagreb, Zagreb, Croatia
- Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - E Holler
- Department of Internal Medicine III, University Hospital of Regensburg, Regensburg, Germany
| | - A Dickinson
- Institute of Cellular Medicine, Newcastle University, Newcastle, UK
| | - E Weissinger
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - M Edinger
- Department of Internal Medicine III, University Hospital of Regensburg, Regensburg, Germany
| | - S Sarantopoulos
- Department of Medicine, Division of Hematological Malignancies & Cellular Therapy, Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | - K R Schultz
- Michael Cuccione Childhood Cancer Research Program, British Columbia Children's Hospital/University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
15
|
Castagnola M, Scarano E, Passali GC, Messana I, Cabras T, Iavarone F, Di Cintio G, Fiorita A, De Corso E, Paludetti G. Salivary biomarkers and proteomics: future diagnostic and clinical utilities. ACTA OTORHINOLARYNGOLOGICA ITALICA 2018; 37:94-101. [PMID: 28516971 PMCID: PMC5463528 DOI: 10.14639/0392-100x-1598] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/12/2016] [Indexed: 12/16/2022]
Abstract
Saliva testing is a non-invasive and inexpensive test that can serve as a source of information useful for diagnosis of disease. As we enter the era of genomic technologies and -omic research, collection of saliva has increased. Recent proteomic platforms have analysed the human salivary proteome and characterised about 3000 differentially expressed proteins and peptides: in saliva, more than 90% of proteins in weight are derived from the secretion of three couples of "major" glands; all the other components are derived from minor glands, gingival crevicular fluid, mucosal exudates and oral microflora. The most common aim of proteomic analysis is to discriminate between physiological and pathological conditions. A proteomic protocol to analyze the whole saliva proteome is not currently available. It is possible distinguish two type of proteomic platforms: top-down proteomics investigates intact naturally-occurring structure of a protein under examination; bottom-up proteomics analyses peptide fragments after pre-digestion (typically with trypsin). Because of this heterogeneity, many different biomarkers may be proposed for the same pathology. The salivary proteome has been characterised in several diseases: oral squamous cell carcinoma and oral leukoplakia, chronic graft-versus-host disease Sjögren's syndrome and other autoimmune disorders such as SAPHO, schizophrenia and bipolar disorder, and genetic diseases like Down's Syndrome and Wilson disease. The results of research reported herein suggest that in the near future human saliva will be a relevant diagnostic fluid for clinical diagnosis and prognosis.
Collapse
Affiliation(s)
- M Castagnola
- Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Istituto di Chimica del Riconoscimento Molecolare C.N.R. Rome, Italy
| | - E Scarano
- Department of Head and Neck Surgery, "A. Gemelli" Hospital Foundation, Catholic University, Rome, Italy
| | - G C Passali
- Department of Head and Neck Surgery, "A. Gemelli" Hospital Foundation, Catholic University, Rome, Italy
| | - I Messana
- Life and Enviromental Sciences Department, University of Cagliari, and Istituto di Chimica del Riconoscimento Molecolare C.N.R. Rome, Italy
| | - T Cabras
- Life and Enviromental Sciences Department, University of Cagliari, Italy
| | - F Iavarone
- Institute of Biochemistry and Clinical Biochemistry, Catholic University, Rome, Italy
| | - G Di Cintio
- Department of Head and Neck Surgery, "A. Gemelli" Hospital Foundation, Catholic University, Rome, Italy
| | - A Fiorita
- Department of Head and Neck Surgery, "A. Gemelli" Hospital Foundation, Catholic University, Rome, Italy
| | - E De Corso
- Department of Head and Neck Surgery, "A. Gemelli" Hospital Foundation, Catholic University, Rome, Italy
| | - G Paludetti
- Department of Head and Neck Surgery, "A. Gemelli" Hospital Foundation, Catholic University, Rome, Italy
| |
Collapse
|
16
|
Du J, Flynn R, Paz K, Ren HG, Ogata Y, Zhang Q, Gafken PR, Storer BE, Roy NH, Burkhardt JK, Mathews W, Tolar J, Lee SJ, Blazar BR, Paczesny S. Murine chronic graft-versus-host disease proteome profiling discovers CCL15 as a novel biomarker in patients. Blood 2018; 131:1743-1754. [PMID: 29348127 PMCID: PMC5897867 DOI: 10.1182/blood-2017-08-800623] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 01/11/2018] [Indexed: 12/27/2022] Open
Abstract
Improved diagnostic and treatment methods are needed for chronic graft-versus-host disease (cGVHD), the leading cause of late nonrelapse mortality (NRM) in long-term survivors of allogenic hematopoietic cell transplantation. Validated biomarkers that facilitate disease diagnosis and classification generally are lacking in cGVHD. Here, we conducted whole serum proteomics analysis of a well-established murine multiorgan system cGVHD model. We discovered 4 upregulated proteins during cGVHD that are targetable by genetic ablation or blocking antibodies, including the RAS and JUN kinase activator, CRKL, and CXCL7, CCL8, and CCL9 chemokines. Donor T cells lacking CRK/CRKL prevented the generation of cGVHD, germinal center reactions, and macrophage infiltration seen with wild-type T cells. Whereas antibody blockade of CCL8 or CXCL7 was ineffective in treating cGVHD, CCL9 blockade reversed cGVHD clinical manifestations, histopathological changes, and immunopathological hallmarks. Mechanistically, elevated CCL9 expression was present predominantly in vascular smooth muscle cells and uniquely seen in cGVHD mice. Plasma concentrations of CCL15, the human homolog of mouse CCL9, were elevated in a previously published cohort of 211 cGVHD patients compared with controls and associated with NRM. In a cohort of 792 patients, CCL15 measured at day +100 could not predict cGVHD occurring within the next 3 months with clinically relevant sensitivity/specificity. Our findings demonstrate for the first time the utility of preclinical proteomics screening to identify potential new targets for cGVHD and specifically CCL15 as a diagnosis marker for cGVHD. These data warrant prospective biomarker validation studies.
