1
|
Büsch K, Memmott HL, McLaughlin HM, Upton JEM, Harrington A. Genetic Etiologies and Outcomes in Malignancy and Mortality in Activated Phosphoinositide 3-Kinase Delta Syndrome: A Systematic Review. Adv Ther 2025; 42:752-771. [PMID: 39636570 PMCID: PMC11787279 DOI: 10.1007/s12325-024-03066-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION This analysis evaluated literature on patients with activated phosphoinositide 3-kinase delta syndrome (APDS) to better understand the genetic etiologies and occurrence of mortality in this population. METHODS A systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses approach, including all articles published in English prior to March 13, 2023, in PubMed and Embase. Patients included in the study had reported either (1) APDS diagnosis or (2) ≥ 1 clinical sign consistent with APDS and a first-degree relative with genetically confirmed APDS. Reported age at last observation was also a required outcome. Publications not meeting these criteria were excluded. Data were summarized using descriptive statistics. RESULTS The search identified 108 publications describing 351 unique patients with 39 distinct disease-causing variants. Among these, 41 (12%) deaths were reported, with a mean age at last follow-up of 19.6 (range, 1-64) years. A cause of death was reported for 80% (33/41) of deaths; lymphoma (24%, 10/41) and infections (22%, 9/41) were the most common causes. Types of infections causing death were severe uncontrollable infections (n = 3), sepsis (n = 2), viral infection (varicella zoster pneumonitis [n = 1], cytomegalovirus and adenovirus [n = 1], and Epstein-Barr virus [n = 1]), and infection (n = 1). Mean age at death for lymphoma was 24.9 (range, 1-41) years, and all nine patients who died from infections died before the age of 15 years. The mean age at first APDS symptom was 2.0 (range, < 1-22) years, and mean age at APDS diagnosis was 13.4 (range, 0-56) years; the mean time between symptoms and diagnosis was 10.6 (range, 0-44) years. Limitations of the study were primarily related to the data source. CONCLUSION Patients with APDS suffer early mortality, largely from lymphoma and infection, with large time gaps between symptoms and diagnosis. These findings highlight the need for improved diagnostics, earlier genetic testing for APDS, increased awareness of familial testing, and targeted therapies.
Collapse
Affiliation(s)
- Katharina Büsch
- KJM Büsch Consulting GmbH, Industriestrasse 24, 6300, Zug, Switzerland
| | - Heidi L Memmott
- Pharming Healthcare, Inc., 10 Independence Blvd, Warren, NJ, 07059, USA
| | | | - Julia E M Upton
- Division of Immunology and Allergy, Department of Paediatrics, The Hospital For Sick Children, 175 Elizabeth St, Room 13-14-027, Toronto, ON, M5G 2G3, Canada
- Department of Paediatrics, Temerty School of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Amanda Harrington
- Pharming Healthcare, Inc., 10 Independence Blvd, Warren, NJ, 07059, USA.
| |
Collapse
|
2
|
Singh AK, Al Qureshah F, Drow T, Hou B, Rawlings DJ. Activated PI3Kδ Specifically Perturbs Mouse Regulatory T Cell Homeostasis and Function Leading to Immune Dysregulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:135-147. [PMID: 38829130 PMCID: PMC11232928 DOI: 10.4049/jimmunol.2400032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/13/2024] [Indexed: 06/05/2024]
Abstract
FOXP3+ regulatory T cells (Treg) are required for maintaining immune tolerance and preventing systemic autoimmunity. PI3Kδ is required for normal Treg development and function. However, the impacts of dysregulated PI3Kδ signaling on Treg function remain incompletely understood. In this study, we used a conditional mouse model of activated PI3Kδ syndrome to investigate the role of altered PI3Kδ signaling specifically within the Treg compartment. Activated mice expressing a PIK3CD gain-of-function mutation (aPIK3CD) specifically within the Treg compartment exhibited weight loss and evidence for chronic inflammation, as demonstrated by increased memory/effector CD4+ and CD8+ T cells with enhanced IFN-γ secretion, spontaneous germinal center responses, and production of broad-spectrum autoantibodies. Intriguingly, aPIK3CD facilitated Treg precursor development within the thymus and an increase in peripheral Treg numbers. Peripheral Treg, however, exhibited an altered phenotype, including increased PD-1 expression and reduced competitive fitness. Consistent with these findings, Treg-specific aPIK3CD mice mounted an elevated humoral response following immunization with a T cell-dependent Ag, which correlated with a decrease in follicular Treg. Taken together, these findings demonstrate that an optimal threshold of PI3Kδ activity is critical for Treg homeostasis and function, suggesting that PI3Kδ signaling in Treg might be therapeutically targeted to either augment or inhibit immune responses.
Collapse
Affiliation(s)
- Akhilesh K Singh
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
| | - Fahd Al Qureshah
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
- Wellness and Preventive Medicine Institute, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Travis Drow
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
| | - Baidong Hou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - David J Rawlings
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| |
Collapse
|
3
|
Biglari S, Moghaddam AS, Tabatabaiefar MA, Sherkat R, Youssefian L, Saeidian AH, Vahidnezhad F, Tsoi LC, Gudjonsson JE, Hakonarson H, Casanova JL, Béziat V, Jouanguy E, Vahidnezhad H. Monogenic etiologies of persistent human papillomavirus infections: A comprehensive systematic review. Genet Med 2024; 26:101028. [PMID: 37978863 PMCID: PMC10922824 DOI: 10.1016/j.gim.2023.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
PURPOSE Persistent human papillomavirus infection (PHPVI) causes cutaneous, anogenital, and mucosal warts. Cutaneous warts include common warts, Treeman syndrome, and epidermodysplasia verruciformis, among others. Although more reports of monogenic predisposition to PHPVI have been published with the development of genomic technologies, genetic testing is rarely incorporated into clinical assessments. To encourage broader molecular testing, we compiled a list of the various monogenic etiologies of PHPVI. METHODS We conducted a systematic literature review to determine the genetic, immunological, and clinical characteristics of patients with PHPVI. RESULTS The inclusion criteria were met by 261 of 40,687 articles. In 842 patients, 83 PHPVI-associated genes were identified, including 42, 6, and 35 genes with strong, moderate, and weak evidence for causality, respectively. Autosomal recessive inheritance predominated (69%). PHPVI onset age was 10.8 ± 8.6 years, with an interquartile range of 5 to 14 years. GATA2,IL2RG,DOCK8, CXCR4, TMC6, TMC8, and CIB1 are the most frequently reported PHPVI-associated genes with strong causality. Most genes (74 out of 83) belong to a catalog of 485 inborn errors of immunity-related genes, and 40 genes (54%) are represented in the nonsyndromic and syndromic combined immunodeficiency categories. CONCLUSION PHPVI has at least 83 monogenic etiologies and a genetic diagnosis is essential for effective management.
