1
|
Mickey D, Camacho JV, Khan A, Kaufman D. Immunodeficiency: Quantitative and qualitative phagocytic cell defects. Allergy Asthma Proc 2024; 45:299-304. [PMID: 39294912 DOI: 10.2500/aap.2024.45.240049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The immune system is divided into two major branches: innate and adaptive. The innate immune system is the body's first line of defense and rapidly responds in a nonspecific manner to various microorganisms, foreign materials, or injuries. Phagocytes, which include macrophages, monocytes, and neutrophils, are innate immune cells that can surround and kill microorganisms, ingest foreign material, and remove dead cells. They also indirectly boost both innate and adaptive immune responses through various activation signals. Phagocytic defects characteristically lead to fungal and bacterial infections of the respiratory tract, lymph nodes, skin, and other organ systems, and they are commonly associated with inflammatory bowel disease. This primer will review high-yield innate defects of phagocytic cells, including defects of respiratory (oxidative) burst, defects of neutrophil migration, cyclic and severe congenital neutropenias and associated disorders, and other phagocyte defect disorders.
Collapse
|
2
|
Kong H, Han JJ, Gorbachev D, Zhang XA. Role of the Hippo pathway in autoimmune diseases. Exp Gerontol 2024; 185:112336. [PMID: 38042379 DOI: 10.1016/j.exger.2023.112336] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
The immune system is an important defense against diseases, and it is essential to maintain the homeostasis of the body's internal environment. Under normal physiological conditions, the steady state of the immune system should be sustained to play normal immune response and immune function. Exploring the molecular mechanism of maintaining immune homeostasis under physiological and pathological conditions will provides understanding of the pathogenesis of autoimmune diseases, infections, metabolic disorders, and tumors, as well as new ideas and molecular targets for the prevention and treatment of these diseases. Hippo signaling pathway can not only regulate immune cells such as macrophages, T cells and dendritic cells, but also interact with immune-related signaling pathways such as NF-kB signaling pathway, TGF-β signaling pathway and Toll-like receptor signaling pathway, so as to resist the internal environment disorder caused by the invasion of exogenous pathogenic microorganisms and maintain the internal environment stability and physiological balance of the body. Hippo signaling pathway is also involved in the pathological process of immune system-related diseases such as rheumatoid arthritis, inflammatory bowel disease and psoriasis. Hippo pathway is closely related to organ development, stem cell biology, regeneration, and tumor biology. It affects cell differentiation by participating in extracellular and intracellular physiological signal reactions, sensing cell environment, and coordinating cell reactions. This pathway is crucial in maintaining immune homeostasis. This review summarizes the mechanism of Hippo pathway in different immune cells and some autoimmune diseases and the interaction between different immune signaling pathways and Hippo signaling pathway. It aims to explore the role of Hippo in autoimmune diseases and provide theoretical and practical basis for the treatment of autoimmune diseases through Hippo signaling pathway.
Collapse
Affiliation(s)
- Hui Kong
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | - Juan-Juan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang, China
| | | | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, China.
| |
Collapse
|
3
|
Candelaria GDTP, Antunes ADA, Pastorino AC, Dorna MDB, Zanardo EA, Dias AT, Sugayama SMM, Odone-Filho V, Kulikowski LD, Garanito MP. Novel FERMT3 and PTPRQ Mutations Associated with Leukocyte Adhesion Deficiency-III and Sensorineural Hearing Loss. J Pediatr Genet 2023; 12:348-351. [PMID: 38162163 PMCID: PMC10756723 DOI: 10.1055/s-0041-1733948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Leukocyte adhesion deficiency-III (LAD-III) is a rare genetic disease caused by defective integrin activation in hematopoietic cells due to mutations in the FERMT3 gene. The PTPRQ gene encodes the protein tyrosine phosphatase receptor Q and is essential for the normal maturation and function of hair bundle in the cochlea. Homozygous PTPRQ mutations impair the stereocilia in hair cells which lead to nonsyndromic sensorineural hearing loss (SNHL) with vestibular dysfunction. Here, we report two novel pathogenic homozygous mutations found in two genes, FERMT3 and PTPRQ , in a Brazilian patient with LAD-III and SNHL, which may develop our understanding of the phenotype-genotype correlation and prognosis of patients with these rare diseases.