Collapse
Affiliation(s)
- Jing Du
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Ryan Flynn
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Katelyn Paz
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Hong-Gang Ren
- Department of Pediatrics and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | | | | | | | - Barry E Storer
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA; and
| | - Nathan H Roy
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia-Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Janis K Burkhardt
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia-Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Wendy Mathews
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Jakub Tolar
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Stephanie J Lee
- Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA; and
| | - Bruce R Blazar
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Sophie Paczesny
- Department of Pediatrics and Immunology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
17
|
Presland RB. Application of proteomics to graft-versus-host disease: from biomarker discovery to potential clinical applications. Expert Rev Proteomics 2017; 14:997-1006. [DOI: 10.1080/14789450.2017.1388166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Richard B. Presland
- Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, USA
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
18
|
Emirbayer PE, Gerer KF, Hoyer S, Pischetsrieder M. Targeted label-free quantification of interleukin-8 in PMA-activated U937 cell secretome by nanoLC-ESI-MS/MS-sSRM. Proteomics 2017; 17. [PMID: 28256805 DOI: 10.1002/pmic.201600455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/15/2017] [Accepted: 02/28/2017] [Indexed: 12/22/2022]
Abstract
Monocytes are a part of the innate immune system. Their differentiation into macrophages changes their cellular proteome and secretome. Particularly secretome components such as cytokines are crucial for immune response and inflammation in many diseases. Differentiation of human lymphoma cell line U937 can be triggered by phorbol 12-myristate 13-acetate (PMA). Screening of the cytokine release in U937 upon PMA stimulation by cytometric bead array almost exclusively showed interleukin-8 (IL-8). Next, a label-free nanoLC-ESI-MS/MS-sSRM method for quantification of IL-8 in the cell secretome was established and applied to monitor the time kinetics of PMA treatment in different concentrations. Targeted secretome analysis was achieved by scheduled SRM-MS using one proteotypic peptide as precursor ion and four mass transitions. Label-free quantification was performed by external calibration using IL-8 standard. Validation results indicated that the method was suited for the quantification of IL-8 in the secretome. The maximal IL-8 release of 62.4 ng/mL was observed after incubating cells treated by 50 ng/mL PMA for 48 h. The method can now be used for quantification of IL-8 release from different cells under various conditions. Furthermore, it can be easily expanded to other secreted proteins detected by untargeted screening methods.
Collapse
Affiliation(s)
- Pelin Esma Emirbayer
- Food Chemistry Unit, Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Kerstin F Gerer
- Department of Dermatology, Forschungscampus, Universitätsklinikum Erlangen, Erlangen, Germany.,Department of Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Stefanie Hoyer
- Department of Dermatology, Forschungscampus, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Monika Pischetsrieder
- Food Chemistry Unit, Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
19
|
Souza MMD, de Paula FM, Hsieh R, Macedo MCMA, Corral MA, Nunes TB, De Paula F, Lourenço SV. Could mucin 16 and colony-stimulating factor 2-receptor beta possible graft versus host disease biomarkers? Medical hypotheses. Med Hypotheses 2017; 100:89-93. [PMID: 28236856 DOI: 10.1016/j.mehy.2017.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/26/2017] [Indexed: 02/01/2023]
Abstract
Graft versus host disease (GVHD) occurs after bone marrow transplantation and is one of the most important causes of death worldwide. Reviews demonstrated GVHD patients with involvement of various tissues and organs, such as salivary glands. The diagnosis of acute GVHD has been the biopsies and the histopathologic evaluation of tissue from an involved organ. These procedures are invasive. Saliva proteins as possible biomarker for GVHD could facilitate the management and diagnosis accuracy. For support the proposed hypotheses, in this pilot study we collected whole saliva samples from patients with undergoing allogeneic hematopoietic cell transplantation (HCT) and from healthy subjects. Samples were collected prospectively between pre-transplant, thirty days, one hundred and, two hundred days after transplant. The proteomic profile was analyzed using SDS-PAGE and LCMS-ESI-IT-TOF mass spectrometry. The relevant personal data, past medical history were also recorded. The most relevant proteins found exclusively in GVHD patients were: CSF2RB, Protocadherin (Pcdh) Fat 2 precursor, protein capicua homolog isoform CIC-S, MUC16 and RGPD8_HUMAN RANBP2. This study aims to conduct an initial evaluation of the possible presence of such biomarkers in saliva from GVHD patients, and suggested a potential application of proteomics analysis as a alternative method to diagnose GVHD.
