1
|
Baldini L, Keller B, Dewitte L, Passarelli C, Ginevrino M, Carli D, Montin D, Bossuyt X, Warnatz K, Licciardi F. BENTA disease or CARD11 gain-of-function? A novel variant with atypical features and a literature review. Immunol Lett 2025; 275:107005. [PMID: 40157432 DOI: 10.1016/j.imlet.2025.107005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 02/28/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
INTRODUCTION The CARD11 (Caspase Recruitment Domain Family Member 11) gene encodes a scaffold protein critical for NF-κB signaling, regulating B-cell differentiation and T-cell effector functions. Gain-of-function (GOF) mutations in CARD11 cause BENTA disease (B cell Expansion with NF-κB and T cell Anergy), an autosomal dominant disorder typically presenting with early-onset polyclonal B-cell lymphocytosis, splenomegaly, lymphadenopathy, and recurrent infections. METHODS We describe three related patients harboring a novel CARD11-GOF mutation (D357E), presenting with a BENTA phenotype with atypical features, including high IgM levels and a normal B-cell count, with life-threatening HLH in one case. Additionally, we conducted a systematic literature review using PubMed and EMBASE to identify previously reported cases of CARD11 GOF mutations. RESULTS In vitro functional analysis demonstrated that the D357E variant activates the NF-κB signaling pathway in primary lymphocytes and in HEK293T cells transfected with mutant CARD11. Our literature review identified 13 studies describing 29 patients. Notably, HLH emerged as a common complication of CARD11 GOF mutations (18.8 %), while B-lymphocytosis -though frequent- was not universally present. CONCLUSION We identified a novel pathogenic CARD11 variant and described its atypical phenotype, further expanding the clinical spectrum of CARD11 GOF disorders. These findings underscore the need for increased awareness of HLH risk in patients with CARD11 GOF mutations.
Collapse
Affiliation(s)
- Letizia Baldini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy; Dipartimento di Scienza della Sanità Pubblica e Pediatriche, Università degli Studi di Torino, Torino, Italy.
| | - Bärbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lisa Dewitte
- Department of Microbiology, Immunology and Transplantation, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
| | - Chiara Passarelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy
| | - Monia Ginevrino
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children Hospital, IRCCS, 00146 Rome, Italy
| | - Diana Carli
- Dipartimento di Scienze Mediche, Università degli Studi di Torino, Torino, Italy
| | - Davide Montin
- Dipartimento di Scienza della Sanità Pubblica e Pediatriche, Università degli Studi di Torino, Torino, Italy; Dipartimento di Patologia e Cura del Bambino "Regina Margherita", Ospedale Infantile Regina Margherita, Torino, Italy
| | - Xavier Bossuyt
- Department of Microbiology, Immunology and Transplantation, Clinical and Diagnostic Immunology, KU Leuven, Leuven, Belgium
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Francesco Licciardi
- Dipartimento di Scienza della Sanità Pubblica e Pediatriche, Università degli Studi di Torino, Torino, Italy; Dipartimento di Patologia e Cura del Bambino "Regina Margherita", Ospedale Infantile Regina Margherita, Torino, Italy
| |
Collapse
|
2
|
Schmitz EG, Griffith M, Griffith OL, Cooper MA. Identifying genetic errors of immunity due to mosaicism. J Exp Med 2025; 222:e20241045. [PMID: 40232243 PMCID: PMC11998702 DOI: 10.1084/jem.20241045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/24/2025] [Accepted: 03/24/2025] [Indexed: 04/16/2025] Open
Abstract
Inborn errors of immunity are monogenic disorders of the immune system that lead to immune deficiency and/or dysregulation in patients. Identification of precise genetic causes of disease aids diagnosis and advances our understanding of the human immune system; however, a significant portion of patients lack a molecular diagnosis. Somatic mosaicism, genetic changes in a subset of cells, is emerging as an important mechanism of immune disease in both young and older patients. Here, we review the current landscape of somatic genetic errors of immunity and methods for the detection and validation of somatic variants.
Collapse
Affiliation(s)
- Elizabeth G. Schmitz
- Division of Rheumatology/Immunology, Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| | - Malachi Griffith
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Obi L. Griffith
- Division of Oncology, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Megan A. Cooper
- Division of Rheumatology/Immunology, Department of Pediatrics, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
3
|
Carter NM, Hankore WD, Yang YK, Yang C, Hutcherson SM, Fales W, Ghosh A, Mongia P, Mackinnon S, Brennan A, Leone RD, Pomerantz JL. QRICH1 mediates an intracellular checkpoint for CD8 + T cell activation via the CARD11 signalosome. Sci Immunol 2025; 10:eadn8715. [PMID: 40085689 DOI: 10.1126/sciimmunol.adn8715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/19/2025] [Indexed: 03/16/2025]
Abstract
Antigen receptor signaling pathways that control lymphocyte activation depend on signaling hubs and negative regulatory proteins to fine-tune signaling outputs to ensure host defense and avoid pathogenic responses. Caspase recruitment domain-containing protein 11 (CARD11) is a critical signaling scaffold that translates T cell receptor (TCR) triggering into the activation of nuclear factor κB (NF-κB), c-Jun N-terminal kinase (JNK), mechanistic target of rapamycin (mTOR), and Akt. Here, we identify glutamine-rich protein 1 (QRICH1) as a regulator of CARD11 signaling that mediates an intracellular checkpoint for CD8+ T cell activation. QRICH1 associates with CARD11 after TCR engagement and negatively regulates CARD11 signaling to NF-κB. QRICH1 binding to CARD11 is controlled by an autoregulatory intramolecular interaction between QRICH1 domains of previously uncharacterized function. QRICH1 controls the antigen-induced activation, proliferation, and effector status of CD8+ T cells by regulating numerous genes critical for CD8+ T cell function. Our results define a component of antigen receptor signaling circuitry that fine-tunes effector output in response to antigen recognition.
Collapse
Affiliation(s)
- Nicole M Carter
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wihib D Hankore
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yong-Kang Yang
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chao Yang
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shelby M Hutcherson
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wyatt Fales
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anushka Ghosh
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Piyusha Mongia
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sophie Mackinnon
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anna Brennan
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert D Leone
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joel L Pomerantz
- Department of Biological Chemistry and Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Nishinosono T, Muramatsu H, Wakamatsu M, Yamashita D, Fukasawa T, Shirakawa Y, Sajiki D, Maemura R, Tsumura Y, Yamamori A, Narita K, Kataoka S, Narita A, Nishio N, Miyajima Y, Takahashi Y. Successful Treatment with Sirolimus of a Patient with a Novel CARD11 Germline Mutation in B-Cell Expansion with Nuclear Factor Kappa B and T-Cell Anergy: Case Report and Literature Review. J Clin Immunol 2025; 45:78. [PMID: 39998705 PMCID: PMC11861002 DOI: 10.1007/s10875-025-01872-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/09/2025] [Indexed: 02/27/2025]
Abstract
PURPOSE B-cell expansion with nuclear factor kappa B and T-cell anergy (BENTA) is an inborn error of immunity characterized by congenital polyclonal B-cell lymphocyte expansion. In this report, we present a case of a girl diagnosed with BENTA carrying a novel CARD11 germline mutation, aiming to clarify the clinical presentation of BENTA by conducting a literature review. METHODS Genetic analysis, including whole-exome sequencing, was performed using genomic DNA extracted from the patient's peripheral blood, oral mucosa, and fingernails. Additionally, a comprehensive literature review of cases with BENTA was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. RESULTS A p.Leu251Pro germline variant in the CARD11 gene was identified in an 18-month-old girl with a genetic diagnosis of BENTA. She required adenoidectomy and tonsillectomy due to airway obstruction causing wheezing. Her symptoms improved with prednisolone and sirolimus. The literature review we conducted identified a total of 34 cases of BENTA. Among these cases, 15 were either asymptomatic or showed improvement without requiring any specific treatment. However, all six reported deaths were diagnosed before the age of 3 years, with two attributed to refractory hemophagocytic syndrome and four caused by opportunistic infections. CONCLUSION We present a case of BENTA with life-threatening respiratory symptoms caused by a novel CARD11 germline mutation. The patient showed a positive response to immunosuppressive therapy, including sirolimus. While BENTA is typically regarded as a benign disorder, a literature review revealed that infants with BENTA are at high risk of severe outcomes and require therapeutic intervention.
Collapse
Affiliation(s)
- Tsubasa Nishinosono
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Aichi, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Aichi, Japan.
| | - Manabu Wakamatsu
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Aichi, Japan
| | - Daiki Yamashita
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Aichi, Japan
| | | | | | - Daichi Sajiki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Aichi, Japan
| | - Ryo Maemura
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Aichi, Japan
| | - Yusuke Tsumura
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Aichi, Japan
| | - Ayako Yamamori
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Aichi, Japan
| | - Kotaro Narita
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Aichi, Japan
| | - Shinsuke Kataoka
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Aichi, Japan
| | - Atsushi Narita
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Aichi, Japan
| | - Nobuhiro Nishio
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Aichi, Japan
| | - Yuji Miyajima
- Department of Pediatrics, Anjo Kosei Hospital, Anjo, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Aichi, Japan.
| |
Collapse
|
5
|
AlYafie R, Velayutham D, van Panhuys N, Jithesh PV. The genetics of hyper IgE syndromes. Front Immunol 2025; 16:1516068. [PMID: 40040707 PMCID: PMC11876172 DOI: 10.3389/fimmu.2025.1516068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/29/2025] [Indexed: 03/06/2025] Open
Abstract
Hyper IgE syndromes (HIES) form a rare group of primary immunodeficiency disorders (PIDs) distinguished by persistent skin abscesses, dermatitis, allergies, and infections, in addition to their characteristic high serum IgE levels. Autosomal dominant (AD) and autosomal recessive (AR) genetic defects have been reported in HIES. From a clinical perspective, AD-HIES cases generally exhibit several non-immunologic features, including connective tissue, dental and skeletal abnormalities, whilst AR-HIES conditions have a higher incidence of neurologic complications and cutaneous viral infections. Genetic defects associated with HIES lead to impaired immune signaling, affecting pathways crucial for immune cell development, function, and immune response to pathogens/allergens. As a result, HIES patients are predisposed to recurrent bacterial and/or fungal infections, as well as atopic allergic responses. In many cases, the exact biological mechanisms responsible for the variations observed in the clinical phenotypes between the two inherited forms of HIES are still unclear. In this review, we describe the genetic basis of HIES with a distinction between the AR-HIES and AD-HIES forms, to better comprehend the different underlying molecular mechanisms, a distinction which is imperative for the accurate diagnosis, management, and development of targeted therapies for HIES patients.
Collapse
Affiliation(s)
- Randa AlYafie
- College of Health and Life Sciences, Hamad bin Khalifa University, Doha, Qatar
- Laboratory of Immunoregulation, Research Department, Sidra Medicine, Doha, Qatar
| | - Dinesh Velayutham
- College of Health and Life Sciences, Hamad bin Khalifa University, Doha, Qatar
| | - Nicholas van Panhuys
- College of Health and Life Sciences, Hamad bin Khalifa University, Doha, Qatar
- Laboratory of Immunoregulation, Research Department, Sidra Medicine, Doha, Qatar
| | | |
Collapse
|
6
|
Fekrvand S, Abolhassani H, Rezaei N. An overview of early genetic predictors of IgA deficiency. Expert Rev Mol Diagn 2024; 24:715-727. [PMID: 39087770 DOI: 10.1080/14737159.2024.2385521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION Inborn errors of immunity (IEIs) refer to a heterogeneous category of diseases with defects in the number and/or function of components of the immune system. Immunoglobulin A (IgA) deficiency is the most prevalent IEI characterized by low serum level of IgA and normal serum levels of IgG and/or IgM. Most of the individuals with IgA deficiency are asymptomatic and are only identified through routine laboratory tests. Others may experience a wide range of clinical features including mucosal infections, allergies, and malignancies as the most important features. IgA deficiency is a multi-complex disease, and the exact pathogenesis of it is still unknown. AREAS COVERED This review compiles recent research on genetic and epigenetic factors that may contribute to the development of IgA deficiency. These factors include defects in B-cell development, IgA class switch recombination, synthesis, secretion, and the long-term survival of IgA switched memory B cells and plasma cells. EXPERT OPINION A better and more comprehensive understanding of the cellular pathways involved in IgA deficiency could lead to personalized surveillance and potentially curative strategies for affected patients, especially those with severe symptoms.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
7
|
Staal J, Driege Y, Van Gaever F, Steels J, Beyaert R. Chimeric and mutant CARD9 constructs enable analyses of conserved and diverged autoinhibition mechanisms in the CARD-CC protein family. FEBS J 2024; 291:1220-1245. [PMID: 38098267 DOI: 10.1111/febs.17035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/09/2023] [Accepted: 12/13/2023] [Indexed: 12/27/2023]
Abstract
Caspase recruitment domain-containing protein (CARD)9, CARD10, CARD11, and CARD14 all belong to the CARD-coiled coil (CC) protein family and originated from a single common ancestral protein early in vertebrate evolution. All four proteins form CARD-CC/BCL10/MALT1 (CBM) complexes leading to nuclear factor-kappa-B (NF-κB) activation after upstream phosphorylation by various protein kinase C (PKC) isoforms. CBM complex signaling is critical for innate and adaptive immunity, but aberrant activation can cause autoimmune or autoinflammatory diseases, or be oncogenic. CARD9 shows a superior auto-inhibition compared with other CARD-CC family proteins, with very low spontaneous activity when overexpressed in HEK293T cells. In contrast, the poor auto-inhibition of other CARD-CC family proteins, especially CARD10 (CARMA3) and CARD14 (CARMA2), is hampering characterization of upstream activators or activating mutations in overexpression studies. We grafted different domains from CARD10, 11, and 14 on CARD9 to generate chimeric CARD9 backbones for functional characterization of activating mutants using NF-κB reporter gene activation in HEK293T cells as readout. CARD11 (CARMA1) activity was not further reduced by grafting on CARD9 backbones. The chimeric CARD9 approach was subsequently validated by using several known disease-associated mutations in CARD10 and CARD14, and additional screening allowed us to identify several previously unknown activating natural variants in human CARD9 and CARD10. Using Genebass as a resource of exome-based disease association statistics, we found that activated alleles of CARD9 correlate with irritable bowel syndrome (IBS), constipation, osteoarthritis, fibromyalgia, insomnia, anxiety, and depression, which can occur as comorbidities.