Collapse
Affiliation(s)
- Sajjad Biglari
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Sherkat
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Leila Youssefian
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Amir Hossein Saeidian
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI
| | | | - Hakon Hakonarson
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Cité University, France; Department of Pediatrics, Necker Hospital for Sick Children, Paris, France, EU; Howard Hughes Medical Institute, Chevy Chase, MD
| | - Vivien Béziat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Cité University, France
| | - Emmanuelle Jouanguy
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Cité University, France
| | - Hassan Vahidnezhad
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA.
| |
Collapse
|
4
|
Zhao P, Huang J, Fu H, Xu J, Li T, Zhang X, Meng Q, Zhang L, Tan L, Zhang W, Chen H, Lu X, Ding Y, He X. Activated phosphoinositide 3-kinase δ syndrome caused by PIK3CD mutations: expanding the phenotype. Pediatr Rheumatol Online J 2024; 22:24. [PMID: 38287413 PMCID: PMC10823743 DOI: 10.1186/s12969-024-00955-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/02/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Germline heterozygous gain-of-function (GOF) mutations in the PIK3CD gene lead to a rare primary immunodeficiency disease known as activated phosphoinositide 3-kinase (PI3K) δ syndrome type 1(APDS1). Affected patients present a spectrum of clinical manifestations, particularly recurrent respiratory infections and lymphoproliferation, increased levels of serum immunoglobulin (Ig) M, Epstein-Barr virus (EBV) and cytomegalovirus (CMV) viremia. Due to highly heterogeneous phenotypes of APDS1, it is very likely that suspected cases may be misdiagnosed. METHODS Herein we reported three patients with different clinical presentations but harboring pathogenic variants in PIK3CD gene detected by trio whole-exome sequencing (trio-WES) and confirmed by subsequent Sanger sequencing. RESULTS Two heterozygous mutations (c.3061G > A, p.E1021K and c.1574 A > G, p.E525G) in PIK3CD (NM_005026.3) were identified by whole exome sequencing (WES) in the three patients. One of two patients with the mutation (c.3061G > A) presented with abdominal pain and diarrhea as the first symptoms, which was due to intussusception caused by multiple polyps of colon. The patient with mutation (c.1574 A > G) had an anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis (AAV)-like clinical manifestations, including multisystemic inflammation, acute nephritic syndrome, and positive perinuclear ANCA (p-ANCA), thus the diagnosis of ANCA-AAV was considered. CONCLUSIONS Our study expands the spectrums of clinical phenotype and genotype of APDS, and demonstrates that WES has a high molecular diagnostic yield for patients with immunodeficiency related symptoms, such as respiratory infections, multiple ecchymosis, ANCA-associated vasculitis, multiple ileocecal polyps, hepatosplenomegaly, and lymphoid hyperplasia. TRIAL REGISTRATION Retrospectively registered.
Collapse
Affiliation(s)
- Peiwei Zhao
- Precision Medical Center, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Juan Huang
- Department of Pathology, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Huicong Fu
- Department of Respiratory Medicine, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Jiali Xu
- Department of Respiratory Medicine, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Tianhong Li
- Precision Medical Center, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Xiankai Zhang
- Precision Medical Center, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Qingjie Meng
- Department of Clinical Laboratory, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Lei Zhang
- Precision Medical Center, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Li Tan
- Precision Medical Center, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Wen Zhang
- Department of Pathology, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Hebin Chen
- Department of Respiratory Medicine, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China
| | - Xiaoxia Lu
- Department of Respiratory Medicine, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China.
| | - Yan Ding
- Department of Rheumatology and Immunology, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China.
| | - Xuelian He
- Precision Medical Center, Tongji Medical College, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital, Huazhong University of Science & Technology, Wuhan, 430016, China.
| |
Collapse
|
5
|
Hanson J, Bonnen PE. Systematic review of mortality and survival rates for APDS. Clin Exp Med 2024; 24:17. [PMID: 38280023 PMCID: PMC10821986 DOI: 10.1007/s10238-023-01259-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/14/2023] [Indexed: 01/29/2024]
Abstract
Activated phosphoinositide 3-kinase delta syndrome (APDS) is a rare genetic disorder that presents clinically as a primary immunodeficiency. Clinical presentation of APDS includes severe, recurrent infections, lymphoproliferation, lymphoma, and other cancers, autoimmunity and enteropathy. Autosomal dominant variants in two independent genes have been demonstrated to cause APDS. Pathogenic variants in PIK3CD and PIK3R1, both of which encode components of the PI3-kinase, have been identified in subjects with APDS. APDS1 is caused by gain of function variants in the PIK3CD gene, while loss of function variants in PIK3R1 have been reported to cause APDS2. We conducted a review of the medical literature and identified 256 individuals who had a molecular diagnosis for APDS as well as age at last report; 193 individuals with APDS1 and 63 with APDS2. Despite available treatments, survival for individuals with APDS appears to be shortened from the average lifespan. A Kaplan-Meier survival analysis for APDS showed the conditional survival rate at the age of 20 years was 87%, age of 30 years was 74%, and ages of 40 and 50 years were 68%. Review of causes of death showed that the most common cause of death was lymphoma, followed by complications from HSCT. The overall mortality rate for HSCT in APDS1 and APDS2 cases was 15.6%, while the mortality rate for lymphoma was 47.6%. This survival and mortality data illustrate that new treatments are needed to mitigate the risk of death from lymphoma and other cancers as well as infection. These analyses based on real-world evidence gathered from the medical literature comprise the largest study of survival and mortality for APDS to date.