Collapse
Affiliation(s)
- Milena Monteiro de Souza
- Department of Dermatology, School of Medicine, University of São Paulo, 255, Dr. Enéas de Carvalho Aguiar Avenue, 3° Floor, 05403-900, Cerqueira Cesar, São Paulo, Brazil.
| | - Fabiana Martins de Paula
- Departament of Immunology of Schistosomiasis, Hospital das Clínicas, School of Medicine, University of São Paulo, Brazil.
| | - Ricardo Hsieh
- Departament of General Pathology, Dental School, University of São Paulo, 2227, Prof. Lineu Prestes Avenue, 05508-000, Cidade Universitária, São Paulo, Brazil.
| | - Maria Cristina Martins Almeida Macedo
- Department of Blone Marrow Transplantation, Brazilian Institute of Cancer Control, 2576, Alcântara Machado Avenue, 03102-000, Brás, São Paulo, Brazil.
| | - Marcelo Andreetta Corral
- Departament of Infectious and Parasitic Diseases, School of Medicine, University of São Paulo, 255, Dr. Enéas de Carvalho Aguiar Avenue, 05403-000, Cerqueira Cesar, São Paulo, Brazil.
| | - Thaís Borguezan Nunes
- Departament of Diagnostic Oral, Dental School, University of São Paulo, 2227, Prof. Lineu Prestes Avenue, 05508-000, Cidade Universitária, São Paulo, Brazil.
| | - Fernanda De Paula
- Departament of Diagnostic Oral, Dental School, University of São Paulo, 2227, Prof. Lineu Prestes Avenue, 05508-000, Cidade Universitária, São Paulo, Brazil.
| | - Silvia Vanessa Lourenço
- Departament of General Pathology, Dental School, University of São Paulo, 2227, Prof. Lineu Prestes Avenue, 05508-000, Cidade Universitária, São Paulo, Brazil.
| |
Collapse
|
20
|
Presland RB. Biology of chronic graft- vs-host disease: Immune mechanisms and progress in biomarker discovery. World J Transplant 2016; 6:608-619. [PMID: 28058210 PMCID: PMC5175218 DOI: 10.5500/wjt.v6.i4.608] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 07/02/2016] [Accepted: 09/18/2016] [Indexed: 02/05/2023] Open
Abstract
Chronic graft-vs-host disease (cGVHD) is the leading cause of long-term morbidity and mortality following allogeneic hematopoietic stem cell transplantation. It presents as a chronic inflammatory and sclerotic autoimmune-like condition that most frequently affects the skin, oral mucosa, liver, eyes and gastrointestinal tract. Both clinical and animal studies have shown that multiple T cell subsets including Th1, Th2, Th17, T follicular helper cells and regulatory T-cells play some role in cGVHD development and progression; B cells also play an important role in the disease including the production of antibodies to HY and nuclear antigens that can cause serious tissue damage. An array of cytokines and chemokines produced by different types of immune cells also mediate tissue inflammation and damage of cGVHD target tissues such as the skin and oral cavity. Many of these same immune regulators have been studied as candidate cGVHD biomarkers. Recent studies suggest that some of these biomarkers may be useful for determining disease prognosis and planning long-term clinical follow-up of cGVHD patients.
Collapse
|
21
|
Wang X, Kaczor-Urbanowicz KE, Wong DTW. Salivary biomarkers in cancer detection. Med Oncol 2016; 34:7. [PMID: 27943101 DOI: 10.1007/s12032-016-0863-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 11/22/2016] [Indexed: 02/05/2023]
Abstract
Cancer is the second most common cause of death in the USA. Its symptoms are often not specific and absent, until the tumors have already metastasized. Therefore, there is an urgent demand for developing rapid, highly accurate and noninvasive tools for cancer screening, early detection, diagnostics, staging and prognostics. Saliva as a multi-constituent oral fluid comprises secretions from the major and minor salivary glands, extensively supplied by blood. Molecules such as DNAs, RNAs, proteins, metabolites, and microbiota, present in blood, could be also found in saliva. Recently, salivary diagnostics has drawn significant attention for the detection of specific biomarkers, since the sample collection and processing are simple, cost-effective, and precise and do not cause patient discomfort. Here, we review recent salivary candidate biomarkers for systemic cancers by dividing them according to their origin into: genomic, transcriptomic, proteomic, metabolomic and microbial types.