Collapse
Affiliation(s)
- Jens Staal
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Belgium
| | - Yasmine Driege
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Femke Van Gaever
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Jill Steels
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Rudi Beyaert
- Unit of Molecular Signal Transduction in Inflammation, VIB-UGent Center for Inflammation Research, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| |
Collapse
|
8
|
Vinh DC. From Mendel to mycoses: Immuno-genomic warfare at the human-fungus interface. Immunol Rev 2024; 322:28-52. [PMID: 38069482 DOI: 10.1111/imr.13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 03/20/2024]
Abstract
Fungi are opportunists: They particularly require a defect of immunity to cause severe or disseminated disease. While often secondary to an apparent iatrogenic cause, fungal diseases do occur in the absence of one, albeit infrequently. These rare cases may be due to an underlying genetic immunodeficiency that can present variably in age of onset, severity, or other infections, and in the absence of a family history of disease. They may also be due to anti-cytokine autoantibodies. This review provides a background on how human genetics or autoantibodies underlie cases of susceptibility to severe or disseminated fungal disease. Subsequently, the lessons learned from these inborn errors of immunity marked by fungal disease (IEI-FD) provide a framework to begin to mechanistically decipher fungal syndromes, potentially paving the way for precision therapy of the mycoses.
Collapse
Affiliation(s)
- Donald C Vinh
- Infectious Diseases - Hematology/Oncology/Transplant Clinical Program, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute - McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Decombis S, Bellanger C, Le Bris Y, Madiot C, Jardine J, Santos JC, Boulet D, Dousset C, Menard A, Kervoelen C, Douillard E, Moreau P, Minvielle S, Moreau-Aubry A, Tessoulin B, Roue G, Bidère N, Le Gouill S, Pellat-Deceunynck C, Chiron D. CARD11 gain of function upregulates BCL2A1 expression and promotes resistance to targeted therapies combination in B-cell lymphoma. Blood 2023; 142:1543-1555. [PMID: 37562004 DOI: 10.1182/blood.2023020211] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023] Open
Abstract
A strategy combining targeted therapies is effective in B-cell lymphomas (BCL), such as mantle cell lymphoma (MCL), but acquired resistances remain a recurrent issue. In this study, we performed integrative longitudinal genomic and single-cell RNA-sequencing analyses of patients with MCL who were treated with targeted therapies against CD20, BCL2, and Bruton tyrosine kinase (OAsIs trial). We revealed the emergence of subclones with a selective advantage against OAsIs combination in vivo and showed that resistant cells were characterized by B-cell receptor (BCR)-independent overexpression of NF-κB1 target genes, especially owing to CARD11 mutations. Functional studies demonstrated that CARD11 gain of function not only resulted in BCR independence but also directly increased the transcription of the antiapoptotic BCL2A1, leading to resistance against venetoclax and OAsIs combination. Based on the transcriptional profile of OAsIs-resistant subclones, we designed a 16-gene resistance signature that was also predictive for patients with MCL who were treated with conventional chemotherapy, underlying a common escape mechanism. Among druggable strategies to inhibit CARD11-dependent NF-κB1 transduction, we evaluated the selective inhibition of its essential partner MALT1. We demonstrated that MALT1 protease inhibition led to a reduction in the expression of genes involved in OAsIs resistance, including BCL2A1. Consequently, MALT1 inhibition induced synergistic cell death in combination with BCL2 inhibition, irrespective of CARD11 mutational status, both in vitro and in vivo. Taken together, our study identified mechanisms of resistance to targeted therapies and provided a novel strategy to overcome resistance in aggressive BCL. The OAsIs trial was registered at www.clinicaltrials.gov #NCT02558816.
Collapse
Affiliation(s)
- Salomé Decombis
- Hematology Department, Nantes Université, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Celine Bellanger
- Hematology Department, Nantes Université, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Yannick Le Bris
- Hematology Department, Nantes Université, Centre Hospitalier Universitaire de Nantes, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Candice Madiot
- Hematology Department, Nantes Université, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Jane Jardine
- Hematology Department, Nantes Université, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | | | - Delphine Boulet
- Hematology Department, Nantes Université, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Christelle Dousset
- Hematology Department, Nantes Université, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Audrey Menard
- Hematology Department, Nantes Université, Centre Hospitalier Universitaire de Nantes, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Charlotte Kervoelen
- Therassay (Onco-Hemato) Core Facility, Nantes Université, Capacités, Nantes, France
| | - Elise Douillard
- Hematology Department, Nantes Université, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Philippe Moreau
- Hematology Department, Nantes Université, Centre Hospitalier Universitaire de Nantes, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Stephane Minvielle
- Hematology Department, Nantes Université, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Agnes Moreau-Aubry
- Hematology Department, Nantes Université, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Benoit Tessoulin
- Hematology Department, Nantes Université, Centre Hospitalier Universitaire de Nantes, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | - Gael Roue
- Lymphoma Translational Group, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Nicolas Bidère
- Hematology Department, Nantes Université, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| | | | | | - David Chiron
- Hematology Department, Nantes Université, INSERM, CNRS, Université d'Angers, CRCI2NA, Nantes, France
| |
Collapse
|
10
|
He M, Wong A, Sutton K, Gondim MJB, Samson C. Very-Early Onset Chronic Active Colitis with Heterozygous Variants in LRBA1 and CARD11, a Case of "Immune TOR-Opathies". Fetal Pediatr Pathol 2023; 42:297-306. [PMID: 35748740 DOI: 10.1080/15513815.2022.2088912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND A small subset of cases of inflammatory bowel disease (IBD) occurs as a result of single gene defects, and typically occurs in young or very young pediatric patients, referred to as "monogenic very-early onset IBD (VEO-IBD)". The gene variants leading to monogenic VEO-IBD are often associated with primary immunodeficiency syndromes. CASE REPORT A six year-old girl presented to our gastroenterology clinic with LRBA deficiency with a heterozygous mutation at c.1399 A > G, p Met467Val, histopathologic chronic active colitis without granulomas and clinical chronic colitis. Her gastrointestinal symptoms began at age 5 with bloody diarrhea, abdominal pain and weight loss. Whole exome sequencing revealed a CARD11 heterozygous de novo mutation (c.220 + 1G > A). She was in clinical remission on only abatacept. DISCUSSION We present a case of monogenic VEO-IBD associated with two heterozygous variants in LRBA1 and CARD11, both considered as key players in the newly proposed "immune TOR-opathies".
Collapse
Affiliation(s)
- Mai He
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Amanda Wong
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kimberly Sutton
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Mercia Jeanne Bezerra Gondim
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Laboratory Medicine, University of Louisville School of Medicine, Louisville, KY, USA
| | - Charles Samson
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
11
|
Of Mycelium and Men: Inherent Human Susceptibility to Fungal Diseases. Pathogens 2023; 12:pathogens12030456. [PMID: 36986378 PMCID: PMC10058615 DOI: 10.3390/pathogens12030456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
In medical mycology, the main context of disease is iatrogenic-based disease. However, historically, and occasionally, even today, fungal diseases affect humans with no obvious risk factors, sometimes in a spectacular fashion. The field of “inborn errors of immunity” (IEI) has deduced at least some of these previously enigmatic cases; accordingly, the discovery of single-gene disorders with penetrant clinical effects and their immunologic dissection have provided a framework with which to understand some of the key pathways mediating human susceptibility to mycoses. By extension, they have also enabled the identification of naturally occurring auto-antibodies to cytokines that phenocopy such susceptibility. This review provides a comprehensive update of IEI and autoantibodies that inherently predispose humans to various fungal diseases.
Collapse
|
12
|
Wang W, Zhang Y, Xiao S, Liu X, Yan P, Fu C, Yang Z. The brain-specific upregulation of CARD11 in response to avian brain-neurotropic virus infection serves as a potential biomarker. Poult Sci 2023; 102:102539. [PMID: 36805399 PMCID: PMC9969321 DOI: 10.1016/j.psj.2023.102539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
Avian neurotropic viruses are critical problems in poultry industry causing severe central nervous system (CNS) damage with neuroinvasive and neurovirulence properties. Biomarker of neurotropic viral intracranial invasion is of great application value for the diagnosis, but that of avian neurotropic viruses remains elusive. Previously, we found that chicken caspase recruitment domain family, member 11 (CARD11) was only upregulated in virulent Newcastle disease virus-infected chickens and in chicken primary neuronal cells. In this study, CARD11 was systemically expressed in chickens and pigeons detected by absolute qPCR and immunohistochemical (IHC) assay. After virus challenging, only avian neurotropic viruses (avian encephalomyelitis virus [AEV] and pigeon paramyxovirus type 1 [PPMV-1]) except Marek's disease virus (MDV) can invade brain and cause pathological changes. The relative mRNA expression of CARD11 was brain-upregulated in AEV- or PPMV-1-infected animals, rather than MDV and non-neurotropic viruses (fowl adenovirus serotype 4 [FAdV-4] and infectious bronchitis virus [IBV]). Similarly, the protein expression of CARD11 was only upregulated in the cerebra and cerebella infected by avian brain-neurotropic virus using IHC assay. And there were no correlations between the change level of CARD11 and viral load. Our preliminary data suggested that avian CARD11 may be a potential brain biomarker for avian brain-neurotropic virus invasion.
Collapse
Affiliation(s)
- Wenbin Wang
- Poultry Institute, Shandong Academy of Agricultural Science, Jinan 250100, Shandong, China.
| | - Yajie Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xuelan Liu
- Poultry Institute, Shandong Academy of Agricultural Science, Jinan 250100, Shandong, China
| | - Peipei Yan
- Poultry Institute, Shandong Academy of Agricultural Science, Jinan 250100, Shandong, China
| | - Chunyan Fu
- Poultry Institute, Shandong Academy of Agricultural Science, Jinan 250100, Shandong, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
13
|
Lymphoid clonal hematopoiesis: implications for malignancy, immunity, and treatment. Blood Cancer J 2023; 13:5. [PMID: 36599826 DOI: 10.1038/s41408-022-00773-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Clonal hematopoiesis (CH) is the age-related expansion of hematopoietic stem cell clones caused by the acquisition of somatic point mutations or mosaic chromosomal alterations (mCAs). Clonal hematopoiesis caused by somatic mutations has primarily been associated with increased risk of myeloid malignancies, while mCAs have been associated with increased risk of lymphoid malignancies. A recent study by Niroula et al. challenged this paradigm by finding a distinct subset of somatic mutations and mCAs that are associated with increased risk of lymphoid malignancy. CH driven by these mutations is termed lymphoid clonal hematopoiesis (L-CH). Unlike myeloid clonal hematopoiesis (M-CH), L-CH has the potential to originate at both stem cells and partially or fully differentiated progeny stages of maturation. In this review, we explore the definition of L-CH in the context of lymphocyte maturation and lymphoid malignancy precursor disorders, the evidence for L-CH in late-onset autoimmunity and immunodeficiency, and the development of therapy-related L-CH following chemotherapy or hematopoietic stem cell transplantation.