Collapse
Affiliation(s)
- Jennifer Hanson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Penelope E Bonnen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
6
|
Singh AK, Qureshah FA, Drow T, Hou B, Rawlings DJ. Activated PI3Kδ specifically perturbs mouse Treg homeostasis and function leading to immune dysregulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.569665. [PMID: 38187650 PMCID: PMC10769388 DOI: 10.1101/2023.12.21.569665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Foxp3+ regulatory T cells (Treg) are required for maintaining immune tolerance and preventing systemic autoimmunity. PI3Kδ is required for normal Treg development and function. However, the impacts of dysregulated PI3Kδ signaling on Treg function remain incompletely understood. Here, we used a conditional mouse model of activated PI3Kδ syndrome (APDS) to investigate the role of altered PI3Kδ signaling specifically within the Treg compartment. Aged mice expressing a PIK3CD gain-of-function mutation (aPIK3CD) specifically within the Treg compartment exhibited weight loss and evidence for chronic inflammation as demonstrated by increased memory/effector CD4+ and CD8+ T cells with enhanced IFN-γ secretion, spontaneous germinal center responses and production of broad-spectrum autoantibodies. Intriguingly, aPIK3CD facilitated Treg precursor development within the thymus and an increase in peripheral Treg numbers. Peripheral Treg, however, exhibited an altered phenotype including increased PD1 expression and reduced competitive fitness. Consistent with these findings, Treg specific-aPIK3CD mice mounted an elevated humoral response following immunization with a T-cell dependent antigen, that correlated with a decrease in follicular Treg. Taken together, these findings demonstrate that an optimal threshold of PI3Kδ activity is critical for Treg homeostasis and function, suggesting that PI3Kδ signaling in Treg might be therapeutically targeted to either augment or inhibit immune responses.
Collapse
Affiliation(s)
- Akhilesh K. Singh
- Center for Immunity and Immunotherapy, Seattle Children’s Research Institute, Seattle, WA
| | - Fahd Al Qureshah
- Center for Immunity and Immunotherapy, Seattle Children’s Research Institute, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Travis Drow
- Center for Immunity and Immunotherapy, Seattle Children’s Research Institute, Seattle, WA
| | - Baidong Hou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - David J Rawlings
- Center for Immunity and Immunotherapy, Seattle Children’s Research Institute, Seattle, WA
- Department of Immunology, University of Washington, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| |
Collapse
|
7
|
Maccari ME, Wolkewitz M, Schwab C, Lorenzini T, Leiding JW, Aladjdi N, Abolhassani H, Abou-Chahla W, Aiuti A, Azarnoush S, Baris S, Barlogis V, Barzaghi F, Baumann U, Bloomfield M, Bohynikova N, Bodet D, Boutboul D, Bucciol G, Buckland MS, Burns SO, Cancrini C, Cathébras P, Cavazzana M, Cheminant M, Chinello M, Ciznar P, Coulter TI, D'Aveni M, Ekwall O, Eric Z, Eren E, Fasth A, Frange P, Fournier B, Garcia-Prat M, Gardembas M, Geier C, Ghosh S, Goda V, Hammarström L, Hauck F, Heeg M, Heropolitanska-Pliszka E, Hilfanova A, Jolles S, Karakoc-Aydiner E, Kindle GR, Kiykim A, Klemann C, Koletsi P, Koltan S, Kondratenko I, Körholz J, Krüger R, Jeziorski E, Levy R, Le Guenno G, Lefevre G, Lougaris V, Marzollo A, Mahlaoui N, Malphettes M, Meinhardt A, Merlin E, Meyts I, Milota T, Moreira F, Moshous D, Mukhina A, Neth O, Neubert J, Neven B, Nieters A, Nove-Josserand R, Oksenhendler E, Ozen A, Olbrich P, Perlat A, Pac M, Schmid JP, Pacillo L, Parra-Martinez A, Paschenko O, Pellier I, Sefer AP, Plebani A, Plantaz D, Prader S, Raffray L, Ritterbusch H, Riviere JG, Rivalta B, Rusch S, Sakovich I, Savic S, Scheible R, Schleinitz N, Schuetz C, Schulz A, Sediva A, Semeraro M, Sharapova SO, Shcherbina A, Slatter MA, Sogkas G, Soler-Palacin P, Speckmann C, Stephan JL, Suarez F, Tommasini A, Trück J, Uhlmann A, van Aerde KJ, van Montfrans J, von Bernuth H, Warnatz K, Williams T, Worth AJJ, Ip W, Picard C, Catherinot E, Nademi Z, Grimbacher B, Forbes Satter LR, Kracker S, Chandra A, Condliffe AM, Ehl S. Activated phosphoinositide 3-kinase δ syndrome: Update from the ESID Registry and comparison with other autoimmune-lymphoproliferative inborn errors of immunity. J Allergy Clin Immunol 2023; 152:984-996.e10. [PMID: 37390899 DOI: 10.1016/j.jaci.2023.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND Activated phosphoinositide-3-kinase δ syndrome (APDS) is an inborn error of immunity (IEI) with infection susceptibility and immune dysregulation, clinically overlapping with other conditions. Management depends on disease evolution, but predictors of severe disease are lacking. OBJECTIVES This study sought to report the extended spectrum of disease manifestations in APDS1 versus APDS2; compare these to CTLA4 deficiency, NFKB1 deficiency, and STAT3 gain-of-function (GOF) disease; and identify predictors of severity in APDS. METHODS Data was collected from the ESID (European Society for Immunodeficiencies)-APDS registry and was compared with published cohorts of the other IEIs. RESULTS The analysis of 170 patients with APDS outlines high penetrance and early onset of APDS compared to the other IEIs. The large clinical heterogeneity even in individuals with the same PIK3CD variant E1021K illustrates how poorly the genotype predicts the disease phenotype and course. The high clinical overlap between APDS and the other investigated IEIs suggests relevant pathophysiological convergence of the affected pathways. Preferentially affected organ systems indicate specific pathophysiology: bronchiectasis is typical of APDS1; interstitial lung disease and enteropathy are more common in STAT3 GOF and CTLA4 deficiency. Endocrinopathies are most frequent in STAT3 GOF, but growth impairment is also common, particularly in APDS2. Early clinical presentation is a risk factor for severe disease in APDS. CONCLUSIONS APDS illustrates how a single genetic variant can result in a diverse autoimmune-lymphoproliferative phenotype. Overlap with other IEIs is substantial. Some specific features distinguish APDS1 from APDS2. Early onset is a risk factor for severe disease course calling for specific treatment studies in younger patients.