Collapse
Affiliation(s)
- Xiaoqian Wang
- Center for Oral/Head and Neck Oncology Research, Laboratory of Salivary Diagnostics, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, 90095, USA.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Karolina Elżbieta Kaczor-Urbanowicz
- Center for Oral/Head and Neck Oncology Research, Laboratory of Salivary Diagnostics, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - David T W Wong
- Center for Oral/Head and Neck Oncology Research, Laboratory of Salivary Diagnostics, School of Dentistry, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
22
|
Licier R, Miranda E, Serrano H. A Quantitative Proteomics Approach to Clinical Research with Non-Traditional Samples. Proteomes 2016; 4:proteomes4040031. [PMID: 28248241 PMCID: PMC5260964 DOI: 10.3390/proteomes4040031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 01/13/2023] Open
Abstract
The proper handling of samples to be analyzed by mass spectrometry (MS) can guarantee excellent results and a greater depth of analysis when working in quantitative proteomics. This is critical when trying to assess non-traditional sources such as ear wax, saliva, vitreous humor, aqueous humor, tears, nipple aspirate fluid, breast milk/colostrum, cervical-vaginal fluid, nasal secretions, bronco-alveolar lavage fluid, and stools. We intend to provide the investigator with relevant aspects of quantitative proteomics and to recognize the most recent clinical research work conducted with atypical samples and analyzed by quantitative proteomics. Having as reference the most recent and different approaches used with non-traditional sources allows us to compare new strategies in the development of novel experimental models. On the other hand, these references help us to contribute significantly to the understanding of the proportions of proteins in different proteomes of clinical interest and may lead to potential advances in the emerging field of precision medicine.
Collapse
Affiliation(s)
- Rígel Licier
- Department of Medicine, San Juan Bautista School of Medicine, Caguas 00727, Puerto Rico.
- Quantitative Proteomics Laboratory, Comprehensive Cancer Center of Puerto Rico, San Juan 00936, Puerto Rico.
| | - Eric Miranda
- Quantitative Proteomics Laboratory, Comprehensive Cancer Center of Puerto Rico, San Juan 00936, Puerto Rico.
- Department of Internal Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico.
| | - Horacio Serrano
- Quantitative Proteomics Laboratory, Comprehensive Cancer Center of Puerto Rico, San Juan 00936, Puerto Rico.
- Department of Internal Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan 00936, Puerto Rico.
| |
Collapse
|
23
|
Csősz É, Kalló G, Márkus B, Deák E, Csutak A, Tőzsér J. Quantitative body fluid proteomics in medicine - A focus on minimal invasiveness. J Proteomics 2016; 153:30-43. [PMID: 27542507 DOI: 10.1016/j.jprot.2016.08.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/27/2016] [Accepted: 08/08/2016] [Indexed: 01/07/2023]
Abstract
Identification of new biomarkers specific for various pathological conditions is an important field in medical sciences. Body fluids have emerging potential in biomarker studies especially those which are continuously available and can be collected by non-invasive means. Changes in the protein composition of body fluids such as tears, saliva, sweat, etc. may provide information on both local and systemic conditions of medical relevance. In this review, our aim is to discuss the quantitative proteomics techniques used in biomarker studies, and to present advances in quantitative body fluid proteomics of non-invasively collectable body fluids with relevance to biomarker identification. The advantages and limitations of the widely used quantitative proteomics techniques are also presented. Based on the reviewed literature, we suggest an ideal pipeline for body fluid analyses aiming at biomarkers discoveries: starting from identification of biomarker candidates by shotgun quantitative proteomics or protein arrays, through verification of potential biomarkers by targeted mass spectrometry, to the antibody-based validation of biomarkers. The importance of body fluids as a rich source of biomarkers is discussed. SIGNIFICANCE Quantitative proteomics is a challenging part of proteomics applications. The body fluids collected by non-invasive means have high relevance in medicine; they are good sources for biomarkers used in establishing the diagnosis, follow up of disease progression and predicting high risk groups. The review presents the most widely used quantitative proteomics techniques in body fluid analysis and lists the potential biomarkers identified in tears, saliva, sweat, nasal mucus and urine for local and systemic diseases.
Collapse
Affiliation(s)
- Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, 4032 Debrecen, Hungary
| | - Gergő Kalló
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, 4032 Debrecen, Hungary
| | - Bernadett Márkus
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, 4032 Debrecen, Hungary
| | - Eszter Deák
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, 4032 Debrecen, Hungary; Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, 4032 Debrecen, Hungary
| | - Adrienne Csutak
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, 4032 Debrecen, Hungary
| | - József Tőzsér
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, 4032 Debrecen, Hungary.