Collapse
|
14
|
Masle-Farquhar E, Jeelall Y, White J, Bier J, Deenick EK, Brink R, Horikawa K, Goodnow CC. CARD11 gain-of-function mutation drives cell-autonomous accumulation of PD-1 + ICOS high activated T cells, T-follicular, T-regulatory and T-follicular regulatory cells. Front Immunol 2023; 14:1095257. [PMID: 36960072 PMCID: PMC10028194 DOI: 10.3389/fimmu.2023.1095257] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction Germline CARD11 gain-of-function (GOF) mutations cause B cell Expansion with NF-κB and T cell Anergy (BENTA) disease, whilst somatic GOF CARD11 mutations recur in diffuse large B cell lymphoma (DLBCL) and in up to 30% of the peripheral T cell lymphomas (PTCL) adult T cell leukemia/lymphoma (ATL), cutaneous T cell lymphoma (CTCL) and Sezary Syndrome. Despite their frequent acquisition by PTCL, the T cell-intrinsic effects of CARD11 GOF mutations are poorly understood. Methods Here, we studied B and T lymphocytes in mice with a germline Nethyl-N-nitrosourea (ENU)-induced Card11M365K mutation identical to a mutation identified in DLBCL and modifying a conserved region of the CARD11 coiled-coil domain recurrently mutated in DLBCL and PTCL. Results and discussion Our results demonstrate that CARD11.M365K is a GOF protein that increases B and T lymphocyte activation and proliferation following antigen receptor stimulation. Germline Card11M365K mutation was insufficient alone to cause B or T-lymphoma, but increased accumulation of germinal center (GC) B cells in unimmunized and immunized mice. Card11M365K mutation caused cell-intrinsic over-accumulation of activated T cells, T regulatory (TREG), T follicular (TFH) and T follicular regulatory (TFR) cells expressing increased levels of ICOS, CTLA-4 and PD-1 checkpoint molecules. Our results reveal CARD11 as an important, cell-autonomous positive regulator of TFH, TREG and TFR cells. They highlight T cell-intrinsic effects of a GOF mutation in the CARD11 gene, which is recurrently mutated in T cell malignancies that are often aggressive and associated with variable clinical outcomes.
Collapse
Affiliation(s)
- Etienne Masle-Farquhar
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- *Correspondence: Etienne Masle-Farquhar, ; Yogesh Jeelall,
| | - Yogesh Jeelall
- John Curtin School of Medical Research, Immunology Department, The Australian National University, Canberra, ACT, Australia
- *Correspondence: Etienne Masle-Farquhar, ; Yogesh Jeelall,
| | - Jacqueline White
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Julia Bier
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Elissa K. Deenick
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Robert Brink
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- School of Clinical Medicine, St Vincent’s Healthcare Clinical, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Keisuke Horikawa
- John Curtin School of Medical Research, Immunology Department, The Australian National University, Canberra, ACT, Australia
| | - Christopher Carl Goodnow
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- Cellular Genomics Futures Institute, University of New South Wales, Sydney, Australia
| |
Collapse
|
15
|
Takase Y, Tanioka S, Ishimura M, Yoshiura KI, Mori Y, Sakaida E, Funakoshi Y, Moriuchi H. A familial case of B-cell expansion with NF-κB and T-cell anergy caused by a G123D heterozygous missense mutation in the CARD11 gene. Pediatr Blood Cancer 2022; 69:e29941. [PMID: 36129242 DOI: 10.1002/pbc.29941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 11/06/2022]
Abstract
B-cell expansion with NF-κB (nuclear factor-kappa B) and T-cell anergy (BENTA) is a rare congenital lymphoproliferative disorder caused by germline gain-of-function mutations in the CARD11 gene. We herein report a familial case of BENTA due to a G123D heterozygous missense mutation in CARD11 inherited by a male from his mother. The mother's clinical course was characterized by polyarthritis and encephalitis in young adulthood, suggesting that autoimmune-like manifestations can occur in BENTA. The B-cell lymphocytosis and splenomegaly seen in her child have been managed with prednisolone and tacrolimus. Further investigations are needed to evaluate the efficacy of calcineurin inhibitors for BENTA.
Collapse
Affiliation(s)
- Yusuke Takase
- Department of Pediatrics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shinji Tanioka
- Department of Pediatrics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Masataka Ishimura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koh-Ichiro Yoshiura
- Department of Human Genetics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yasuo Mori
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Emiko Sakaida
- Department of Endocrinology, Hematology and Gerontology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasutomo Funakoshi
- Department of Pediatrics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiroyuki Moriuchi
- Department of Pediatrics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
16
|
Kameda T, Shide K, Kamiunten A, Kogure Y, Morishita D, Koya J, Tahira Y, Akizuki K, Yokomizo-Nakano T, Kubota S, Marutsuka K, Sekine M, Hidaka T, Kubuki Y, Kitai Y, Matsuda T, Yoda A, Ohshima T, Sugiyama M, Sashida G, Kataoka K, Ogawa S, Shimoda K. CARD11 mutation and HBZ expression induce lymphoproliferative disease and adult T-cell leukemia/lymphoma. Commun Biol 2022; 5:1309. [PMID: 36446869 PMCID: PMC9709164 DOI: 10.1038/s42003-022-04284-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Adult T-cell leukemia/lymphoma (ATL) is caused by human T-cell leukemia virus type 1 (HTLV-1). In addition to HTLV-1 bZIP factor (HBZ), a leukemogenic antisense transcript of HTLV-1, abnormalities of genes involved in TCR-NF-κB signaling, such as CARD11, are detected in about 90% of patients. Utilizing mice expressing CD4+ T cell-specific CARD11(E626K) and/or CD4+ T cell-specific HBZ, namely CARD11(E626K)CD4-Cre mice, HBZ transgenic (Tg) mice, and CARD11(E626K)CD4-Cre;HBZ Tg double transgenic mice, we clarify these genes' pathogenetic effects. CARD11(E626K)CD4-Cre and HBZ Tg mice exhibit lymphocytic invasion to many organs, including the lungs, and double transgenic mice develop lymphoproliferative disease and increase CD4+ T cells in vivo. CARD11(E626K) and HBZ cooperatively activate the non-canonical NF-κB pathway, IRF4 targets, BATF3/IRF4/HBZ transcriptional network, MYC targets, and E2F targets. Most KEGG and HALLMARK gene sets enriched in acute-type ATL are also enriched in double transgenic mice, indicating that these genes cooperatively contribute to ATL development.
Collapse
Affiliation(s)
- Takuro Kameda
- grid.410849.00000 0001 0657 3887Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kotaro Shide
- grid.410849.00000 0001 0657 3887Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ayako Kamiunten
- grid.410849.00000 0001 0657 3887Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yasunori Kogure
- grid.272242.30000 0001 2168 5385Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | | | - Junji Koya
- grid.272242.30000 0001 2168 5385Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuki Tahira
- grid.410849.00000 0001 0657 3887Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Keiichi Akizuki
- grid.410849.00000 0001 0657 3887Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Takako Yokomizo-Nakano
- grid.274841.c0000 0001 0660 6749Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Sho Kubota
- grid.274841.c0000 0001 0660 6749Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Kosuke Marutsuka
- Department of Anatomic Pathology, Miyazaki Prefectural Miyazaki Hospital, Miyazaki, Japan
| | - Masaaki Sekine
- grid.410849.00000 0001 0657 3887Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Tomonori Hidaka
- grid.410849.00000 0001 0657 3887Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yoko Kubuki
- grid.410849.00000 0001 0657 3887Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Yuichi Kitai
- grid.39158.360000 0001 2173 7691Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido Japan
| | - Tadashi Matsuda
- grid.39158.360000 0001 2173 7691Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido Japan
| | - Akinori Yoda
- grid.258799.80000 0004 0372 2033Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Takayuki Ohshima
- grid.412769.f0000 0001 0672 0015Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, Kagawa, Japan
| | | | - Goro Sashida
- grid.274841.c0000 0001 0660 6749Laboratory of Transcriptional Regulation in Leukemogenesis, International Research Center for Medical Sciences (IRCMS), Kumamoto University, Kumamoto, Japan
| | - Keisuke Kataoka
- grid.272242.30000 0001 2168 5385Division of Molecular Oncology, National Cancer Center Research Institute, Tokyo, Japan ,grid.26091.3c0000 0004 1936 9959Division of Hematology, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Seishi Ogawa
- grid.258799.80000 0004 0372 2033Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Kazuya Shimoda
- grid.410849.00000 0001 0657 3887Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
17
|
Urdinez L, Erra L, Palma AM, Mercogliano MF, Fernandez JB, Prieto E, Goris V, Bernasconi A, Sanz M, Villa M, Bouso C, Caputi L, Quesada B, Solis D, Aguirre Bruzzo A, Katsicas MM, Galluzzo L, Weyersberg C, Bocian M, Bujan MM, Oleastro M, Almejun MB, Danielian S. Expanding spectrum, intrafamilial diversity, and therapeutic challenges from 15 patients with heterozygous CARD11-associated diseases: A single center experience. Front Immunol 2022; 13:1020927. [PMID: 36405754 PMCID: PMC9668901 DOI: 10.3389/fimmu.2022.1020927] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2023] Open
Abstract
CARD11-associated diseases are monogenic inborn errors of immunity involving immunodeficiency, predisposition to malignancy and immune dysregulation such as lymphoproliferation, inflammation, atopic and autoimmune manifestations. Defects in CARD11 can present as mutations that confer a complete or a partial loss of function (LOF) or contrarily, a gain of function (GOF) of the affected gene product. We report clinical characteristics, immunophenotypes and genotypes of 15 patients from our center presenting with CARD11-associated diseases. Index cases are pediatric patients followed in our immunology division who had access to next generation sequencing studies. Variant significance was defined by functional analysis in cultured cells transfected with a wild type and/or with mutated hCARD11 constructs. Cytoplasmic aggregation of CARD11 products was evaluated by immunofluorescence. Nine index patients with 9 unique heterozygous CARD11 variants were identified. At the time of the identification, 7 variants previously unreported required functional validation. Altogether, four variants showed a GOF effect as well a spontaneous aggregation in the cytoplasm, leading to B cell expansion with NF-κB and T cell anergy (BENTA) diagnosis. Additional four variants showing a LOF activity were considered as causative of CARD11-associated atopy with dominant interference of NF-kB signaling (CADINS). The remaining variant exhibited a neutral functional assay excluding its carrier from further analysis. Family segregation studies expanded to 15 individuals the number of patients presenting CARD11-associated disease. A thorough clinical, immunophenotypical, and therapeutic management evaluation was performed on these patients (5 BENTA and 10 CADINS). A remarkable variability of disease expression was clearly noted among BENTA as well as in CADINS patients, even within multiplex families. Identification of novel CARD11 variants required functional studies to validate their pathogenic activity. In our cohort BENTA phenotype exhibited a more severe and expanded clinical spectrum than previously reported, e.g., severe hematological and extra hematological autoimmunity and 3 fatal outcomes. The growing number of patients with dysmorphic facial features strengthen the inclusion of extra-immune characteristics as part of the CADINS spectrum. CARD11-associated diseases represent a challenging group of disorders from the diagnostic and therapeutic standpoint, especially BENTA cases that can undergo a more severe progression than previously described.
Collapse
Affiliation(s)
- Luciano Urdinez
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Lorenzo Erra
- Laboratorio de Biofisicoquímica de Proteínas, Departamento de Química Biológica, Instituto de Quimica Biologica de Facultad de Ciencias Biologicas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Genética en Endocrinología, Instituto de Biociencias, Biotecnologia y Biologia Translacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro M. Palma
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - María F. Mercogliano
- Laboratorio de Biofisicoquímica de Proteínas, Departamento de Química Biológica, Instituto de Quimica Biologica de Facultad de Ciencias Biologicas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Genética en Endocrinología, Instituto de Biociencias, Biotecnologia y Biologia Translacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Julieta Belén Fernandez
- Laboratorio de Biofisicoquímica de Proteínas, Departamento de Química Biológica, Instituto de Quimica Biologica de Facultad de Ciencias Biologicas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Genética en Endocrinología, Instituto de Biociencias, Biotecnologia y Biologia Translacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Emma Prieto
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Verónica Goris
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Andrea Bernasconi
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Marianela Sanz
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Mariana Villa
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Carolina Bouso
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Lucia Caputi
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Belen Quesada
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Daniel Solis
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Anabel Aguirre Bruzzo
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Maria Martha Katsicas
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Laura Galluzzo
- Servicio de Anatomía Patológica, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Christian Weyersberg
- Servicio de Gastroenterología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Marcela Bocian
- Servicio de Dermatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Maria Marta Bujan
- Servicio de Dermatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - Matías Oleastro
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| | - María B. Almejun
- Laboratorio de Biofisicoquímica de Proteínas, Departamento de Química Biológica, Instituto de Quimica Biologica de Facultad de Ciencias Biologicas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Laboratorio de Genética en Endocrinología, Instituto de Biociencias, Biotecnologia y Biologia Translacional (IB3), Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvia Danielian
- Servicio de Inmunología y Reumatología, Hospital Nacional de Pediatría Juan P. Garrahan, Buenos Aires, Argentina
| |
Collapse
|
18
|
Zhao P, Hu Y, Sun D, Meng Q, Zhang L, Zhang X, Tan L, Zhang Y, Ding Y, He X. A novel CARD11 germline mutation in a Chinese patient of B cell expansion with NF-κB and T cell anergy (BENTA) and literature review. Front Immunol 2022; 13:943027. [PMID: 36203613 PMCID: PMC9530255 DOI: 10.3389/fimmu.2022.943027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Germline gain-of-function (GOF) mutations in the CARD11 gene lead to a rare primary immunodeficiency disease known as B cell expansion with NF-κB and T cell anergy (BENTA). Affected patients present with a polyclonal expansion of B cells, lymphadenopathy, and splenomegaly. Herein, we report a novel germline in-frame three base-pair deletion (c.1030_1032del, p.K344del) in the CARD11 gene in a patient with atypical BENTA, presenting with a recurrent fever and B cell lymphocytosis. This mutation was inherited from his mother, who is clinically asymptomatic and had a recurrent respiratory tract infection in her childhood. In vitro functional analysis demonstrated that this variant decreased the expression level of the CARD11 protein and activated the NF-κB signal pathway, leading to a higher expression of several NF-κB target gene transcripts in HCT116 cells transfected with mutant CARD11 (K344del-CARD11) as revealed by RNA sequencing analysis. To our knowledge, only 23 BENTA patients have been identified and carried seven distinct GOF mutations in CARD11. The clinical manifestations of patients are highly heterogeneous and there was no significant correlation between genotype and phenotype. In summary, we identified a novel in-frame three base-pair deletion that may be responsible for the pathogenesis of atypical BENTA in a Chinese family. Our study expands the mutational spectrum of the CARD11 gene and may be helpful in the understanding of diseases caused by CARD11 mutations and the clinical management of BENTA.