Collapse
Affiliation(s)
- Maria Elena Maccari
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Martin Wolkewitz
- Institute of Medical Biometry and Statistics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Charlotte Schwab
- Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tiziana Lorenzini
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Nathalie Aladjdi
- Pediatric Haemato-Immunology, Clinical Investigation Center (CIC) 1401, Institut National de la Santé et de la Recherche Médicale (INSERM) Centre d'Investigation Clinique Pluridisciplinaire (CICP), Bordeaux University Hospital and Centre de Reference National des Cytopenies Auto-immunoes de l'Enfant (CEREVANCE), Bordeaux, France
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Wadih Abou-Chahla
- Department of Pediatric Hematology, Jeanne de Flandre Hospital, Centre Hospitalier Universitaire (CHU), Lille, France
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (Sr-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - Saba Azarnoush
- Pediatric Hematology and Immunology Unit, Robert Debré Hospital, Paris, France
| | - Safa Baris
- Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
| | - Vincent Barlogis
- Pediatric Hematology, Immunology and Oncology, Aix-Marseille Université, Marseille, France
| | - Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy (Sr-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Ulrich Baumann
- Pediatric Pulmonology, Allergy, and Neonatology, Hannover Medical School, Hannover, Germany
| | - Marketa Bloomfield
- Department of Immunology, Motol University Hospital, Prague, Czech Republic; Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Nadezda Bohynikova
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | - Damien Bodet
- Department of Pediatric Hematology and Oncology, University Hospital of Caen, Caen, France
| | - David Boutboul
- Clinical Immunology Department, Hôpital Saint-Louis, Paris, France
| | - Giorgia Bucciol
- Departments of Pediatrics, University Hospitals Leuven, Leuven, Belgium; Microbiology, Immunology, and Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Matthew S Buckland
- Barts Health National Health Service Trust, London, United Kingdom; Molecular and Cellular Immunology Section, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Siobhan O Burns
- Institute of Immunity and Transplantation, London, United Kingdom; Department of Immunology, Royal Free London National Health Service Foundation Trust, London, United Kingdom
| | - Caterina Cancrini
- Department of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy; Research and Clinical Unit of Primary Immunodeficiencies, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | | | - Marina Cavazzana
- Imagine Institute, INSERM U1163, Institut Imagine, Université Paris Cité, Paris, France; Biotherapy Department, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France; Biotherapy Clinical Investigation Center Groupe Hospitalier Centre, AP-HP, INSERM, Paris, France
| | - Morgane Cheminant
- Imagine Institute, INSERM U1163, Institut Imagine, Université Paris Cité, Paris, France; Service d'Hématologie Adulte, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France
| | - Matteo Chinello
- Pediatric Hematology Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Peter Ciznar
- Pediatric Department, Comenius University Medical Faculty, Bratislava, Slovakia
| | - Tanya I Coulter
- Belfast Health and Social Care Trust, Ireland, United Kingdom
| | - Maud D'Aveni
- Department of Hematology, Nancy University Hospital, Université de Lorraine, Nancy, France; UMR 7365, Centre National de la Recherche Scientifique, Ingénierie Moléculaire et Physiopathologie Articulaire, Université de Lorraine, Nancy, France
| | - Olov Ekwall
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Zelimir Eric
- University Clinical Centre of the Republic of Srpska, Republic of Srpska, Bosnia and Herzegovina
| | - Efrem Eren
- University Hospital Southampton, Southampton, United Kingdom
| | - Anders Fasth
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Medicine, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Pierre Frange
- Unité de Recherche Propre 7328, Fédération pour l'Étude et évaluation des Thérapeutiques intra-UtérineS (FETUS), Institut Imagine, Université Paris Cité, Paris, France; Laboratory of Clinical Microbiology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France
| | - Benjamin Fournier
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France
| | - Marina Garcia-Prat
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | | | - Christoph Geier
- Department of Rheumatology and Clinical Immunology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sujal Ghosh
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University-University Hospital Düsseldorf, Düsseldorf, Germany
| | - Vera Goda
- Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Fabian Hauck
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Anna Hilfanova
- Department of Pediatrics, Immunology, Infectious and Rare Diseases, European Medical School, International European University, Kyiv, Ukraine
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, United Kingdom
| | - Elif Karakoc-Aydiner
- Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Gerhard R Kindle
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Centre for Biobanking FREEZE, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ayca Kiykim
- Pediatric Allergy and Immunology, Istanbul University Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - Christian Klemann
- Departments of Human Genetics, Hannover Medical School, Hannover, Germany; Department of Pediatric Immunology, Rheumatology, & Infectiology, Hospital for Children and Adolescents, Leipzig University, Leipzig, Germany
| | - Patra Koletsi
- Department of Pediatrics, Penteli Children's Hospital, Athens, Greece
| | - Sylwia Koltan
- Department of Paediatric Haematology and Oncology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Irina Kondratenko
- Russian Clinical Childrens Hospital, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Julia Körholz
- Department of Pediatrics, Universitätsklinikum Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Renate Krüger
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Berlin Institute of Health, Berlin, Germany
| | - Eric Jeziorski
- General Pediatrics, CHU Montpellier, Montpellier, France; Pathogenesis and Control of Chronic Infections, INSERM, Université de Montpellier, Montpellier, France
| | - Romain Levy
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France
| | - Guillaume Le Guenno
- Department of Internal Medicine, Hôpital d'Estaing, Clermont-Ferrand, France