| |
Collapse
|
24
|
Sun X, Huang X, Tan X, Si Y, Wang X, Chen F, Zheng S. Salivary peptidome profiling for diagnosis of severe early childhood caries. J Transl Med 2016; 14:240. [PMID: 27527350 PMCID: PMC4986381 DOI: 10.1186/s12967-016-0996-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Severe early childhood caries (s-ECC), which has quite high prevalence among children, is a widespread problem with significant impacts among both developing and developed countries. At present, it is widely known that no early detective techniques and diagnostic tests could have high sensitivity and specificity when using for clinical screening of s-ECC. In this study, we had applied magnetic bead (MB)-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) to screen distinctive candidate biomarkers of this disease, so as to establish protein profiles and diagnostic models of s-ECC. METHODS Firstly, we used the technique mentioned above to detect specifically expressed peptides in saliva samples from ten children with s-ECC, separately at the time point of before, 1 and 4 weeks after dental treatment. Then a diagnostic model for s-ECC was established with the K nearest-neighbour method, which was validated in another six children in the next stage of study. After that, linear ion trap-orbitrap-mass spectrometry (LTQ-Orbitrap-MS) was performed to identify which of the proteins in saliva might be the origination of these peptides. RESULTS We found that seven peptide peaks were significantly different when comparing the three time points, among them two were higher, while other five were lower in the pre-treatment s-ECC group compared with post-treatment. The sensitivity and specificity of the diagnostic model we built were both 83.3 %. Two of these peptides were identified to be segments of histatin-1, which was one important secretory protein in saliva. CONCLUSIONS Hereby we confirmed that MB-based MALDI-TOF MS is an effective method for screening distinctive peptides from the saliva of junior patients with s-ECC, and histatin-1 may probably be one important candidate biomarker of this common dental disease. These findings might have bright prospect in future in establishing new diagnostic methods for s-ECC.
Collapse
Affiliation(s)
- Xiangyu Sun
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China
| | - Xin Huang
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China
| | - Xu Tan
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China.,Stomatological Hospital of Guizhou Medical University, Guiyang, 550004, People's Republic of China
| | - Yan Si
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China
| | - Xiaozhe Wang
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China
| | - Feng Chen
- Central Laboratory, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China.
| | - Shuguo Zheng
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun Avenue South, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
25
|
Khurshid Z, Zohaib S, Najeeb S, Zafar MS, Slowey PD, Almas K. Human Saliva Collection Devices for Proteomics: An Update. Int J Mol Sci 2016; 17:ijms17060846. [PMID: 27275816 PMCID: PMC4926380 DOI: 10.3390/ijms17060846] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/08/2016] [Accepted: 05/21/2016] [Indexed: 11/20/2022] Open
Abstract
There has been a rapid growth in the interest and adaptation of saliva as a diagnostic specimen over the last decade, and in the last few years in particular, there have been major developments involving the application of saliva as a clinically relevant specimen. Saliva provides a “window” into the oral and systemic health of an individual, and like other bodily fluids, saliva can be analyzed and studied to diagnose diseases. With the advent of new, more sensitive technologies to detect smaller concentrations of analytes in saliva relative to blood levels, there have been a number of critical developments in the field that we will describe. In particular, recent advances in standardized saliva collection devices that were not available three to four years ago, have made it easy for safe, simple, and non-invasive collection of samples to be carried out from patients. With the availability of these new technologies, we believe that in the next decade salivary proteomics will make it possible to predict and diagnose oral as well as systemic diseases, cancer, and infectious diseases, among others. The aim of this article is to review recent developments and advances in the area of saliva specimen collection devices and applications that will advance the field of proteomics.
Collapse
Affiliation(s)
- Zohaib Khurshid
- College of Dentistry, King Faisal University, Al-Hofuf, Al-Ahsa 31982, Saudi Arabia.
| | - Sana Zohaib
- Department of Biomedical Engineering, School of Engineering, King Faisal University, Al-Hofuf, Al-Ahsa 31982, Saudi Arabia.
| | - Shariq Najeeb
- Restorative Dental Sciences, Al-Farabi Colleges, Riyadh 361724, Saudi Arabia.
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia.
| | - Paul D Slowey
- Oasis Diagnostics Corporation, 15720 NE 31st Avenue, Vancouver, WA 98686, USA.
| | - Khalid Almas
- Division of Periodontology, College of Dentistry, University of Dammam, Dammam 31441, Saudi Arabia.
| |
Collapse
|
26
|
Advances of Proteomic Sciences in Dentistry. Int J Mol Sci 2016; 17:ijms17050728. [PMID: 27187379 PMCID: PMC4881550 DOI: 10.3390/ijms17050728] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/01/2016] [Accepted: 05/09/2016] [Indexed: 12/13/2022] Open
Abstract
Applications of proteomics tools revolutionized various biomedical disciplines such as genetics, molecular biology, medicine, and dentistry. The aim of this review is to highlight the major milestones in proteomics in dentistry during the last fifteen years. Human oral cavity contains hard and soft tissues and various biofluids including saliva and crevicular fluid. Proteomics has brought revolution in dentistry by helping in the early diagnosis of various diseases identified by the detection of numerous biomarkers present in the oral fluids. This paper covers the role of proteomics tools for the analysis of oral tissues. In addition, dental materials proteomics and their future directions are discussed.