Collapse
Affiliation(s)
- Peiwei Zhao
- Precision Medical Center, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yanqiu Hu
- Precision Medical Center, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Dongming Sun
- Department of Cardiology, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Qingjie Meng
- Department of Clinical Laboratory, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Lei Zhang
- Precision Medical Center, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiankai Zhang
- Precision Medical Center, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Li Tan
- Precision Medical Center, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yong Zhang
- Department of Cardiology, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- *Correspondence: Xuelian He, ; Yan Ding, ; Yong Zhang,
| | - Yan Ding
- Rheumatology and Immunology Department, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- *Correspondence: Xuelian He, ; Yan Ding, ; Yong Zhang,
| | - Xuelian He
- Precision Medical Center, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- *Correspondence: Xuelian He, ; Yan Ding, ; Yong Zhang,
| |
Collapse
|
19
|
Bedsaul JR, Shah N, Hutcherson SM, Pomerantz JL. Mechanistic impact of oligomer poisoning by dominant-negative CARD11 variants. iScience 2022; 25:103810. [PMID: 35198875 PMCID: PMC8844825 DOI: 10.1016/j.isci.2022.103810] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/10/2021] [Accepted: 01/19/2022] [Indexed: 11/25/2022] Open
Abstract
The CARD11 scaffold controls antigen receptor signaling to NF-κB, JNK, and mTOR. Three classes of germline mutations in CARD11 cause Primary Immunodeficiency, including homozygous loss-of-function (LOF) mutations in CARD11 deficiency, heterozygous gain-of-function (GOF) mutations in BENTA disease, and heterozygous dominant-negative LOF mutations in CADINS. Here, we characterize LOF CARD11 mutants with a range of dominant-negative activities to identify the mechanistic properties that cause these variants to exert dominant effects when heterozygous. We find that strong dominant negatives can poison signaling from mixed wild-type:mutant oligomers at two steps in the CARD11 signaling cycle, at the Opening Step and at the Cofactor Association Step. Our findings provide evidence that CARD11 oligomer subunits cooperate in at least two steps during antigen receptor signaling and reveal how different LOF mutations in the same oligomeric signaling hub may cause disease with different inheritance patterns.
Collapse
Affiliation(s)
- Jacquelyn R. Bedsaul
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Neha Shah
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shelby M. Hutcherson
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Joel L. Pomerantz
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
20
|
Lu HY, Sharma M, Sharma AA, Lacson A, Szpurko A, Luider J, Dharmani-Khan P, Shameli A, Bell PA, Guilcher GMT, Lewis VA, Vasquez MR, Desai S, McGonigle L, Murguia-Favela L, Wright NAM, Sergi C, Wine E, Overall CM, Suresh S, Turvey SE. Mechanistic understanding of the combined immunodeficiency in complete human CARD11 deficiency. J Allergy Clin Immunol 2021; 148:1559-1574.e13. [PMID: 33872653 DOI: 10.1016/j.jaci.2021.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Germline pathogenic variants impairing the caspase recruitment domain family member 11 (CARD11)-B cell chronic lymphocytic leukemia/lymphoma 10 (BCL10)-MALT1 paracaspase (MALT1) (CBM) complex are associated with diverse human diseases including combined immunodeficiency (CID), atopy, and lymphoproliferation. However, the impact of CARD11 deficiency on human B-cell development, signaling, and function is incompletely understood. OBJECTIVES This study sought to determine the cellular, immunological, and biochemical basis of disease for 2 unrelated patients who presented with profound CID associated with viral and fungal respiratory infections, interstitial lung disease, and severe colitis. METHODS Patients underwent next-generation sequencing, immunophenotyping by flow cytometry, signaling assays by immunoblot, and transcriptome profiling by RNA-sequencing. RESULTS Both patients carried identical novel pathogenic biallelic loss-of-function variants in CARD11 (c.2509C>T; p.Arg837∗) leading to undetectable protein expression. This variant prevented CBM complex formation, severely impairing the activation of nuclear factor-κB, c-Jun N-terminal kinase, and MALT1 paracaspase activity in B and T cells. This functional defect resulted in a developmental block in B cells at the naive and type 1 transitional B-cell stage and impaired circulating T follicular helper cell (cTFH) development, which was associated with impaired antibody responses and absent germinal center structures on lymph node histology. Transcriptomics indicated that CARD11-dependent signaling is essential for immune signaling pathways involved in the development of these cells. Both patients underwent hematopoietic stem cell transplantations, which led to functional normalization. CONCLUSIONS Complete human CARD11 deficiency causes profound CID by impairing naive/type 1 B-cell and cTFH cell development and abolishing activation of MALT1 paracaspase, NF-κB, and JNK activity. Hematopoietic stem cell transplantation functionally restores impaired signaling pathways.
Collapse
Affiliation(s)
- Henry Y Lu
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Mehul Sharma
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ashish A Sharma
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio; Department of Pathology, Emory University, Atlanta, Ga
| | - Atilano Lacson
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Ashley Szpurko
- Section of Oncology/Bone Marrow Therapy, Departments of Oncology and Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Joanne Luider
- Department of Pathology and Laboratory Medicine, University of Calgary, Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - Poonam Dharmani-Khan
- Department of Pathology and Laboratory Medicine, University of Calgary, Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - Afshin Shameli
- Department of Pathology and Laboratory Medicine, University of Calgary, Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - Peter A Bell
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Gregory M T Guilcher
- Section of Oncology/Bone Marrow Therapy, Departments of Oncology and Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Victor A Lewis
- Section of Oncology/Bone Marrow Therapy, Departments of Oncology and Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Marta Rojas Vasquez
- Department of Pediatrics, Division of Immunology, Hematology, Oncology and Palliative Care (iHOPE), University of Alberta, Edmonton, Alberta, Canada
| | - Sunil Desai
- Department of Pediatrics, Division of Immunology, Hematology, Oncology and Palliative Care (iHOPE), University of Alberta, Edmonton, Alberta, Canada
| | - Lyle McGonigle
- Department of Pediatrics, Division of General and Community Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Luis Murguia-Favela
- Section of Pediatric Hematology-Immunology, Department of Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Nicola A M Wright
- Section of Pediatric Hematology-Immunology, Department of Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Eytan Wine
- Division of Pediatric Gastroenterology and Nutrition, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Christopher M Overall
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada; Department of Oral Biological and Medical Sciences, Faculty of Dentistry, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Sneha Suresh
- Department of Pediatrics, Division of Immunology, Hematology, Oncology and Palliative Care (iHOPE), University of Alberta, Edmonton, Alberta, Canada
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
21
|
Abstract
Clinically and pathologically, the patients with hyper-IgE syndrome present similar skin manifestations to common atopic dermatitis. The original hyper-IgE syndrome is characterized by diminished inflammatory response, in combination with Staphylococcus aureus skin abscess and pneumonia followed by pneumatocele formation. These immunological manifestations are frequently associated with skeletal and connective tissue abnormalities. We previously identified that major causal variants of the hyper-IgE syndrome are dominant negative variants in the STAT3. In addition to the identification of new causative variants for the disorders similar to the original hyper-IgE syndrome, causative variants for new types of hyper-IgE syndrome centered only on atopy, high serum IgE levels, and susceptibility to infection, but not associated with diminished inflammatory response, pneumatocele formation, and connective tissue manifestations, have been identified. Recent discovery identified a novel zinc finger protein that regulates STAT3 transcription. Investigation of IL6ST variants disclosed that IL6ST/IL6R cytokine receptor plays a crucial role for the signal transduction upstream of STAT3 in the pathogenesis of the original hyper-IgE syndrome. Even if the same IL6ST variants are used for the signal transduction of IL-6 family cytokines, the signaling defect is more severe in IL-6/IL-11 and milder in LIF. The fact that the non-immune manifestations of the gain-of-function mutations of TGFBR1 and TGFBR2 are similar to the those of dominant negative mutations of STAT3 provide a clue to elucidate molecular mechanisms of non-immune manifestations of hyper-IgE syndrome. Research on this hereditary atopic syndrome is being actively conducted to elucidate the molecular mechanisms and to develop new therapeutic approaches.
Collapse
|
22
|
Zhao P, Meng Q, Huang Y, Zhang L, Luo S, Zhang X, Tan L, Zhou A, Xiong H, He X. Identification and Characterization of a Germline Mutation in CARD11 From a Chinese Case of B Cell Expansion With NF-κB and T Cell Anergy. Front Immunol 2021; 12:676386. [PMID: 34557185 PMCID: PMC8453161 DOI: 10.3389/fimmu.2021.676386] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 08/23/2021] [Indexed: 11/25/2022] Open
Abstract
B cell expansion with NF-κB and T cell anergy (BENTA) is a rare primary immunodeficiency disorder caused by gain-of-function (GOF) mutations in the CARD11 gene. Affected patients present with persistent B cell lymphocytosis in early childhood paired with lymphadenopathy and splenomegaly. Until now only six activating mutations from 14 patients have been reported in CARD11. Here we report a patient from China with polyclonal B cell lymphocytosis and frequent infections in early life. A heterozygous mutation (c.377G>A, G126D) in exon 5 of CARD11 gene (NM_032415) was identified by whole exome sequencing. In vitro functional studies showed that the G126D mutation is associated with increased expression of CARD11 and NF-κB activation in Hela cells. Flow cytometry analysis indicated NK cell activity and CD107a degranulation of the patient were decreased. RNA sequencing analysis showed that a number of genes in NF-κB pathway increased while those involved in NK cell activity and degranulation were down-regulated. In summary, our work identified a de novo germline GOF mutation in CARD11 with functional evidence of BENTA.
Collapse
Affiliation(s)
- Peiwei Zhao
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Qingjie Meng
- Department of Clinical Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yufeng Huang
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Lei Zhang
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Sukun Luo
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiankai Zhang
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Li Tan
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Aifen Zhou
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Hao Xiong
- Department of Hematology & Oncology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xuelian He
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
23
|
Barnabei L, Laplantine E, Mbongo W, Rieux-Laucat F, Weil R. NF-κB: At the Borders of Autoimmunity and Inflammation. Front Immunol 2021; 12:716469. [PMID: 34434197 PMCID: PMC8381650 DOI: 10.3389/fimmu.2021.716469] [Citation(s) in RCA: 350] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022] Open
Abstract
The transcription factor NF-κB regulates multiple aspects of innate and adaptive immune functions and serves as a pivotal mediator of inflammatory response. In the first part of this review, we discuss the NF-κB inducers, signaling pathways, and regulators involved in immune homeostasis as well as detail the importance of post-translational regulation by ubiquitination in NF-κB function. We also indicate the stages of central and peripheral tolerance where NF-κB plays a fundamental role. With respect to central tolerance, we detail how NF-κB regulates medullary thymic epithelial cell (mTEC) development, homeostasis, and function. Moreover, we elaborate on its role in the migration of double-positive (DP) thymocytes from the thymic cortex to the medulla. With respect to peripheral tolerance, we outline how NF-κB contributes to the inactivation and destruction of autoreactive T and B lymphocytes as well as the differentiation of CD4+-T cell subsets that are implicated in immune tolerance. In the latter half of the review, we describe the contribution of NF-κB to the pathogenesis of autoimmunity and autoinflammation. The recent discovery of mutations involving components of the pathway has both deepened our understanding of autoimmune disease and informed new therapeutic approaches to treat these illnesses.