| | - Guillaume Lefevre
- CHU Lille, Institut d'Immunologie and University of Lille, Lille, France; Inserm U995, LIRIC-Lille Inflammation Research International Center, Lille, France
| | - Vassilios Lougaris
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Antonio Marzollo
- Pediatric Hematology, Oncology, and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Nizar Mahlaoui
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France; Necker Enfants Malades University Hospital, AP-HP, French National Reference Center for Primary Immune Deficiencies (CEREDIH), Paris Université Cité, Paris, France
| | | | - Andrea Meinhardt
- Center for Pediatrics and Adolescent Medicine, Department of Pediatric Hematology and Oncology, Medical Center, University Hospital Giessen, Giessen, Germany
| | - Etienne Merlin
- Department of Pediatrics, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Isabelle Meyts
- Departments of Pediatrics, University Hospitals Leuven, Leuven, Belgium; Microbiology, Immunology, and Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Tomas Milota
- Department of Immunology, Motol University Hospital, Prague, Czech Republic; Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Fernando Moreira
- Department of Immunology, Royal Free London National Health Service Foundation Trust, London, United Kingdom
| | - Despina Moshous
- Laboratories of Dynamique du Génome et Système Immunitaire, Institut Imagine, Université Paris Cité, Paris, France; Pediatric Immunology-Hematology and Rheumatology Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France; Necker Enfants Malades University Hospital, AP-HP, French National Reference Center for Primary Immune Deficiencies (CEREDIH), Paris Université Cité, Paris, France
| | - Anna Mukhina
- Department of Immunology, Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Olaf Neth
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, Universidad de Sevilla, Consejo Superior de Investigaciones Cientificas, Red de Investigación Translacional en Infectología Pediátrica, Seville, Spain
| | - Jennifer Neubert
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University-University Hospital Düsseldorf, Düsseldorf, Germany
| | - Benedicte Neven
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Institut Imagine, Université Paris Cité, Paris, France; Pediatric Immunology-Hematology and Rheumatology Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France
| | - Alexandra Nieters
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Centre for Biobanking FREEZE, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | | | - Ahmet Ozen
- Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Peter Olbrich
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, Universidad de Sevilla, Consejo Superior de Investigaciones Cientificas, Red de Investigación Translacional en Infectología Pediátrica, Seville, Spain
| | | | - Malgorzata Pac
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | - Jana Pachlopnik Schmid
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, Zurich, Switzerland
| | - Lucia Pacillo
- Department of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy; Research and Clinical Unit of Primary Immunodeficiencies, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Alba Parra-Martinez
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Olga Paschenko
- Russian Clinical Childrens Hospital, Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Asena Pinar Sefer
- Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
| | - Alessandro Plebani
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Dominique Plantaz
- Unit of Pediatric Immuno Hemato and Oncology, University Hospital Centre of Grenoble, Grenoble, France
| | - Seraina Prader
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, Zurich, Switzerland
| | - Loic Raffray
- Internal Medicine Department, Felix Guyon University Hospital, Saint Denis, La Réunion, France; Mixed Research Unit (UMR) "Infectious Processes in Tropical Island Environments", La Réunion, France
| | - Henrike Ritterbusch
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jacques G Riviere
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Beatrice Rivalta
- Department of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy; Research and Clinical Unit of Primary Immunodeficiencies, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Stephan Rusch
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Inga Sakovich
- Belarusian Research Center for Pediatric Oncology, Hematology, and Immunology, Minsk, Belarus
| | - Sinisa Savic
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom; Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, United Kingdom
| | - Raphael Scheible
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Institute for AI and Informatics in Medicine, University Hospital Rechts der Isar, Technical University Munich, Munich, Germany
| | - Nicolas Schleinitz
- Département de Médecine Interne, Timone Hospital, Assistance Publique-Hôpitaux de Marseille, Aix-Marseille Université, Marseille, France
| | - Catharina Schuetz
- Department of Pediatrics, Universitätsklinikum Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Ansgar Schulz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Anna Sediva
- Department of Immunology, Motol University Hospital, Prague, Czech Republic; Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michaela Semeraro
- Clinical Investigation Center (CIC) 1419, Necker-Enfants Malades Hospital, AP-HP, Groupe Hospitalier Paris Centre, Paris, France; EA7323 Pediatric and Perinatal Drug Evaluation and Pharmacology Research Unit, Université Paris Cité, Paris, France
| | - Svetlana O Sharapova
- Belarusian Research Center for Pediatric Oncology, Hematology, and Immunology, Minsk, Belarus
| | - Anna Shcherbina
- Department of Immunology, Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Mary A Slatter
- Great North Children' s Hospital, Newcastle upon Tyne, United Kingdom; Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Georgios Sogkas
- Rheumatology and Immunology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Pere Soler-Palacin
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Carsten Speckmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jean-Louis Stephan
- Department of Pediatrics, North Hospital, University Hospital of Saint Etienne, Saint-Etienne, France; University Jean Monnet, Saint-Etienne, France
| | - Felipe Suarez
- Imagine Institute, INSERM U1163, Institut Imagine, Université Paris Cité, Paris, France; Service d'Hématologie Adulte, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France
| | - Alberto Tommasini