Collapse
|
27
|
DePalo J, Chai X, Lee SJ, Cutler CS, Treister N. Assessing the relationship between oral chronic graft-versus-host disease and global measures of quality of life. Oral Oncol 2015; 51:944-9. [PMID: 26277616 DOI: 10.1016/j.oraloncology.2015.07.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/26/2015] [Accepted: 07/30/2015] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Chronic GVHD (cGVHD) is a frequent complication of allogeneic hematopoietic stem cell transplantation (HSCT) and affects multiple organ systems, with the oral cavity being one of the most frequently affected sites. Patients with cGVHD experience reduced quality of life (QOL), yet the specific impact of oral cGVHD on QOL is poorly understood. The objective of this study was to characterize the impact of oral cGVHD on global measures of QOL. MATERIALS AND METHODS QOL data were collected using the FACT-BMT and SF-36 instruments for 569 patients enrolled in the Chronic GVHD Consortium, with a total of 1915 follow-up visits. At study enrollment, patients were categorized as isolated oral cGVHD (n=22), oral and concomitant extra-oral cGVHD (n=420), and only extra-oral cGVHD (n=127). Utilizing all longitudinal data, QOL scores were compared using a multivariable linear model controlling for demographic, transplant, and cGVHD characteristics. RESULTS Patients with isolated oral cGVHD reported better physical well-being (P=0.009), BMT well-being (P=0.01), and decreased bodily pain (P=0.01) compared to patients with oral and concomitant extra-oral cGVHD, but the differences in scores did not reach the defined threshold for clinical significance (6 points for FACT-BMT domains and 5 points for SF-36 domains). CONCLUSIONS Global QOL scores are similar in patients with isolated oral cGVHD and patients with oral and concomitant extra-oral cGVHD.
Collapse
Affiliation(s)
- Joseph DePalo
- Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Xiaoyu Chai
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - Stephanie J Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - Corey S Cutler
- Hematologic Malignancies, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Nathaniel Treister
- Brigham and Women's Hospital, Division of Oral Medicine and Dentistry, 1620 Tremont Street, Suite BC-3-028, Boston, MA 02120, USA.
| |
Collapse
|
28
|
Paczesny S, Hakim FT, Pidala J, Cooke KR, Lathrop J, Griffith LM, Hansen J, Jagasia M, Miklos D, Pavletic S, Parkman R, Russek-Cohen E, Flowers MED, Lee S, Martin P, Vogelsang G, Walton M, Schultz KR. National Institutes of Health Consensus Development Project on Criteria for Clinical Trials in Chronic Graft-versus-Host Disease: III. The 2014 Biomarker Working Group Report. Biol Blood Marrow Transplant 2015; 21:780-92. [PMID: 25644957 DOI: 10.1016/j.bbmt.2015.01.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 01/07/2015] [Indexed: 01/11/2023]
Abstract
Biology-based markers to confirm or aid in the diagnosis or prognosis of chronic graft-versus-host disease (GVHD) after allogeneic hematopoietic cell transplantation or monitor its progression are critically needed to facilitate evaluation of new therapies. Biomarkers have been defined as any characteristic that is objectively measured and evaluated as an indicator of a normal biological or pathogenic process, or of a pharmacologic response to a therapeutic intervention. Applications of biomarkers in chronic GVHD clinical trials or patient management include the following: (1) diagnosis and assessment of chronic GVHD disease activity, including distinguishing irreversible damage from continued disease activity; (2) prognostic risk to develop chronic GVHD; and (3) prediction of response to therapy. Sample collection for chronic GVHD biomarkers studies should be well documented following established quality control guidelines for sample acquisition, processing, preservation, and testing, at intervals that are both calendar and event driven. The consistent therapeutic treatment of subjects and standardized documentation needed to support biomarker studies are most likely to be provided in prospective clinical trials. To date, no chronic GVHD biomarkers have been qualified for use in clinical applications. Since our previous chronic GVHD Biomarkers Working Group report in 2005, an increasing number of chronic GVHD candidate biomarkers are available for further investigation. This paper provides a 4-part framework for biomarker investigations: identification, verification, qualification, and application with terminology based on Food and Drug Administration and European Medicines Agency guidelines.
Collapse
Affiliation(s)
- Sophie Paczesny
- Department of Pediatrics and Immunology, Indiana University of Medicine, Indianapolis, Indiana.