Collapse
Affiliation(s)
- Laura Barnabei
- INSERM UMR 1163, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute Paris Descartes Sorbonne Paris Cité University, Paris, France
| | - Emmanuel Laplantine
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (INSERM, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CMI, Paris, France
| | - William Mbongo
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (INSERM, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CMI, Paris, France
| | - Frédéric Rieux-Laucat
- INSERM UMR 1163, Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Imagine Institute Paris Descartes Sorbonne Paris Cité University, Paris, France
| | - Robert Weil
- Sorbonne Universités, Institut National de la Santé et de la Recherche Médicale (INSERM, UMR1135), Centre National de la Recherche Scientifique (CNRS, ERL8255), Centre d'Immunologie et des Maladies Infectieuses CMI, Paris, France
| |
Collapse
|
24
|
López-Nevado M, González-Granado LI, Ruiz-García R, Pleguezuelo D, Cabrera-Marante O, Salmón N, Blanco-Lobo P, Domínguez-Pinilla N, Rodríguez-Pena R, Sebastián E, Cruz-Rojo J, Olbrich P, Ruiz-Contreras J, Paz-Artal E, Neth O, Allende LM. Primary Immune Regulatory Disorders With an Autoimmune Lymphoproliferative Syndrome-Like Phenotype: Immunologic Evaluation, Early Diagnosis and Management. Front Immunol 2021; 12:671755. [PMID: 34447369 PMCID: PMC8382720 DOI: 10.3389/fimmu.2021.671755] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/16/2021] [Indexed: 12/26/2022] Open
Abstract
Primary immune regulatory disorders (PIRD) are associated with autoimmunity, autoinflammation and/or dysregulation of lymphocyte homeostasis. Autoimmune lymphoproliferative syndrome (ALPS) is a PIRD due to an apoptotic defect in Fas-FasL pathway and characterized by benign and chronic lymphoproliferation, autoimmunity and increased risk of lymphoma. Clinical manifestations and typical laboratory biomarkers of ALPS have also been found in patients with a gene defect out of the Fas-FasL pathway (ALPS-like disorders). Following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA), we identified more than 600 patients suffering from 24 distinct genetic defects described in the literature with an autoimmune lymphoproliferative phenotype (ALPS-like syndromes) corresponding to phenocopies of primary immunodeficiency (PID) (NRAS, KRAS), susceptibility to EBV (MAGT1, PRKCD, XIAP, SH2D1A, RASGRP1, TNFRSF9), antibody deficiency (PIK3CD gain of function (GOF), PIK3R1 loss of function (LOF), CARD11 GOF), regulatory T-cells defects (CTLA4, LRBA, STAT3 GOF, IL2RA, IL2RB, DEF6), combined immunodeficiencies (ITK, STK4), defects in intrinsic and innate immunity and predisposition to infection (STAT1 GOF, IL12RB1) and autoimmunity/autoinflammation (ADA2, TNFAIP3,TPP2, TET2). CTLA4 and LRBA patients correspond around to 50% of total ALPS-like cases. However, only 100% of CTLA4, PRKCD, TET2 and NRAS/KRAS reported patients had an ALPS-like presentation, while the autoimmunity and lymphoproliferation combination resulted rare in other genetic defects. Recurrent infections, skin lesions, enteropathy and malignancy are the most common clinical manifestations. Some approaches available for the immunological study and identification of ALPS-like patients through flow cytometry and ALPS biomarkers are provided in this work. Protein expression assays for NKG2D, XIAP, SAP, CTLA4 and LRBA deficiencies and functional studies of AKT, STAT1 and STAT3 phosphorylation, are showed as useful tests. Patients suspected to suffer from one of these disorders require rapid and correct diagnosis allowing initiation of tailored specific therapeutic strategies and monitoring thereby improving the prognosis and their quality of life.
Collapse
Affiliation(s)
- Marta López-Nevado
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
| | - Luis I. González-Granado
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- Immunodeficiency Unit, Department of Pediatrics, University Hospital 12 de Octubre, Madrid, Spain
| | - Raquel Ruiz-García
- Immunology Department, Centre Diagnòstic Biomèdic, Hospital Clínic, Barcelona, Spain
| | - Daniel Pleguezuelo
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
| | - Oscar Cabrera-Marante
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
| | - Nerea Salmón
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- Immunodeficiency Unit, Department of Pediatrics, University Hospital 12 de Octubre, Madrid, Spain
| | - Pilar Blanco-Lobo
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, University Hospital Virgen del Rocío, Institute of Biomedicine, Biomedicine Institute (IBiS)/University of Seville/Superior Council of Scientific Investigations (CSIC), Seville, Spain
| | - Nerea Domínguez-Pinilla
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- Pediatric Hematology and Oncology Unit, Toledo Hospital Complex, Toledo, Spain and University Hospital 12 de Octubre, Madrid, Spain
| | | | - Elena Sebastián
- Hematology and Hemotherapy Unit, University Children’s Hospital Niño Jesús, Madrid, Spain
| | - Jaime Cruz-Rojo
- Endocrine Unit, Department of Pediatrics, University Hospital 12 de Octubre, Madrid, Spain
| | - Peter Olbrich
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, University Hospital Virgen del Rocío, Institute of Biomedicine, Biomedicine Institute (IBiS)/University of Seville/Superior Council of Scientific Investigations (CSIC), Seville, Spain
| | - Jesús Ruiz-Contreras
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- Immunodeficiency Unit, Department of Pediatrics, University Hospital 12 de Octubre, Madrid, Spain
- School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Estela Paz-Artal
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Olaf Neth
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, University Hospital Virgen del Rocío, Institute of Biomedicine, Biomedicine Institute (IBiS)/University of Seville/Superior Council of Scientific Investigations (CSIC), Seville, Spain
| | - Luis M. Allende
- Immunology Department, University Hospital 12 de Octubre, Madrid, Spain
- Research Institute Hospital 12 Octubre (imas12), Madrid, Spain
- School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
25
|
Aberrant Immunoglobulin Kappa Locus Rearrangement in a Patient with CARD11-Related B Cell Lymphocytosis. J Clin Immunol 2021; 41:1943-1945. [PMID: 34355353 DOI: 10.1007/s10875-021-01114-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
|
26
|
Hutcherson SM, Bedsaul JR, Pomerantz JL. Pathway-Specific Defects in T, B, and NK Cells and Age-Dependent Development of High IgE in Mice Heterozygous for a CADINS-Associated Dominant Negative CARD11 Allele. THE JOURNAL OF IMMUNOLOGY 2021; 207:1150-1164. [PMID: 34341167 DOI: 10.4049/jimmunol.2001233] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 06/19/2021] [Indexed: 12/13/2022]
Abstract
CARD11 is a multidomain scaffold protein required for normal activation of NF-κB, JNK, and mTOR during Ag receptor signaling. Germline CARD11 mutations cause at least three types of primary immunodeficiency including CARD11 deficiency, B cell expansion with NF-κB and T cell anergy (BENTA), and CARD11-associated atopy with dominant interference of NF-κB signaling (CADINS). CADINS is uniquely caused by heterozygous loss-of-function CARD11 alleles that act as dominant negatives. CADINS patients present with frequent respiratory and skin infections, asthma, allergies, and atopic dermatitis. However, precisely how a heterozygous dominant negative CARD11 allele leads to the development of this CADINS-specific cluster of symptoms remains poorly understood. To address this, we generated mice expressing the CARD11 R30W allele originally identified in patients. We find that CARD11R30W/+ mice exhibit impaired signaling downstream of CARD11 that leads to defects in T, B, and NK cell function and immunodeficiency. CARD11R30W/+ mice develop elevated serum IgE levels with 50% penetrance that becomes more pronounced with age, but do not develop spontaneous atopic dermatitis. CARD11R30W/+ mice display reduced regulatory T cell numbers, but not the Th2 expansion observed in other mice with diminished CARD11 activity. Interestingly, the presence of mixed CARD11 oligomers in CARD11R30W/+ mice causes more severe signaling defects in T cells than in B cells, and specifically impacts IFN-γ production by NK cells, but not NK cell cytotoxicity. Our findings help explain the high susceptibility of CADINS patients to infection and suggest that the development of high serum IgE is not sufficient to induce overt atopic symptoms.
Collapse
Affiliation(s)
- Shelby M Hutcherson
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jacquelyn R Bedsaul
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Joel L Pomerantz
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
27
|
Inborn errors of immunity with atopic phenotypes: A practical guide for allergists. World Allergy Organ J 2021; 14:100513. [PMID: 33717395 PMCID: PMC7907539 DOI: 10.1016/j.waojou.2021.100513] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/22/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
Inborn errors of immunity (IEI) are a heterogeneous group of disorders, mainly resulting from mutations in genes associated with immunoregulation and immune host defense. These disorders are characterized by different combinations of recurrent infections, autoimmunity, inflammatory manifestations, lymphoproliferation, and malignancy. Interestingly, it has been increasingly observed that common allergic symptoms also can represent the expression of an underlying immunodeficiency and/or immune dysregulation. Very high IgE levels, peripheral or organ-specific hypereosinophilia, usually combined with a variety of atopic symptoms, may sometimes be the epiphenomenon of a monogenic disease. Therefore, allergists should be aware that severe and/or therapy-resistant atopic disorders might be the main clinical phenotype of some IEI. This could pave the way to target therapies, leading to better quality of life and improved survival in affected patients.
Collapse
|
28
|
Wang W, Wei Q, Hao Q, Zhang Y, Li Y, Bi Y, Jin Z, Liu H, Liu X, Yang Z, Xiao S. Cellular CARD11 Inhibits the Fusogenic Activity of Newcastle Disease Virus via CBM Signalosome-Mediated Furin Reduction in Chicken Fibroblasts. Front Microbiol 2021; 12:607451. [PMID: 33603723 PMCID: PMC7884349 DOI: 10.3389/fmicb.2021.607451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/07/2021] [Indexed: 12/02/2022] Open
Abstract
Newcastle disease virus (NDV) causes an infectious disease that poses a major threat to poultry health. Our previous study identified a chicken brain-specific caspase recruitment domain-containing protein 11 (CARD11) that was upregulated in chicken neurons and inhibited NDV replication. This raises the question of whether CARD11 plays a role in inhibiting viruses in non-neural cells. Here, chicken fibroblasts were used as a non-neural cell model to investigate the role. CARD11 expression was not significantly upregulated by either velogenic or lentogenic NDV infection in chicken fibroblasts. Viral replication was decreased in DF-1 cells stably overexpressing CARD11, while viral growth was significantly increased in the CARD11-knockdown DF-1 cell line. Moreover, CARD11 colocalized with the viral P protein and aggregated around the fibroblast nucleus, suggesting that an interaction existed between CARD11 and the viral P protein; this interaction was further examined by suppressing viral RNA polymerase activity by using a minigenome assay. Viral replication was inhibited by CARD11 in fibroblasts, and this result was consistent with our previous report in chicken neurons. Importantly, CARD11 was observed to reduce the syncytia induced by either velogenic virus infection or viral haemagglutinin-neuraminidase (HN) and F cotransfection in fibroblasts. We found that CARD11 inhibited the expression of the host protease furin, which is essential for cleavage of the viral F protein to trigger fusogenic activity. Furthermore, the CARD11-Bcl10-MALT1 (CBM) signalosome was found to suppress furin expression, which resulted in a reduction in the cleavage efficiency of the viral F protein to further inhibit viral syncytia. Taken together, our findings mainly demonstrated a novel CARD11 inhibitory mechanism for viral fusogenic activity in chicken fibroblasts, and this mechanism explains the antiviral roles of this molecule in NDV pathogenesis.
Collapse
Affiliation(s)
- Wenbin Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Poultry Institute, Shandong Academy of Agricultural Science, Jinan, China
| | - Qiaolin Wei
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qiqi Hao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yajie Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yongshan Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Youkun Bi
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Zhongyuan Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Haijin Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xuelan Liu
- Poultry Institute, Shandong Academy of Agricultural Science, Jinan, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Sa Xiao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
29
|
Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther 2020; 5:209. [PMID: 32958760 PMCID: PMC7506548 DOI: 10.1038/s41392-020-00312-6] [Citation(s) in RCA: 1200] [Impact Index Per Article: 240.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
NF-κB pathway consists of canonical and non-canonical pathways. The canonical NF-κB is activated by various stimuli, transducing a quick but transient transcriptional activity, to regulate the expression of various proinflammatory genes and also serve as the critical mediator for inflammatory response. Meanwhile, the activation of the non-canonical NF-κB pathway occurs through a handful of TNF receptor superfamily members. Since the activation of this pathway involves protein synthesis, the kinetics of non-canonical NF-κB activation is slow but persistent, in concordance with its biological functions in the development of immune cell and lymphoid organ, immune homeostasis and immune response. The activation of the canonical and non-canonical NF-κB pathway is tightly controlled, highlighting the vital roles of ubiquitination in these pathways. Emerging studies indicate that dysregulated NF-κB activity causes inflammation-related diseases as well as cancers, and NF-κB has been long proposed as the potential target for therapy of diseases. This review attempts to summarize our current knowledge and updates on the mechanisms of NF-κB pathway regulation and the potential therapeutic application of inhibition of NF-κB signaling in cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Hui Yu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Liangbin Lin
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Huiyuan Zhang
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| | - Hongbo Hu
- Department of Rheumatology and Immunology, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.