- Department of Medical Sciences, University of Trieste, Trieste, Italy; Institute for Maternal and Child Health, IRCCS Burlo Garofalo, Trieste, Italy
| | - Johannes Trück
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, Zurich, Switzerland
| | - Annette Uhlmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Clinical Trials Unit, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Koen J van Aerde
- Amalia Children's Hospital, Radboudumc, Nijmegen, The Netherlands
| | - Joris van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Horst von Bernuth
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Berlin Institute of Health, Berlin, Germany
| | - Klaus Warnatz
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Rheumatology and Clinical Immunology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Tony Williams
- University Hospital Southampton, Southampton, United Kingdom
| | - Austen J J Worth
- Great Ormond Street Hospital for Children, University College London, London, United Kingdom
| | - Winnie Ip
- Great Ormond Street Institute of Child Health, London, United Kingdom; Great Ormond Street Hospital for Children, University College London, London, United Kingdom
| | - Capucine Picard
- Lymphocyte Activation and Susceptibility to EBV Infection, Institut Imagine, Université Paris Cité, Paris, France; Pediatric Immunology-Hematology and Rheumatology Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France; Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France; Necker Enfants Malades University Hospital, AP-HP, French National Reference Center for Primary Immune Deficiencies (CEREDIH), Paris Université Cité, Paris, France
| | | | - Zohreh Nademi
- Great North Children' s Hospital, Newcastle upon Tyne, United Kingdom; Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Rheumatology and Clinical Immunology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; DZIF-German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Lisa R Forbes Satter
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Tex; William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex
| | - Sven Kracker
- Human Lymphohematopoiesis, INSERM Unité Mixte de Recherche (UMR) 1163, Institut Imagine, Université Paris Cité, Paris, France; Université Paris Cité, Paris, France
| | - Anita Chandra
- Department of Clinical Immunology, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, United Kingdom; Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Alison M Condliffe
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield, United Kingdom
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
8
|
Jiang L, Hu X, Lin Q, Chen R, Shen Y, Zhu Y, Xu Q, Li X. Two cases of successful sirolimus treatment for patients with activated phosphoinositide 3-kinase δ syndrome 1. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:86. [PMID: 37742016 PMCID: PMC10518115 DOI: 10.1186/s13223-023-00840-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/05/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Activated phosphoinositide3-kinase (PI3K) δ syndrome 1 (APDS1) is a novel inborn errors of immunity (IEIs) caused by heterozygous gain of function mutations in PI3Kδ catalytic p110δ (PIK3CD). APDS1 has a spectrum of clinical manifestations. Recurrent respiratory infections, lymphoproliferation, hepatosplenomegaly, hyper-IgM syndrome and autoimmunity are the common symptoms of this disease. CASE PRESENTATION Patient 1 presented with recurrent respiratory infections, hepatosplenomegaly and hyper-IgM syndrome. Patient 2 developed early onset systemic lupus erythematosus (SLE)-like disease with resistant thrombocytopenia. c.3061 G > A and c.2314G > A variants in the PIK3CD gene were detected by whole exome sequencing in two patients respectively. c.2314G > A variant in PIK3CD gene of patient 2 is a newly report. After genetic diagnosis, two patients received sirolimus treatment and sirolimus alleviated clinical manifestations, including hepatosplenomegaly in patient 1 and thrombocytopenia in patient 2. CONCLUSION Genetics diagnosis should be considered in patients with complicated clinical manifestations with no or insufficient response to the conventional therapies. If whole exome sequencing suggests a variant in PIK3CD gene, sirolimus may relieve hepatosplenomegaly and resistant thrombocytopenia. This is the first report of c.2314G > A variant in PIK3CD gene.
Collapse
Affiliation(s)
- Lu Jiang
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No. 303, Jingde Road, Suzhou, 215003, Jiangsu, China
| | - Xiaohan Hu
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Qiang Lin
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No. 303, Jingde Road, Suzhou, 215003, Jiangsu, China
| | - Ruyue Chen
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No. 303, Jingde Road, Suzhou, 215003, Jiangsu, China
| | - Yunyan Shen
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No. 303, Jingde Road, Suzhou, 215003, Jiangsu, China
| | - Yun Zhu
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No. 303, Jingde Road, Suzhou, 215003, Jiangsu, China
| | - Qinying Xu
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No. 303, Jingde Road, Suzhou, 215003, Jiangsu, China
| | - Xiaozhong Li
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No. 303, Jingde Road, Suzhou, 215003, Jiangsu, China.
| |
Collapse
|
9
|
Toskov V, Ehl S. Autoimmune lymphoproliferative immunodeficiencies (ALPID) in childhood: breakdown of immune homeostasis and immune dysregulation. Mol Cell Pediatr 2023; 10:11. [PMID: 37702894 PMCID: PMC10499775 DOI: 10.1186/s40348-023-00167-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023] Open
Abstract
Many inborn errors of immunity (IEI) manifest with hallmarks of both immunodeficiency and immune dysregulation due to uncontrolled immune responses and impaired immune homeostasis. A subgroup of these disorders frequently presents with autoimmunity and lymphoproliferation (ALPID phenotype). After the initial description of the genetic basis of autoimmune lymphoproliferative syndrome (ALPS) more than 20 years ago, progress in genetics has helped to identify many more genetic conditions underlying this ALPID phenotype. Among these, the majority is caused by a group of autosomal-dominant conditions including CTLA-4 haploinsufficiency, STAT3 gain-of-function disease, activated PI3 kinase syndrome, and NF-κB1 haploinsufficiency. Even within a defined genetic condition, ALPID patients may present with staggering clinical heterogeneity, which makes diagnosis and management a challenge. In this review, we discuss the pathophysiology, clinical presentation, approaches to diagnosis, and conventional as well as targeted therapy of the most common ALPID conditions.