Collapse
Affiliation(s)
- Gabriela de Toledo Passos Candelaria
- Department of Pediatrics, Hematology-Oncology Service, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Alexandre de A. Antunes
- Department of Pediatrics, Hematology-Oncology Service, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Antonio C. Pastorino
- Allergy and Immunology Unit, Department of Pediatrics, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Mayra de B. Dorna
- Allergy and Immunology Unit, Department of Pediatrics, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Evelin A. Zanardo
- Department of Pathology, Cytogenomics Lab—LIM 03, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Alexandre T. Dias
- Department of Pathology, Cytogenomics Lab—LIM 03, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Sofia M. M. Sugayama
- Department of Pediatrics, Hematology-Oncology Service, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Vicente Odone-Filho
- Department of Pediatrics, Hematology-Oncology Service, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Leslie D. Kulikowski
- Department of Pathology, Cytogenomics Lab—LIM 03, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Marlene P. Garanito
- Department of Pediatrics, Hematology-Oncology Service, Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Metzemaekers M, Malengier-Devlies B, Gouwy M, De Somer L, Cunha FDQ, Opdenakker G, Proost P. Fast and furious: The neutrophil and its armamentarium in health and disease. Med Res Rev 2023; 43:1537-1606. [PMID: 37036061 DOI: 10.1002/med.21958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 12/27/2022] [Accepted: 03/24/2023] [Indexed: 04/11/2023]
Abstract
Neutrophils are powerful effector cells leading the first wave of acute host-protective responses. These innate leukocytes are endowed with oxidative and nonoxidative defence mechanisms, and play well-established roles in fighting invading pathogens. With microbicidal weaponry largely devoid of specificity and an all-too-well recognized toxicity potential, collateral damage may occur in neutrophil-rich diseases. However, emerging evidence suggests that neutrophils are more versatile, heterogeneous, and sophisticated cells than initially thought. At the crossroads of innate and adaptive immunity, neutrophils demonstrate their multifaceted functions in infectious and noninfectious pathologies including cancer, autoinflammation, and autoimmune diseases. Here, we discuss the kinetics of neutrophils and their products of activation from bench to bedside during health and disease, and provide an overview of the versatile functions of neutrophils as key modulators of immune responses and physiological processes. We focus specifically on those activities and concepts that have been validated with primary human cells.
Collapse
Affiliation(s)
- Mieke Metzemaekers
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Bert Malengier-Devlies
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Lien De Somer
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
- Division of Pediatric Rheumatology, University Hospital Leuven, Leuven, Belgium
- European Reference Network for Rare Immunodeficiency, Autoinflammatory and Autoimmune Diseases (RITA) at the University Hospital Leuven, Leuven, Belgium
| | | | - Ghislain Opdenakker
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Paul Proost
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Chougule A, Taur P, Iyengar VV, Gowri V, Kulkarni BP, Madkaikar MR, Bodhanwala M, Desai MM. Clinical features, laboratory and molecular findings of children with leukocyte adhesion deficiency type-III from a single center in India. PEDIATRIC HEMATOLOGY ONCOLOGY JOURNAL 2022. [DOI: 10.1016/j.phoj.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
|
6
|
Dudiki T, Nascimento DW, Childs LS, Kareti S, Androjna C, Zhevlakova I, Byzova TV. Progressive skeletal defects caused by Kindlin3 deficiency, a model of autosomal recessive osteopetrosis in humans. Bone 2022; 160:116397. [PMID: 35342016 PMCID: PMC9133165 DOI: 10.1016/j.bone.2022.116397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/18/2022] [Accepted: 03/21/2022] [Indexed: 11/20/2022]
Abstract
The cellular and molecular mechanisms of bone development and homeostasis are clinically important, but not fully understood. Mutations in integrins and Kindlin3 in humans known as Leukocyte adhesion deficiencies (LAD) cause a wide spectrum of complications, including osteopetrosis. Yet, the rarity, frequent misdiagnosis, and lethality of LAD preclude mechanistic analysis of skeletal abnormalities in these patients. Here, using inducible and constitutive tissue-specific Kindlin3 knockout (K3KO) mice, we show that the constitutive lack of embryonic-Kindlin3 in myeloid lineage cells causes growth retardation, edentulism, and skull deformity indicative of hydrocephaly. Micro-CT analysis revealed craniosynostosis, choanal stenosis, and micrognathia along with other skeletal abnormalities characteristic of osteopetrosis. A marked progression of osteosclerosis occurs in mature to middle-aged adults, resulting in the narrowing of cranial nerve foramina and bone marrow cavities of long bones. However, postnatal-Kindlin3 is less critical for bone remodeling and architecture. Thus, myeloid Kindlin3 is essential for skeletal development and its deficiency leads to autosomal recessive osteopetrosis (ARO). The study will aid in the diagnosis, management, and treatment choices for patients with LAD-III and ARO.