| |
Collapse
|
30
|
Staal J, Driege Y, Haegman M, Kreike M, Iliaki S, Vanneste D, Lork M, Afonina IS, Braun H, Beyaert R. Defining the combinatorial space of PKC::CARD‐CC signal transduction nodes. FEBS J 2020; 288:1630-1647. [DOI: 10.1111/febs.15522] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 07/12/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Jens Staal
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Yasmine Driege
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Mira Haegman
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Marja Kreike
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Styliani Iliaki
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Domien Vanneste
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Marie Lork
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Inna S. Afonina
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Harald Braun
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| | - Rudi Beyaert
- Department of Biomedical Molecular Biology Ghent University Ghent Belgium
- Center for Inflammation Research Unit of Molecular Signal Transduction in Inflammation VIB Ghent Belgium
| |
Collapse
|
31
|
Wei Z, Zhang Y, Chen J, Hu Y, Jia P, Wang X, Zhao Q, Deng Y, Li N, Zang Y, Qin J, Wang X, Lu W. Pathogenic CARD11 mutations affect B cell development and differentiation through a noncanonical pathway. Sci Immunol 2020; 4:4/41/eaaw5618. [PMID: 31784498 DOI: 10.1126/sciimmunol.aaw5618] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 06/29/2019] [Accepted: 10/24/2019] [Indexed: 01/10/2023]
Abstract
Pathogenic CARD11 mutations cause aberrant nuclear factor κB (NF-κB) activation, which is presumably responsible for multiple immunological disorders. However, whether there is an NF-κB-independent regulatory mechanism contributing to CARD11 mutations related to pathogenesis remains undefined. Using three distinct genetic mouse models, the Card11 knockout (KO) mouse model mimicking primary immunodeficiency, the CARD11 E134G point mutation mouse model representing BENTA (B cell expansion with NF-κB and T cell anergy) disease, and the mouse model bearing oncogenic K215M mutation, we show that CARD11 has a noncanonical function as a negative regulator of the AKT-FOXO1 signal axis, independent of NF-κB activation. Although BENTA disease-related E134G mutant elevates NF-κB activation, we find that E134G mutant mice phenotypically copy Card11 KO mice, in which NF-κB activation is disrupted. Mechanistically, the E134G mutant causes exacerbated AKT activation and reduced FOXO1 protein in B cells similar to that in Card11 KO cells. Moreover, the oncogenic CARD11 mutant K215M reinforces the importance of the noncanonical function of CARD11. In contrast to the E134G mutant, K215M shows a stronger inhibitory effect on AKT activation and more stabilized FOXO1. Likewise, E134G and K215M mutants have converse impacts on B cell development and differentiation. Our results demonstrate that, besides NF-κB, CARD11 also governs the AKT/FOXO1 signaling pathway in B cells. The critical role of CARD11 is further revealed by the effects of pathogenic CARD11 mutants on this noncanonical regulatory function on the AKT-FOXO1 signaling axis.
Collapse
Affiliation(s)
- Zheng Wei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Zhang
- Division of Immunotherapy, Institute of Human Virology (IHV), School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Jingjing Chen
- Department of Immunology, Nanjing Medical University, 101 Longmain Road, Nanjing 211166, China
| | - Yu Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pan Jia
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xuelei Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qifang Zhao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yicong Deng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ni Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi Zang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoming Wang
- Department of Immunology, Nanjing Medical University, 101 Longmain Road, Nanjing 211166, China.
| | - Wei Lu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
32
|
Schnappauf O, Aksentijevich I. Mendelian diseases of dysregulated canonical NF-κB signaling: From immunodeficiency to inflammation. J Leukoc Biol 2020; 108:573-589. [PMID: 32678922 DOI: 10.1002/jlb.2mr0520-166r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/05/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
NF-κB is a master transcription factor that activates the expression of target genes in response to various stimulatory signals. Activated NF-κB mediates a plethora of diverse functions including innate and adaptive immune responses, inflammation, cell proliferation, and NF-κB is regulated through interactions with IκB inhibitory proteins, which are in turn regulated by the inhibitor of κB kinase (IKK) complex. Together, these 3 components form the core of the NF-κB signalosomes that have cell-specific functions which are dependent on the interactions with other signaling molecules and pathways. The activity of NF-κB pathway is also regulated by a variety of post-translational modifications including phosphorylation and ubiquitination by Lys63, Met1, and Lys48 ubiquitin chains. The physiologic role of NF-κB is best studied in the immune system due to discovery of many human diseases caused by pathogenic variants in various proteins that constitute the NF-κB pathway. These disease-causing variants can act either as gain-of-function (GoF) or loss-of-function (LoF) and depending on the function of mutated protein, can cause either immunodeficiency or systemic inflammation. Typically, pathogenic missense variants act as GoF and they lead to increased activity in the pathway. LoF variants can be inherited as recessive or dominant alleles and can cause either a decrease or an increase in pathway activity. Dominantly inherited LoF variants often result in haploinsufficiency of inhibitory proteins. Here, we review human Mendelian immunologic diseases, which results from mutations in different molecules in the canonical NF-κB pathway and surprisingly present with a continuum of clinical features including immunodeficiency, atopy, autoimmunity, and autoinflammation.
Collapse
Affiliation(s)
- Oskar Schnappauf
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ivona Aksentijevich
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
33
|
Somatic Hemizygous Y371H CBL Mutation with Loss of Heterozygosity Presenting with BENTA Type Lymphoid Proliferation. Indian J Hematol Blood Transfus 2020; 36:594-596. [PMID: 32647446 DOI: 10.1007/s12288-019-01243-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 12/06/2019] [Indexed: 10/25/2022] Open
|
34
|
Cheng J, Maurer LM, Kang H, Lucas PC, McAllister-Lucas LM. Critical protein-protein interactions within the CARMA1-BCL10-MALT1 complex: Take-home points for the cell biologist. Cell Immunol 2020; 355:104158. [PMID: 32721634 DOI: 10.1016/j.cellimm.2020.104158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/25/2020] [Accepted: 07/03/2020] [Indexed: 12/24/2022]
Abstract
The CBM complex, which is composed of the proteins CARMA1, BCL10, and MALT1, serves multiple pivotal roles as a mediator of T-cell receptor and B-cell receptor-dependent NF-κB induction and lymphocyte activation. CARMA1, BCL10, and MALT1 are each proto-oncoproteins and dysregulation of CBM signaling, as a result of somatic gain-of-function mutation or chromosomal translocation, is a hallmark of multiple lymphoid malignancies including Activated B-cell Diffuse Large B-cell Lymphoma. Moreover, loss-of-function as well as gain-of-function germline mutations in CBM complex proteins have been associated with a range of immune dysregulation syndromes. A wealth of detailed structural information has become available over the past decade through meticulous interrogation of the interactions between CBM components. Here, we review key findings regarding the biochemical nature of these protein-protein interactions which have ultimately led the field to a sophisticated understanding of how these proteins assemble into high-order filamentous CBM complexes. To date, approaches to therapeutic inhibition of the CBM complex for the treatment of lymphoid malignancy and/or auto-immunity have focused on blocking MALT1 protease function. We also review key studies relating to the structural impact of MALT1 protease inhibitors on key protein-protein interactions.
Collapse
Affiliation(s)
- Jing Cheng
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittburgh, PA, USA
| | - Lisa M Maurer
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittburgh, PA, USA
| | - Heejae Kang
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Peter C Lucas
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | |
Collapse
|
35
|
Stinson JR, Dorjbal B, McDaniel DP, David L, Wu H, Snow AL. Gain-of-function mutations in CARD11 promote enhanced aggregation and idiosyncratic signalosome assembly. Cell Immunol 2020; 353:104129. [PMID: 32473470 PMCID: PMC7358059 DOI: 10.1016/j.cellimm.2020.104129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 12/23/2022]
Abstract
BENTA (B cell Expansion with NF-κB and T cell Anergy) is a novel lymphoproliferative disorder caused by germline, gain-of-function (GOF) mutations in the lymphocyte-restricted scaffolding protein CARD11. Similar somatic CARD11 mutations are found in lymphoid malignancies such as diffuse large B cell lymphoma (DLBCL). Normally, antigen receptor (AgR) engagement converts CARD11 into an active conformation that nucleates a signalosome required for IκB kinase (IKK) activation and NF-κB nuclear translocation. However, GOF CARD11 mutants drive constitutive NF-κB activity without AgR stimulation. Here we show that unlike wild-type CARD11, GOF CARD11 mutants can form large, peculiar cytosolic protein aggregates we term mCADS (mutant CARD11 dependent shells). MALT1 and phospho-IKK are reliably colocalized with mCADS, indicative of active signaling. Moreover, endogenous mCADS are detectable in ABC-DLBCL lines harboring similar GOF CARD11 mutations. The unique aggregation potential of GOF CARD11 mutants may represent a novel therapeutic target for treating BENTA or DLBCL.
Collapse
Affiliation(s)
- Jeffrey R Stinson
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of Health Sciences, Bethesda, MD, United States.
| | - Batsukh Dorjbal
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of Health Sciences, Bethesda, MD, United States
| | - Dennis P McDaniel
- Biomedical Instrumentation Center, Uniformed Services University of Health Sciences, Bethesda, MD, United States
| | - Liron David
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, United States
| | - Hao Wu
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, United States
| | - Andrew L Snow
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of Health Sciences, Bethesda, MD, United States.
| |
Collapse
|
36
|
Lu HY, Biggs CM, Blanchard-Rohner G, Fung SY, Sharma M, Turvey SE. Germline CBM-opathies: From immunodeficiency to atopy. J Allergy Clin Immunol 2020; 143:1661-1673. [PMID: 31060714 DOI: 10.1016/j.jaci.2019.03.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/09/2019] [Accepted: 03/15/2019] [Indexed: 12/31/2022]
Abstract
Caspase recruitment domain (CARD) protein-B cell CLL/lymphoma 10 (BCL10)-MALT1 paracaspase (MALT1) [CBM] complexes are critical signaling adaptors that facilitate immune and inflammatory responses downstream of both cell surface and intracellular receptors. Germline mutations that alter the function of members of this complex (termed CBM-opathies) cause a broad array of clinical phenotypes, ranging from profound combined immunodeficiency to B-cell lymphocytosis. With an increasing number of patients being described in recent years, the clinical spectrum of diseases associated with CBM-opathies is rapidly expanding and becoming unexpectedly heterogeneous. Here we review major discoveries that have shaped our understanding of CBM complex biology, and we provide an overview of the clinical presentation, diagnostic approach, and treatment options for those carrying germline mutations affecting CARD9, CARD11, CARD14, BCL10, and MALT1.
Collapse
Affiliation(s)
- Henry Y Lu
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Catherine M Biggs
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Geraldine Blanchard-Rohner
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shan-Yu Fung
- Department of Immunology, Tianjin Medical University, Tianjin, China; Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Mehul Sharma
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
37
|
Deenick EK, Lau A, Bier J, Kane A. Molecular and cellular mechanisms underlying defective antibody responses. Immunol Cell Biol 2020; 98:467-479. [PMID: 32348596 DOI: 10.1111/imcb.12345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
Abstract
Primary immune deficiency is caused by genetic mutations that result in immune dysfunction and subsequent susceptibility to infection. Over the last decade there has been a dramatic increase in the number of genetically defined causes of immune deficiency including those which affect B-cell function. This has not only identified critical nonredundant pathways that control the generation of protective antibody responses but also revealed that immunodeficiency and autoimmunity are often closely linked. Here we explore the molecular and cellular mechanisms of these rare monogenic conditions that disrupt antibody production, which also have implications for understanding the causes of more common polygenic immune dysfunction.
Collapse
Affiliation(s)
- Elissa K Deenick
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Anthony Lau
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Julia Bier
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Alisa Kane
- Immunity and Inflammatory Diseases, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,South Western Sydney Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia.,Department of Immunology and HIV, St Vincent's Hospital, Darlinghurst, NSW, Australia.,Department of Immunology, Allergy and HIV, Liverpool Hospital, Liverpool, NSW, Australia
| |
Collapse
|
38
|
Abstract
The technological advances in diagnostics and therapy of primary immunodeficiency are progressing at a fast pace. This review examines recent developments in the field of inborn errors of immunity, from their definition to their treatment. We will summarize the challenges posed by the growth of next-generation sequencing in the clinical setting, touch briefly on the expansion of the concept of inborn errors of immunity beyond the classic immune system realm, and finally review current developments in targeted therapies, stem cell transplantation, and gene therapy.
Collapse
Affiliation(s)
- Giorgia Bucciol
- Inborn Errors of Immunity, Department of Immunology, Microbiology and Transplantation, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.,Childhood Immunology, Department of Pediatrics, University Hospitals Leuven, ERN-RITA Core Member, Herestraat 49, Leuven, 3000, Belgium
| | - Isabelle Meyts
- Inborn Errors of Immunity, Department of Immunology, Microbiology and Transplantation, KU Leuven, Herestraat 49, Leuven, 3000, Belgium.,Childhood Immunology, Department of Pediatrics, University Hospitals Leuven, ERN-RITA Core Member, Herestraat 49, Leuven, 3000, Belgium
| |
Collapse
|
39
|
Shields AM, Bauman BM, Hargreaves CE, Pollard AJ, Snow AL, Patel SY. A Novel, Heterozygous Three Base-Pair Deletion in CARD11 Results in B Cell Expansion with NF-κB and T Cell Anergy Disease. J Clin Immunol 2020; 40:406-411. [PMID: 31897776 DOI: 10.1007/s10875-019-00729-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022]
Abstract
Germline gain-of-function mutations in CARD11 lead to the primary immunodeficiency, B cell expansion with NF-κB, and T cell anergy (BENTA). Herein, we report the case of a girl, presenting at 2 years of age with lymphocytosis and splenomegaly in whom a novel, in-frame, three base pair deletion in CARD11 was identified resulting in the deletion of a single lysine residue (K215del) from the coiled-coil domain. In vitro functional assays demonstrated that this variant leads to a subtle increase in baseline NF-κB signaling and impaired proliferative responses following T cell receptor and mitogenic stimulation. Previously reported immunological defects associated with BENTA appear mild in our patient who is now 6 years of age; a B cell lymphocytosis and susceptibility to upper respiratory tract infections persist; however, she has broad, sustained responses to protein-polysaccharide conjugate vaccines and displays normal proliferative responses to ex vivo T cell stimulation.