Collapse
Affiliation(s)
- Vasil Toskov
- Centre for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Stephan Ehl
- Centre for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
10
|
Sood AK, Francis O, Schworer SA, Johnson SM, Smith BD, Googe PB, Wu EY. ANCA vasculitis expands the spectrum of autoimmune manifestations of activated PI3 kinase δ syndrome. Front Pediatr 2023; 11:1179788. [PMID: 37274825 PMCID: PMC10235767 DOI: 10.3389/fped.2023.1179788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/03/2023] [Indexed: 06/07/2023] Open
Abstract
Activated phosphoinositide 3-kinase δ syndrome (APDS) is a combined immunodeficiency with a broad clinical phenotype, including not only an increased propensity for sinopulmonary and herpesviruses infections but also immune dysregulation, such as benign lymphoproliferation, autoimmunity, and malignancy. Autoimmune complications are increasingly recognized as initial presenting features of immune dysregulation in inborn errors of immunity (IEIs), including APDS, so awareness of the spectrum of autoimmune features inherit within these disorders is critical. We present here a patient vignette to highlight cutaneous antineutrophil cytoplasmic antibody (ANCA) vasculitis as an underrecognized autoimmune manifestation of APDS. The genetic defects underlying APDS result in increased PI3Kδ signaling with aberrant downstream signaling pathways and loss of B- and/or T-cell immunologic tolerance mechanisms, which promote the development of autoimmunity. An understanding of the molecular pathways and mechanisms that lead to immune dysregulation in APDS has allowed for significant advancements in the development of precision-medicine therapeutics, such as leniolisib, to reduce the morbidity and mortality for these patients. Overall, this case and review highlight the need to maintain a high index of suspicion for IEIs, such as APDS, in those presenting with autoimmunity in combination with a dysregulated immune phenotype for prompt diagnosis and targeted intervention.
Collapse
Affiliation(s)
- Amika K. Sood
- Division of Rheumatology, Allergy, and Immunology, Department of Internal Medicine, The University of North Carolina, Chapel Hill, NC, United States
| | - Olivia Francis
- Division of Allergy/Immunology, Department of Pediatrics, The University of North Carolina, Chapel Hill, NC, United States
| | - Stephen A. Schworer
- Division of Rheumatology, Allergy, and Immunology, Department of Internal Medicine, The University of North Carolina, Chapel Hill, NC, United States
- Division of Allergy/Immunology, Department of Pediatrics, The University of North Carolina, Chapel Hill, NC, United States
| | - Steven M. Johnson
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC, United States
| | - Benjamin D. Smith
- Division of Pediatric Radiology, Department of Radiology, The University of North Carolina, Chapel Hill, NC, United States
| | - Paul B. Googe
- Dermatopathology, Department of Dermatology, The University of North Carolina, Chapel Hill, NC, United States
| | - Eveline Y. Wu
- Division of Allergy/Immunology, Department of Pediatrics, The University of North Carolina, Chapel Hill, NC, United States
- Division of Rheumatology, Department of Pediatrics, The University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
11
|
Sharma D, Ben Yakov G, Kapuria D, Viana Rodriguez G, Gewirtz M, Haddad J, Kleiner DE, Koh C, Bergerson JRE, Freeman AF, Heller T. Tip of the iceberg: A comprehensive review of liver disease in Inborn errors of immunity. Hepatology 2022; 76:1845-1861. [PMID: 35466407 DOI: 10.1002/hep.32539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/30/2022] [Accepted: 04/17/2022] [Indexed: 12/08/2022]
Abstract
Inborn errors of immunity (IEIs) consist of numerous rare, inherited defects of the immune system that affect about 500,000 people in the United States. As advancements in diagnosis through genetic testing and treatment with targeted immunotherapy and bone marrow transplant emerge, increasing numbers of patients survive into adulthood posing fresh clinical challenges. A large spectrum of hepatobiliary diseases now present in those with immunodeficiency diseases, leading to morbidity and mortality in this population. Awareness of these hepatobiliary diseases has lagged the improved management of the underlying disorders, leading to missed opportunities to improve clinical outcomes. This review article provides a detailed description of specific liver diseases occurring in various inborn errors of immunity. A generalized approach to diagnosis and management of hepatic complications is provided, and collaboration with hepatologists, immunologists, and pathologists is emphasized as a requirement for optimizing management and outcomes.
Collapse
Affiliation(s)
- Disha Sharma
- Department of Internal MedicineMedStar Washington Hospital Center & Georgetown UniversityWashingtonDCUSA.,Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| | - Gil Ben Yakov
- Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA.,26744Center for Liver DiseaseSheba Medical CenterTel HaShomerIsrael
| | - Devika Kapuria
- Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA.,Department of GastroenterologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | - Gracia Viana Rodriguez
- Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| | - Meital Gewirtz
- Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| | - James Haddad
- Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| | - David E Kleiner
- 3421Laboratory of PathologyNational Cancer InstituteBethesdaMarylandUSA
| | - Christopher Koh
- Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| | - Jenna R E Bergerson
- Laboratory of Clinical Immunology and MicrobiologyNIAID, NIHBethesdaMarylandUSA
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and MicrobiologyNIAID, NIHBethesdaMarylandUSA
| | - Theo Heller
- Liver Diseases Branch, Translational Hepatology SectionNational Institute of Diabetes and Digestive and Kidney Diseases, NIHBethesdaMarylandUSA
| |
Collapse
|
12
|
Brodsky NN, Lucas CL. Infections in activated PI3K delta syndrome (APDS). Curr Opin Immunol 2021; 72:146-157. [PMID: 34052541 DOI: 10.1016/j.coi.2021.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 01/07/2023]
Abstract
Activated PI3K-delta Syndrome (APDS), also called PI3K-delta activating mutation causing senescent T cells, lymphadenopathy, and immunodeficiency (PASLI), is an autosomal dominant disorder caused by inherited or de novo gain-of-function mutations in one of two genes encoding subunits of the phosphoinositide-3-kinase delta (PI3Kδ) complex. This largely leukocyte-restricted protein complex regulates cell growth, activation, proliferation, and survival. Patients who harbor these mutations have early onset immunodeficiency with recurrent infections, lymphadenopathy, and autoimmunity. The most common infection susceptibilities are sinopulmonary (encapsulated bacteria) and herpesviruses. Multiple defects in both innate and adaptive immune function are responsible for this phenotype. Apart from anti-microbial prophylaxis and immunoglobulin replacement, patients are treated with a variety of immunomodulatory agents and some have needed hematopoietic stem cell transplants. Here, we highlight the spectrum of infections, immune defects, and therapy options in this inborn error of immunity.