Collapse
Affiliation(s)
- Tejasvi Dudiki
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniel W Nascimento
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Lauren S Childs
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Swetha Kareti
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Charlie Androjna
- Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Irina Zhevlakova
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Tatiana V Byzova
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
7
|
Reynolds S, Devlia D, Stearns R, Cole T. Should all infants with delayed umbilical cord separation be investigated for leucocyte adhesion deficiency? Arch Dis Child 2021; 106:1233-1236. [PMID: 34598939 DOI: 10.1136/archdischild-2020-321313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 09/08/2021] [Indexed: 11/03/2022]
Affiliation(s)
- Sarah Reynolds
- Neonatal Unit, John Radcliffe Hospital, Oxford, Oxfordshire, UK .,Home, Windsor, UK
| | - Devika Devlia
- Department of Paediatrics, Wexham Park Hospital, Slough, UK
| | | | - Theresa Cole
- Allergy and Immunology Department, The Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
8
|
Sun H, Zhi K, Hu L, Fan Z. The Activation and Regulation of β2 Integrins in Phagocytes and Phagocytosis. Front Immunol 2021; 12:633639. [PMID: 33868253 PMCID: PMC8044391 DOI: 10.3389/fimmu.2021.633639] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/11/2021] [Indexed: 01/10/2023] Open
Abstract
Phagocytes, which include neutrophils, monocytes, macrophages, and dendritic cells, protect the body by removing foreign particles, bacteria, and dead or dying cells. Phagocytic integrins are greatly involved in the recognition of and adhesion to specific antigens on cells and pathogens during phagocytosis as well as the recruitment of immune cells. β2 integrins, including αLβ2, αMβ2, αXβ2, and αDβ2, are the major integrins presented on the phagocyte surface. The activation of β2 integrins is essential to the recruitment and phagocytic function of these phagocytes and is critical for the regulation of inflammation and immune defense. However, aberrant activation of β2 integrins aggravates auto-immune diseases, such as psoriasis, arthritis, and multiple sclerosis, and facilitates tumor metastasis, making them double-edged swords as candidates for therapeutic intervention. Therefore, precise regulation of phagocyte activities by targeting β2 integrins should promote their host defense functions with minimal side effects on other cells. Here, we reviewed advances in the regulatory mechanisms underlying β2 integrin inside-out signaling, as well as the roles of β2 integrin activation in phagocyte functions.
Collapse
Affiliation(s)
- Hao Sun
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Kangkang Zhi
- Department of Vascular Surgery, Changzheng Hospital, Shanghai, China
| | - Liang Hu
- Department of Cardiology, Cardiovascular Institute of Zhengzhou University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, Farmington, CT, United States
| |
Collapse
|
9
|
Fagerholm SC, Guenther C, Llort Asens M, Savinko T, Uotila LM. Beta2-Integrins and Interacting Proteins in Leukocyte Trafficking, Immune Suppression, and Immunodeficiency Disease. Front Immunol 2019; 10:254. [PMID: 30837997 PMCID: PMC6389632 DOI: 10.3389/fimmu.2019.00254] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/29/2019] [Indexed: 12/21/2022] Open
Abstract
Beta2-integrins are complex leukocyte-specific adhesion molecules that are essential for leukocyte (e.g., neutrophil, lymphocyte) trafficking, as well as for other immunological processes such as neutrophil phagocytosis and ROS production, and T cell activation. Intriguingly, however, they have also been found to negatively regulate cytokine responses, maturation, and migratory responses in myeloid cells such as macrophages and dendritic cells, revealing new, and unexpected roles of these molecules in immunity. Because of their essential role in leukocyte function, a lack of expression or function of beta2-integrins causes rare immunodeficiency syndromes, Leukocyte adhesion deficiency type I, and type III (LAD-I and LAD-III). LAD-I is caused by reduced or lost expression of beta2-integrins, whilst in LAD-III, beta2-integrins are expressed but dysfunctional because a major integrin cytoplasmic regulator, kindlin-3, is mutated. Interestingly, some LAD-related phenotypes such as periodontitis have recently been shown to be due to an uncontrolled inflammatory response rather than to an uncontrolled infection, as was previously thought. This review will focus on the recent advances concerning the regulation and functions of beta2-integrins in leukocyte trafficking, immune suppression, and immune deficiency disease.