| | - Frances T Hakim
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Joseph Pidala
- Blood and Marrow Transplantation, Moffitt Cancer Center, Tampa, Florida
| | - Kenneth R Cooke
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Julia Lathrop
- Office of In Vitro Diagnostics and Radiological Health, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland
| | - Linda M Griffith
- Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - John Hansen
- Clinical Research Division, Fred Hutchinson Cancer Research Center, and the Division of Medical Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Madan Jagasia
- Department of Medicine, Division of Hematology-Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - David Miklos
- Stanford Bone Marrow Transplant-Cellular Therapy Facility, Stanford University, Stanford, California
| | - Steven Pavletic
- Experimental Transplantation and Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Robertson Parkman
- Department of Pediatrics, Children's Hospital of Los Angeles, University of Southern California, Los Angeles, California
| | - Estelle Russek-Cohen
- Division of Biostatistics, Center for Biologics, Food and Drug Administration, Silver Spring, Maryland
| | - Mary E D Flowers
- Clinical Research Division, Fred Hutchinson Cancer Research Center, and the Division of Medical Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Stephanie Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center, and the Division of Medical Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Paul Martin
- Clinical Research Division, Fred Hutchinson Cancer Research Center, and the Division of Medical Oncology, University of Washington School of Medicine, Seattle, Washington
| | - Georgia Vogelsang
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Marc Walton
- Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Kirk R Schultz
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
29
|
Paczesny S, Duncan C, Jacobsohn D, Krance R, Leung K, Carpenter P, Bollard C, Renbarger J, Cooke K. Opportunities and challenges of proteomics in pediatric patients: circulating biomarkers after hematopoietic stem cell transplantation as a successful example. Proteomics Clin Appl 2014; 8:837-50. [PMID: 25196024 DOI: 10.1002/prca.201400033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/30/2014] [Accepted: 09/03/2014] [Indexed: 11/06/2022]
Abstract
Biomarkers have the potential to improve diagnosis and prognosis, facilitate-targeted treatment, and reduce health care costs. Thus, there is great hope that biomarkers will be integrated in all clinical decisions in the near future. A decade ago, the biomarker field was launched with great enthusiasm because MS revealed that blood contains a rich library of candidate biomarkers. However, biomarker research has not yet delivered on its promise due to several limitations: (i) improper sample handling and tracking as well as limited sample availability in the pediatric population, (ii) omission of appropriate controls in original study designs, (iii) lability and low abundance of interesting biomarkers in blood, and (iv) the inability to mechanistically tie biomarker presence to disease biology. These limitations as well as successful strategies to overcome them are discussed in this review. Several advances in biomarker discovery and validation have been made in hematopoietic stem cell transplantation, the current most effective tumor immunotherapy, and these could serve as examples for other conditions. This review provides fresh optimism that biomarkers clinically relevant in pediatrics are closer to being realized based on: (i) a uniform protocol for low-volume blood collection and preservation, (ii) inclusion of well-controlled independent cohorts, (iii) novel technologies and instrumentation with low analytical sensitivity, and (iv) integrated animal models for exploring potential biomarkers and targeted therapies.
Collapse
Affiliation(s)
- Sophie Paczesny
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Devic I, Shi M, Schubert MM, Lloid M, Izutsu KT, Pan C, Missaghi M, Morton TH, Mancl LA, Zhang J, Presland RB. Proteomic analysis of saliva from patients with oral chronic graft-versus-host disease. Biol Blood Marrow Transplant 2014; 20:1048-55. [PMID: 24704387 DOI: 10.1016/j.bbmt.2014.03.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/26/2014] [Indexed: 12/13/2022]
Abstract
Chronic graft-versus-host disease (cGVHD) is an immune-mediated disorder and is the major long-term complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT). The oral mucosa, including the salivary glands, is affected in the majority of patients with cGVHD; however, at present there is only a limited understanding of disease pathobiology. In this study, we performed a quantitative proteomic analysis of saliva pooled from patients with and without oral cGVHD-cGVHD(+) and cGVHD(-), respectively-using isobaric tags for relative and absolute quantification labeling, followed by tandem mass spectrometry. Among 249 salivary proteins identified by tandem mass spectrometry, 82 exhibited altered expression in the oral cGVHD(+) group compared with the cGVHD(-) group. Many of the identified proteins function in innate or acquired immunity, or are associated with tissue maintenance functions, such as proteolysis or the cytoskeleton. Using ELISA immunoassays, we further confirmed that 2 of these proteins, IL-1 receptor antagonist and cystatin B, showed decreased expression in patients with active oral cGVHD (P < .003). Receiver operating curve characteristic analysis revealed that these 2 markers were able to distinguish oral cGVHD with a sensitivity of 85% and specificity of 60%, and showed slightly better discrimination in newly diagnosed patients evaluated within 12 months of allo-HSCT (sensitivity, 92%; specificity 73%). In addition to identifying novel potential salivary cGVHD biomarkers, our study demonstrates that there is coordinated regulation of protein families involved in inflammation, antimicrobial defense, and tissue protection in oral cGVHD that also may reflect changes in salivary gland function and damage to the oral mucosa.
Collapse
Affiliation(s)
- Ivana Devic
- Department of Pathology, University of Washington, Seattle, Washington
| | - Min Shi
- Department of Pathology, University of Washington, Seattle, Washington
| | - Mark M Schubert
- Department of Oral Medicine, University of Washington, Seattle, Washington; Seattle Cancer Care Alliance, Seattle, Washington; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Michele Lloid
- Department of Oral Medicine, University of Washington, Seattle, Washington; Seattle Cancer Care Alliance, Seattle, Washington
| | - Kenneth T Izutsu
- Department of Oral Health Sciences, University of Washington, Seattle, Washington
| | - Catherine Pan
- Department of Pathology, University of Washington, Seattle, Washington
| | - Melody Missaghi
- Department of Oral Health Sciences, University of Washington, Seattle, Washington
| | - Thomas H Morton
- Department of Oral Health Sciences, University of Washington, Seattle, Washington
| | - Lloyd A Mancl
- Department of Oral Health Sciences, University of Washington, Seattle, Washington
| | - Jing Zhang
- Department of Pathology, University of Washington, Seattle, Washington
| | - Richard B Presland
- Department of Oral Health Sciences, University of Washington, Seattle, Washington; Division of Dermatology, Department of Medicine, University of Washington, Seattle, Washington.