Collapse
Affiliation(s)
- Adrian M Shields
- Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, West Midlands, B15 2TT, UK.
| | - Bradly M Bauman
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Chantal E Hargreaves
- Department of Clinical Immunology, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Smita Y Patel
- Department of Clinical Immunology, John Radcliffe Hospital, Oxford, OX3 9DU, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
40
|
Human inborn errors of immunity to herpes viruses. Curr Opin Immunol 2020; 62:106-122. [PMID: 32014647 DOI: 10.1016/j.coi.2020.01.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/16/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022]
Abstract
Infections with any of the nine human herpes viruses (HHV) can be asymptomatic or life-threatening. The study of patients with severe diseases caused by HHVs, in the absence of overt acquired immunodeficiency, has led to the discovery or diagnosis of various inborn errors of immunity. The related inborn errors of adaptive immunity disrupt α/β T-cell rather than B-cell immunity. Affected patients typically develop HHV infections in the context of other infectious diseases. However, this is not always the case, as illustrated by inborn errors of SAP-dependent T-cell immunity to EBV-infected B cells. The related inborn errors of innate immunity disrupt leukocytes other than T and B cells, non-hematopoietic cells, or both. Patients typically develop only a single type of infection due to HHV, although, again, this is not always the case, as illustrated by inborn errors of TLR3 immunity resulting in HSV1 encephalitis in some patients and influenza pneumonitis in others. Most severe HHV infections in otherwise healthy patients remains unexplained. The forward human genetic dissection of isolated and syndromic HHV-driven illnesses will establish the molecular and cellular basis of protective immunity to HHVs, paving the way for novel diagnosis and management strategies.
Collapse
|
41
|
Host CARD11 Inhibits Newcastle Disease Virus Replication by Suppressing Viral Polymerase Activity in Neurons. J Virol 2019; 93:JVI.01499-19. [PMID: 31554683 DOI: 10.1128/jvi.01499-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023] Open
Abstract
Host factors play multiple essential roles in the replication and pathogenesis of mammalian neurotropic viruses. However, the cellular proteins of the central nervous system (CNS) involved in avian neurotropic virus infection have not been completely elucidated. Here, we employed a gene microarray to identify caspase recruitment domain-containing protein 11 (CARD11), a lymphoma-associated scaffold protein presenting brain-specific upregulated expression in a virulent neurotropic Newcastle disease virus (NDV)-infected natural host. Chicken primary neuronal cells infected with NDV appeared slightly syncytial and died quickly. CARD11 overexpression inhibited viral replication and delayed cytopathic effects; conversely, depletion of CARD11 enhanced viral replication and cytopathic effects in chicken primary neuronal cells. The inhibition of viral replication by CARD11 could not be blocked with CARD11-Bcl10-MALT1 (CBM) signalosome and NF-κB signaling inhibitors. CARD11 was found to interact directly with the viral phosphoprotein (P) through its CC1 domain and the X domain of P; this X domain also mediated the interaction between P and the viral large polymerase protein (L). The CARD11 CC1 domain and L competitively bound to P via the X domain that hindered the P-L interaction of the viral ribonucleoprotein (RNP) complex, resulting in a reduction of viral polymerase activity in a minigenome assay and inhibition of viral replication. Animal experiments further revealed that CARD11 contributed to viral replication inhibition and neuropathology in infected chicken brains. Taken together, our findings identify CARD11 as a brain-specific antiviral factor of NDV infection in avian species.IMPORTANCE Newcastle disease virus (NDV) substantially impacts the poultry industry worldwide and causes viral encephalitis and neurological disorders leading to brain damage, paralysis, and death. The mechanism of interaction between this neurotropic virus and the avian central nervous system (CNS) is largely unknown. Here, we report that host protein CARD11 presented brain-specific upregulated expression that inhibited NDV replication, which was not due to CARD11-Bcl10-MALT1 (CBM) complex-triggered activation of its downstream signaling pathways. The inhibitory mechanism of viral replication is through the CARD11 CC1 domain, and the viral large polymerase protein (L) competitively interacts with the X domain of the viral phosphoprotein (P), which hampers the P-L interaction, suppressing the viral polymerase activity and viral replication. An in vivo study indicated that CARD11 alleviated neuropathological lesions and reduced viral replication in chicken brains. These results provide insight into the interaction between NDV infection and the host defense in the CNS and a potential antiviral target for viral neural diseases.
Collapse
|
42
|
Wang Z, Hutcherson SM, Yang C, Jattani RP, Tritapoe JM, Yang YK, Pomerantz JL. Coordinated regulation of scaffold opening and enzymatic activity during CARD11 signaling. J Biol Chem 2019; 294:14648-14660. [PMID: 31391255 PMCID: PMC6779434 DOI: 10.1074/jbc.ra119.009551] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/01/2019] [Indexed: 11/06/2022] Open
Abstract
The activation of key signaling pathways downstream of antigen receptor engagement is critically required for normal lymphocyte activation during the adaptive immune response. CARD11 is a multidomain signaling scaffold protein required for antigen receptor signaling to NF-κB, c-Jun N-terminal kinase, and mTOR. Germline mutations in the CARD11 gene result in at least four types of primary immunodeficiency, and somatic CARD11 gain-of-function mutations drive constitutive NF-κB activity in diffuse large B cell lymphoma and other lymphoid cancers. In response to antigen receptor triggering, CARD11 transitions from a closed, inactive state to an open, active scaffold that recruits multiple signaling partners into a complex to relay downstream signaling. However, how this signal-induced CARD11 conversion occurs remains poorly understood. Here we investigate the role of Inducible Element 1 (IE1), a short regulatory element in the CARD11 Inhibitory Domain, in the CARD11 signaling cycle. We find that IE1 controls the signal-dependent Opening Step that makes CARD11 accessible to the binding of cofactors, including Bcl10, MALT1, and the HOIP catalytic subunit of the linear ubiquitin chain assembly complex. Surprisingly, we find that IE1 is also required at an independent step for the maximal activation of HOIP and MALT1 enzymatic activity after cofactor recruitment to CARD11. This role of IE1 reveals that there is an Enzymatic Activation Step in the CARD11 signaling cycle that is distinct from the Cofactor Association Step. Our results indicate that CARD11 has evolved to actively coordinate scaffold opening and the induction of enzymatic activity among recruited cofactors during antigen receptor signaling.
Collapse
Affiliation(s)
- Zhaoquan Wang
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Shelby M Hutcherson
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Chao Yang
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Rakhi P Jattani
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Julia M Tritapoe
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Yong-Kang Yang
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Joel L Pomerantz
- Department of Biological Chemistry and Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
43
|
Gentle IE. Supramolecular Complexes in Cell Death and Inflammation and Their Regulation by Autophagy. Front Cell Dev Biol 2019; 7:73. [PMID: 31131275 PMCID: PMC6509160 DOI: 10.3389/fcell.2019.00073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/10/2019] [Indexed: 12/23/2022] Open
Abstract
Signaling activation is a tightly regulated process involving myriad posttranslational modifications such as phosphorylation/dephosphorylation, ubiquitylation/deubiquitylation, proteolytical cleavage events as well as translocation of proteins to new compartments within the cell. In addition to each of these events potentially regulating individual proteins, the assembly of very large supramolecular complexes has emerged as a common theme in signal transduction and is now known to regulate many signaling events. This is particularly evident in pathways regulating both inflammation and cell death/survival. Regulation of the assembly and silencing of these complexes plays important roles in immune signaling and inflammation and the fate of cells to either die or survive. Here we will give a summary of some of the better studied supramolecular complexes involved in inflammation and cell death, particularly with a focus on diseases caused by their autoactivation and the role autophagy either plays or may be playing in their regulation.
Collapse
Affiliation(s)
- Ian E Gentle
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
44
|
Dorjbal B, Stinson JR, Ma CA, Weinreich MA, Miraghazadeh B, Hartberger JM, Frey-Jakobs S, Weidinger S, Moebus L, Franke A, Schäffer AA, Bulashevska A, Fuchs S, Ehl S, Limaye S, Arkwright PD, Briggs TA, Langley C, Bethune C, Whyte AF, Alachkar H, Nejentsev S, DiMaggio T, Nelson CG, Stone KD, Nason M, Brittain EH, Oler AJ, Veltri DP, Leahy TR, Conlon N, Poli MC, Borzutzky A, Cohen JI, Davis J, Lambert MP, Romberg N, Sullivan KE, Paris K, Freeman AF, Lucas L, Chandrakasan S, Savic S, Hambleton S, Patel SY, Jordan MB, Theos A, Lebensburger J, Atkinson TP, Torgerson TR, Chinn IK, Milner JD, Grimbacher B, Cook MC, Snow AL. Hypomorphic caspase activation and recruitment domain 11 (CARD11) mutations associated with diverse immunologic phenotypes with or without atopic disease. J Allergy Clin Immunol 2019; 143:1482-1495. [PMID: 30170123 PMCID: PMC6395549 DOI: 10.1016/j.jaci.2018.08.013] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/02/2018] [Accepted: 08/13/2018] [Indexed: 01/26/2023]
Abstract
BACKGROUND Caspase activation and recruitment domain 11 (CARD11) encodes a scaffold protein in lymphocytes that links antigen receptor engagement with downstream signaling to nuclear factor κB, c-Jun N-terminal kinase, and mechanistic target of rapamycin complex 1. Germline CARD11 mutations cause several distinct primary immune disorders in human subjects, including severe combined immune deficiency (biallelic null mutations), B-cell expansion with nuclear factor κB and T-cell anergy (heterozygous, gain-of-function mutations), and severe atopic disease (loss-of-function, heterozygous, dominant interfering mutations), which has focused attention on CARD11 mutations discovered by using whole-exome sequencing. OBJECTIVES We sought to determine the molecular actions of an extended allelic series of CARD11 and to characterize the expanding range of clinical phenotypes associated with heterozygous CARD11 loss-of-function alleles. METHODS Cell transfections and primary T-cell assays were used to evaluate signaling and function of CARD11 variants. RESULTS Here we report on an expanded cohort of patients harboring novel heterozygous CARD11 mutations that extend beyond atopy to include other immunologic phenotypes not previously associated with CARD11 mutations. In addition to (and sometimes excluding) severe atopy, heterozygous missense and indel mutations in CARD11 presented with immunologic phenotypes similar to those observed in signal transducer and activator of transcription 3 loss of function, dedicator of cytokinesis 8 deficiency, common variable immunodeficiency, neutropenia, and immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome. Pathogenic variants exhibited dominant negative activity and were largely confined to the CARD or coiled-coil domains of the CARD11 protein. CONCLUSION These results illuminate a broader phenotypic spectrum associated with CARD11 mutations in human subjects and underscore the need for functional studies to demonstrate that rare gene variants encountered in expected and unexpected phenotypes must nonetheless be validated for pathogenic activity.
Collapse
Affiliation(s)
- Batsukh Dorjbal
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Md
| | - Jeffrey R Stinson
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Md
| | - Chi A Ma
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michael A Weinreich
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Bahar Miraghazadeh
- Department of Immunology, Canberra Hospital, Canberra, Australia; Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Julia M Hartberger
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stefanie Frey-Jakobs
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Weidinger
- Department of Dermatology, Venereology and Allergology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Lena Moebus
- Department of Dermatology, Venereology and Allergology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Alejandro A Schäffer
- National Center for Biotechnology Information, National Institutes of Health, Department of Health and Human Services, Bethesda, Md
| | - Alla Bulashevska
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Fuchs
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Peter D Arkwright
- Paediatric Allergy and Immunology & the Manchester Center for Genomic Medicine, University of Manchester, Manchester, United Kingdom
| | - Tracy A Briggs
- Paediatric Allergy and Immunology & the Manchester Center for Genomic Medicine, University of Manchester, Manchester, United Kingdom
| | - Claire Langley
- Paediatric Allergy and Immunology & the Manchester Center for Genomic Medicine, University of Manchester, Manchester, United Kingdom
| | - Claire Bethune
- Department of Clinical Immunology, Plymouth Hospitals NHS Trust, Plymouth, United Kingdom
| | - Andrew F Whyte
- Department of Clinical Immunology, Plymouth Hospitals NHS Trust, Plymouth, United Kingdom
| | - Hana Alachkar
- Immunology, Salford Royal Foundation Trust, Manchester, United Kingdom
| | - Sergey Nejentsev
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Thomas DiMaggio
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Celeste G Nelson
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Kelly D Stone
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Martha Nason
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Erica H Brittain
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Andrew J Oler
- Bioinformatics and Computational Sciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Daniel P Veltri
- Bioinformatics and Computational Sciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - T Ronan Leahy
- Department of Paediatric Immunology and ID, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Niall Conlon
- Department of Immunology, St James's Hospital, Dublin, Ireland
| | - Maria C Poli
- Department of Pediatrics, Baylor College of Medicine, and the Section of Immunology, Allergy, and Rheumatology, Texas Children's Hospital, Houston, Tex
| | - Arturo Borzutzky
- Department of Pediatrics, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Jeffrey I Cohen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Joie Davis
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Michele P Lambert
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, and the Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pa
| | - Neil Romberg
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, and the Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pa
| | - Kathleen E Sullivan
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, and the Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pa
| | - Kenneth Paris
- Louisiana State University Health Sciences Center and Children's Hospital, New Orleans, La
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Laura Lucas
- Division of Bone Marrow Transplant, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Ga
| | - Shanmuganathan Chandrakasan
- Division of Bone Marrow Transplant, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Ga
| | - Sinisa Savic
- Leeds Institute for Rheumatic and Musculoskeletal Medicine, St James University Hospital, Leeds, United Kingdom
| | - Sophie Hambleton
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Smita Y Patel
- Oxford University Hospitals NHS Trust and NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Michael B Jordan
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio
| | - Amy Theos
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Ala
| | - Jeffrey Lebensburger
- Department of Pediatric Hematology Oncology, University of Alabama at Birmingham, Birmingham, Ala
| | - T Prescott Atkinson
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, Ala
| | - Troy R Torgerson
- University of Washington School of Medicine and Seattle Children's Hospital, Seattle, Wash
| | - Ivan K Chinn
- Department of Pediatrics, Baylor College of Medicine, and the Section of Immunology, Allergy, and Rheumatology, Texas Children's Hospital, Houston, Tex
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Matthew C Cook
- Department of Immunology, Canberra Hospital, Canberra, Australia; Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Andrew L Snow
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Md.