Collapse
Affiliation(s)
- Susanna C Fagerholm
- Molecular and Integrative Biosciences Research Program, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Carla Guenther
- Molecular and Integrative Biosciences Research Program, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Marc Llort Asens
- Molecular and Integrative Biosciences Research Program, Faculty of Bio- and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | - Liisa M Uotila
- Research Services, University of Helsinki, Helsinki, Finland
| |
Collapse
|
10
|
Saultier P, Szepetowski S, Canault M, Falaise C, Poggi M, Suchon P, Barlogis V, Michel G, Loyau S, Jandrot-Perrus M, Bordet JC, Alessi MC, Chambost H. Long-term management of leukocyte adhesion deficiency type III without hematopoietic stem cell transplantation. Haematologica 2018; 103:e264-e267. [PMID: 29472353 DOI: 10.3324/haematol.2017.186304] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Paul Saultier
- APHM, La Timone Children's Hospital, Department of pediatric hematology and oncology, Marseille, France .,Aix Marseille Univ, INSERM, INRA, C2VN, France
| | - Sarah Szepetowski
- APHM, La Timone Children's Hospital, Department of pediatric hematology and oncology, Marseille, France
| | | | - Céline Falaise
- APHM, La Timone Children's Hospital, Department of pediatric hematology and oncology, Marseille, France.,APHM, CHU Timone, Laboratory of Hematology, Marseille, France.,APHM, CHU Timone, French national reference center for inherited platelet disorders (CRPP), Marseille, France
| | | | - Pierre Suchon
- Aix Marseille Univ, INSERM, INRA, C2VN, France.,APHM, CHU Timone, Laboratory of Hematology, Marseille, France
| | - Vincent Barlogis
- APHM, La Timone Children's Hospital, Department of pediatric hematology and oncology, Marseille, France.,APHM, La Timone Children's Hospital, French national reference center for primary immune deficiencies (CEREDIH), Marseille, France
| | - Gérard Michel
- APHM, La Timone Children's Hospital, Department of pediatric hematology and oncology, Marseille, France.,APHM, La Timone Children's Hospital, French national reference center for primary immune deficiencies (CEREDIH), Marseille, France
| | - Stéphane Loyau
- Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Univ Paris Diderot, Sorbonne Paris Cité, France
| | - Martine Jandrot-Perrus
- Laboratory of Vascular Translational Science, U1148 Institut National de la Santé et de la Recherche Médicale (INSERM), Univ Paris Diderot, Sorbonne Paris Cité, France
| | - Jean-Claude Bordet
- HCL, Hôpital Cardiologique Louis Pradel, Unité d'Hémostase Biologique, Bron, France.,EAM 4609 Hémostase et cancer, Université Claude Bernard Lyon 1, France
| | - Marie-Christine Alessi
- Aix Marseille Univ, INSERM, INRA, C2VN, France.,APHM, CHU Timone, Laboratory of Hematology, Marseille, France.,APHM, CHU Timone, French national reference center for inherited platelet disorders (CRPP), Marseille, France
| | - Hervé Chambost
- APHM, La Timone Children's Hospital, Department of pediatric hematology and oncology, Marseille, France.,Aix Marseille Univ, INSERM, INRA, C2VN, France
| |
Collapse
|
11
|
Leiding JW. Neutrophil Evolution and Their Diseases in Humans. Front Immunol 2017; 8:1009. [PMID: 28894446 PMCID: PMC5581313 DOI: 10.3389/fimmu.2017.01009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/07/2017] [Indexed: 01/09/2023] Open
Abstract
Granulocytes have been preserved and have evolved across species, developing into cells that provide one of the first lines of host defense against pathogens. In humans, neutrophils are involved in early recognition and killing of infectious pathogens. Disruption in neutrophil production, emigration, chemotaxis, and function cause a spectrum of primary immune defects characterized by host susceptibility to invasive infections.
Collapse
Affiliation(s)
- Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida, Tampa, FL, United States.,Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| |
Collapse
|