| |
Collapse
|
31
|
Bragazzi NL, Pechkova E, Nicolini C. Proteomics and Proteogenomics Approaches for Oral Diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2014; 95:125-62. [DOI: 10.1016/b978-0-12-800453-1.00004-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Validation of the National Institutes of Health chronic GVHD Oral Mucosal Score using component-specific measures. Bone Marrow Transplant 2013; 49:116-21. [PMID: 23995099 DOI: 10.1038/bmt.2013.137] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 11/09/2022]
Abstract
Oral chronic GVHD (cGVHD) is a common, late complication of alloSCT that is associated with significant patient morbidity. The NIH Oral Mucosal Score (NIH OMS) was developed to assess oral cGVHD therapeutic response, but has not been fully validated. This study's purpose was to conduct a rigorous construct validity and internal consistency analysis of this score and its components (erythema, lichenoid, ulcers, mucoceles) using established measures of oral pain, oral function, oral-related quality-of-life, nutrition and laboratory parameters in 198 patients with cGVHD. The construct validity of the NIH OMS was supported: a moderate correlation was observed between NIH OMS and mouth pain (rho=0.43), while a weaker correlation was observed with low albumin (rho=-0.26). Total NIH OMS, erythema and lichenoid components were associated with malnutrition, oral pain and impaired oral QOL, while ulcers were only associated with oral pain. No associations were found between mucoceles and any indicator evaluated, including salivary function or xerostomia. Kappa determined between scale components was low overall (all 0.35), supporting a conclusion that each component measures a distinct manifestation of oral cGVHD. This study supports the use of the NIH OMS and its components (erythema, lichenoid and ulcerations) to measure clinician-reported severity of oral cGVHD.
Collapse
|
33
|
Salivary Proteomic Analysis and Acute Graft-versus-Host Disease after Allogeneic Hematopoietic Stem Cell Transplantation. Biol Blood Marrow Transplant 2013; 19:888-92. [DOI: 10.1016/j.bbmt.2013.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/19/2013] [Indexed: 11/23/2022]
|
34
|
Mays JW, Fassil H, Edwards DA, Pavletic SZ, Bassim CW. Oral chronic graft-versus-host disease: current pathogenesis, therapy, and research. Oral Dis 2012; 19:327-46. [PMID: 23107104 DOI: 10.1111/odi.12028] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 09/11/2012] [Accepted: 09/11/2012] [Indexed: 12/13/2022]
Abstract
Optimal management of complex autoimmune diseases requires a multidisciplinary medical team including dentists to care for lesions of the oral cavity. In this review, we discuss the presentation, prevalence, diagnosis, and treatment of oral manifestations in chronic graft-versus-host disease (cGVHD), which is a major late complication in patients treated by allogeneic hematopoietic stem cell transplantation. We assess current general knowledge of systemic and oral cGVHD and present general treatment recommendations based on literature review and our clinical experience. Additionally, we review areas where the understanding of oral cGVHD could be improved by further research and address tools with which to accomplish the long-term goal of providing better health and quality of life to patients with cGVHD.
Collapse
Affiliation(s)
- J W Mays
- Clinical Research Core, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892-4320, USA.
| | | | | | | | | |
Collapse
|
35
|
Amado FML, Ferreira RP, Vitorino R. One decade of salivary proteomics: current approaches and outstanding challenges. Clin Biochem 2012; 46:506-17. [PMID: 23103441 DOI: 10.1016/j.clinbiochem.2012.10.024] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/13/2012] [Accepted: 10/16/2012] [Indexed: 12/12/2022]
Abstract
Efforts have been made in the last decade towards the complete characterization of saliva proteome using gel-based and gel-free approaches. The combination of these strategies resulted in the increment of the dynamic range of saliva proteome, which yield in the identification of more than 3,000 different protein species. Comparative protein profiling using isotope labeling and label free approaches has been used for the identification of novel biomarkers for oral and related diseases. Although progresses have been made in saliva proteome characterization, the comparative profiling in different pathophysiological conditions is still at the beginning if compared to other bodily fluids. The potential biomarkers identified so far lack specificity once common differentially expressed proteins were detected in the saliva of patients with distinct diseases. In addition, recent research works focused on saliva peptidome profiling already allowed a better understanding of peptides' physiological role in oral cavity. This review provides an overview of the major achievements in saliva proteomics giving emphasis to methodological concerns related with saliva collection, treatment and analysis, as well as the main advantages and pitfalls underlying salivary proteomic strategies and potential clinical outcomes.
Collapse
Affiliation(s)
- Francisco M L Amado
- QOPNA, Mass Spectrometry Center, Department of Chemistry, University of Aveiro, Aveiro, Portugal.
| | | | | |
Collapse
|