| |
Collapse
|
45
|
Scott O, Roifman CM. NF-κB pathway and the Goldilocks principle: Lessons from human disorders of immunity and inflammation. J Allergy Clin Immunol 2019; 143:1688-1701. [PMID: 30940520 DOI: 10.1016/j.jaci.2019.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 01/12/2023]
Abstract
Nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signaling pathways play a key role in various cell processes related to host immunity. The last few years have seen an explosion of disorders associated with NF-κB components from core members of the canonical and noncanonical cascades to adaptor protein and ubiquitination-related enzymes. Disease phenotypes have extended beyond susceptibility to infections and include autoimmunity, lymphoproliferation, atopy, and inflammation. Concurrently, studies are unveiling a tightly regulated system marked by extensive cross-talk between the canonical and noncanonical pathways, as well as among the NF-κB and other signaling pathways. As the rate of discovery in the realm of NF-κB defects accelerates, this review presents a timely summary of major known defects causing human disease, as well as diagnostic, therapeutic, and research challenges and opportunities.
Collapse
Affiliation(s)
- Ori Scott
- Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Chaim M Roifman
- Division of Immunology and Allergy, Department of Pediatrics, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada; Canadian Centre for Primary Immunodeficiency and the Jeffrey Modell Research Laboratory for the Diagnosis of Primary Immunodeficiency, The Hospital for Sick Children.
| |
Collapse
|
46
|
Desjardins M, Arjunaraja S, Stinson JR, Dorjbal B, Sundaresan J, Niemela J, Raffeld M, Matthews HF, Wang A, Angelus P, Su HC, Mazer BD, Snow AL. A Unique Heterozygous CARD11 Mutation Combines Pathogenic Features of Both Gain- and Loss-of-Function Patients in a Four-Generation Family. Front Immunol 2018; 9:2944. [PMID: 30619304 PMCID: PMC6299974 DOI: 10.3389/fimmu.2018.02944] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 11/30/2018] [Indexed: 12/14/2022] Open
Abstract
CARD11 is a lymphocyte-specific scaffold molecule required for proper activation of B- and T-cells in response to antigen. Germline gain-of-function (GOF) mutations in the CARD11 gene cause a unique B cell lymphoproliferative disorder known as B cell Expansion with NF-κB and T cell Anergy (BENTA). In contrast, patients carrying loss-of-function (LOF), dominant negative (DN) CARD11 mutations present with severe atopic disease. Interestingly, both GOF and DN CARD11 variants cause primary immunodeficiency, with recurrent bacterial and viral infections, likely resulting from impaired adaptive immune responses. This report describes a unique four-generation family harboring a novel heterozygous germline indel mutation in CARD11 (c.701-713delinsT), leading to one altered amino acid and a deletion of 4 others (p.His234_Lys238delinsLeu). Strikingly, affected members exhibit both moderate B cell lymphocytosis and atopic dermatitis/allergies. Ectopic expression of this CARD11 variant stimulated constitutive NF-κB activity in T cell lines, similar to other BENTA patient mutations. However, unlike other GOF mutants, this variant significantly impeded the ability of wild-type CARD11 to induce NF-κB activation following antigen receptor ligation. Patient lymphocytes display marked intrinsic defects in B cell differentiation and reduced T cell responsiveness in vitro. Collectively, these data imply that a single heterozygous CARD11 mutation can convey both GOF and DN signaling effects, manifesting in a blended BENTA phenotype with atopic features. Our findings further emphasize the importance of balanced CARD11 signaling for normal immune responses.
Collapse
Affiliation(s)
- Marylin Desjardins
- Division of Allergy and Immunology, Department of Paediatrics, McGill University Health Centre, Montreal, QC, Canada
- Meakins-Christie Laboratories of the Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Swadhinya Arjunaraja
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of Health Sciences, Bethesda, MD, United States
| | - Jeffrey R. Stinson
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of Health Sciences, Bethesda, MD, United States
| | - Batsukh Dorjbal
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of Health Sciences, Bethesda, MD, United States
| | - Janani Sundaresan
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of Health Sciences, Bethesda, MD, United States
| | - Julie Niemela
- Department of Laboratory Medicine, NIH Clinical Center, Bethesda, MD, United States
| | - Mark Raffeld
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Helen F. Matthews
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Angela Wang
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Inc., National Cancer Institute at Frederick, Frederick, MD, United States
| | - Pamela Angelus
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- Clinical Research Directorate/Clinical Monitoring Research Program, Leidos Biomedical Research, Inc., National Cancer Institute at Frederick, Frederick, MD, United States
| | - Helen C. Su
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Bruce D. Mazer
- Division of Allergy and Immunology, Department of Paediatrics, McGill University Health Centre, Montreal, QC, Canada
- Meakins-Christie Laboratories of the Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Andrew L. Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of Health Sciences, Bethesda, MD, United States
| |
Collapse
|
47
|
Toro-Domínguez D, Martorell-Marugán J, Goldman D, Petri M, Carmona-Sáez P, Alarcón-Riquelme ME. Stratification of Systemic Lupus Erythematosus Patients Into Three Groups of Disease Activity Progression According to Longitudinal Gene Expression. Arthritis Rheumatol 2018; 70:2025-2035. [PMID: 29938934 DOI: 10.1002/art.40653] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/21/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVE The highly heterogeneous clinical presentation of systemic lupus erythematosus (SLE) is characterized by the unpredictable occurrence of disease flares and organ damage. Attempts to stratify lupus patients have been limited to classification based on clinical information, leading to unsuccessful clinical trials and controversial research results. This study was undertaken to develop and validate a robust method to stratify patients with lupus according to longitudinal disease activity and whole-genome gene expression data in order to establish subgroups of patients who share disease progression mechanisms. METHODS We used a cluster-based approach to stratify SLE patients based on the correlation between disease activity scores and longitudinal gene expression information. Clustering robustness was evaluated by the bootstrap method, and the clusters were characterized in terms of clinical and functional features. RESULTS We observed a clear partition into 3 different disease clusters in 2 independent sets of patients, one pediatric and one adult, which was not influenced by treatment, race, or other source of bias. Two of the clusters differentiated into a group showing a correlation between the percentage of neutrophils and disease activity progression and a group showing a correlation between the percentage of lymphocytes and disease activity progression. The third cluster, in which the percentage of neutrophils correlated to a lesser degree with disease activity, was functionally more heterogeneous. Patients in the neutrophil-driven clusters had an increased risk of developing proliferative nephritis. CONCLUSION Our findings indicate that SLE patients can be stratified into 3 subgroups of patients who show different mechanisms of disease progression and are clinically differentiated. Our results have important implications for treatment options, the design of clinical trials, our understanding of the etiology of the disease, and the prediction of severe glomerulonephritis.
Collapse
Affiliation(s)
- Daniel Toro-Domínguez
- Centro de Genómica e Investigaciones Oncológicas Pfizer-Universidad de Granada-Junta de Andalucía, Granada, Spain
| | - Jordi Martorell-Marugán
- Centro de Genómica e Investigaciones Oncológicas Pfizer-Universidad de Granada-Junta de Andalucía, Granada, Spain
| | - Daniel Goldman
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michelle Petri
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pedro Carmona-Sáez
- Centro de Genómica e Investigaciones Oncológicas Pfizer-Universidad de Granada-Junta de Andalucía, Granada, Spain
| | - Marta E Alarcón-Riquelme
- Centro de Genómica e Investigaciones Oncológicas Pfizer-Universidad de Granada-Junta de Andalucía, Granada, Spain, and Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
48
|
Bedsaul JR, Carter NM, Deibel KE, Hutcherson SM, Jones TA, Wang Z, Yang C, Yang YK, Pomerantz JL. Mechanisms of Regulated and Dysregulated CARD11 Signaling in Adaptive Immunity and Disease. Front Immunol 2018; 9:2105. [PMID: 30283447 PMCID: PMC6156143 DOI: 10.3389/fimmu.2018.02105] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/28/2018] [Indexed: 01/02/2023] Open
Abstract
CARD11 functions as a key signaling scaffold that controls antigen-induced lymphocyte activation during the adaptive immune response. Somatic mutations in CARD11 are frequently found in Non-Hodgkin lymphoma, and at least three classes of germline CARD11 mutations have been described as the basis for primary immunodeficiency. In this review, we summarize our current understanding of how CARD11 signals, how its activity is regulated, and how mutations bypass normal regulation to cause disease.
Collapse
Affiliation(s)
- Jacquelyn R Bedsaul
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nicole M Carter
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Katelynn E Deibel
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shelby M Hutcherson
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Tyler A Jones
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Zhaoquan Wang
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Chao Yang
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yong-Kang Yang
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Joel L Pomerantz
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
49
|
Lu HY, Bauman BM, Arjunaraja S, Dorjbal B, Milner JD, Snow AL, Turvey SE. The CBM-opathies-A Rapidly Expanding Spectrum of Human Inborn Errors of Immunity Caused by Mutations in the CARD11-BCL10-MALT1 Complex. Front Immunol 2018; 9:2078. [PMID: 30283440 PMCID: PMC6156466 DOI: 10.3389/fimmu.2018.02078] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 08/22/2018] [Indexed: 01/06/2023] Open
Abstract
The caspase recruitment domain family member 11 (CARD11 or CARMA1)-B cell CLL/lymphoma 10 (BCL10)-MALT1 paracaspase (MALT1) [CBM] signalosome complex serves as a molecular bridge between cell surface antigen receptor signaling and the activation of the NF-κB, JNK, and mTORC1 signaling axes. This positions the CBM complex as a critical regulator of lymphocyte activation, proliferation, survival, and metabolism. Inborn errors in each of the CBM components have now been linked to a diverse group of human primary immunodeficiency diseases termed "CBM-opathies." Clinical manifestations range from severe combined immunodeficiency to selective B cell lymphocytosis, atopic disease, and specific humoral defects. This surprisingly broad spectrum of phenotypes underscores the importance of "tuning" CBM signaling to preserve immune homeostasis. Here, we review the distinct clinical and immunological phenotypes associated with human CBM complex mutations and introduce new avenues for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Henry Y Lu
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Bradly M Bauman
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Swadhinya Arjunaraja
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Batsukh Dorjbal
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Joshua D Milner
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, Vancouver, BC, Canada.,Experimental Medicine Program, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
50
|
Juilland M, Thome M. Holding All the CARDs: How MALT1 Controls CARMA/CARD-Dependent Signaling. Front Immunol 2018; 9:1927. [PMID: 30214442 PMCID: PMC6125328 DOI: 10.3389/fimmu.2018.01927] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/06/2018] [Indexed: 01/20/2023] Open
Abstract
The scaffold proteins CARMA1-3 (encoded by the genes CARD11, -14 and -10) and CARD9 play major roles in signaling downstream of receptors with immunoreceptor tyrosine activation motifs (ITAMs), G-protein coupled receptors (GPCR) and receptor tyrosine kinases (RTK). These receptors trigger the formation of oligomeric CARMA/CARD-BCL10-MALT1 (CBM) complexes via kinases of the PKC family. The CBM in turn regulates gene expression by the activation of NF-κB and AP-1 transcription factors and controls transcript stability. The paracaspase MALT1 is the only CBM component having an enzymatic (proteolytic) activity and has therefore recently gained attention as a potential drug target. Here we review recent advances in the understanding of the molecular function of the protease MALT1 and summarize how MALT1 scaffold and protease function contribute to the transmission of CBM signals. Finally, we will highlight how dysregulation of MALT1 function can cause pathologies such as immunodeficiency, autoimmunity, psoriasis, and cancer.
Collapse
Affiliation(s)
- Mélanie Juilland
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Margot Thome
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|