Collapse
Affiliation(s)
- Nina N Brodsky
- Department of Immunobiology, Yale University School of Medicine, 300 George Street 353G, New Haven, CT, 06511, USA; Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street, P.O. Box 208064, New Haven, CT 06520, USA
| | - Carrie L Lucas
- Department of Immunobiology, Yale University School of Medicine, 300 George Street 353G, New Haven, CT, 06511, USA.
| |
Collapse
|
13
|
Lu M, Gu W, Sheng Y, Wang J, Xu X. Case Report: Activating PIK3CD Mutation in Patients Presenting With Granulomatosis With Polyangiitis. Front Immunol 2021; 12:670312. [PMID: 33995405 PMCID: PMC8113859 DOI: 10.3389/fimmu.2021.670312] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Activated phosphoinositide 3-kinase δ syndrome (APDS) is an autosomal dominant primary immunodeficiency caused by gain-of-function (GOF) mutations in PIK3CD or PIK3R1 genes. The phenotypes of APDS are highly variable, ranging from asymptomatic adults to profound immunodeficiency causing early death in childhood. Herein, we reported two pediatric patients with APDS presented with recurrent lung infections, sinusitis, hematuria, and positive anti-neutrophil cytoplasmic antibody (ANCA), previously diagnosed as granulomatosis with polyangiitis (GPA). Bronchoscopy showed mucosal nodule lymphoid hyperplasia in the entire airway. Many inflammatory cells infiltrated around the airway and in the lung parenchyma, and numbers of CD3+ T cells and CD20+ B cells were significantly increased, especially CD3+ T cells. Whole exome sequencing showed that they had the E1021K (c.3061 G >A) mutation in the PIK3CD gene. These are the first reported cases of APDS presenting as childhood-onset GPA. Pediatricians should suspect of APDS in the differential diagnosis of children who present with GPA-like symptoms. Additionally, timely and repeated bronchoscopies could contribute to providing an important diagnostic clue for APDS.
Collapse
Affiliation(s)
- Meiping Lu
- Department of Rheumatology Immunology & Allergy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Department of Pulmonary Medicine, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Weizhong Gu
- Department of Pathology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yuanjian Sheng
- Department of Pulmonary Medicine, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Jingjing Wang
- Department of Nephrology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xuefeng Xu
- Department of Rheumatology Immunology & Allergy, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China.,Department of Pulmonary Medicine, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
14
|
Demirdag YY, Gupta S. Update on Infections in Primary Antibody Deficiencies. Front Immunol 2021; 12:634181. [PMID: 33643318 PMCID: PMC7905085 DOI: 10.3389/fimmu.2021.634181] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/07/2021] [Indexed: 11/14/2022] Open
Abstract
Bacterial respiratory tract infections are the hallmark of primary antibody deficiencies (PADs). Because they are also among the most common infections in healthy individuals, PADs are usually overlooked in these patients. Careful evaluation of the history, including frequency, chronicity, and presence of other infections, would help suspect PADs. This review will focus on infections in relatively common PADs, discussing diagnostic challenges, and some management strategies to prevent infections.
Collapse
Affiliation(s)
- Yesim Yilmaz Demirdag
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Irvine, Irvine, CA, United States
| | | |
Collapse
|
15
|
Mohtashami M, Razavi A, Abolhassani H, Aghamohammadi A, Yazdani R. Primary Immunodeficiency and Thrombocytopenia. Int Rev Immunol 2021; 41:135-159. [PMID: 33464134 DOI: 10.1080/08830185.2020.1868454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Primary immunodeficiency (PID) or Inborn errors of immunity (IEI) refers to a heterogeneous group of disorders characterized by immune system impairment. Although patients with IEI manifest highly variable symptoms, the most common clinical manifestations are recurrent infections, autoimmunity and malignancies. Some patients present hematological abnormality including thrombocytopenia due to different pathogenic mechanisms. This review focuses on primary and secondary thrombocytopenia as a complication, which can occur in IEI. Based on the International Union of Immunological Societies phenotypic classification for IEI, the several innate and adaptive immunodeficiency disorders can lead to thrombocytopenia. This review, for the first time, describes manifestation, mechanism and therapeutic modalities for thrombocytopenia in different classes of IEI.
Collapse
Affiliation(s)
- Maryam Mohtashami
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran.,Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| | - Azadehsadat Razavi
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran.,Department of Animal Biology, Faculty of Biology Sciences, University of Kharazmi, Tehran, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Fekrvand S, Delavari S, Chavoshzadeh Z, Sherkat R, Mahdaviani SA, Sadeghi Shabestari M, Azizi G, Arzanian MT, Shahin Shamsian B, Eskandarzadeh S, Eslami N, Rae W, Condino-Neto A, Mohammadi J, Abolhassani H, Yazdani R, Aghamohammadi A. The First Iranian Cohort of Pediatric Patients with Activated Phosphoinositide 3-Kinase-δ (PI3Kδ) Syndrome (APDS). Immunol Invest 2021; 51:644-659. [PMID: 33401995 DOI: 10.1080/08820139.2020.1863982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background: Activated phosphoinositide 3-kinase δ syndrome (APDS) is a recently defined combined primary immunodeficiency disease (PID) characterized by recurrent respiratory tract infections, lymphoproliferation, autoimmunity and lymphoma. Gain-of-function mutations in PIK3CD and loss-of-function of PIK3R1 genes lead to APDS1 and APDS2, respectively.Methods: Demographic, clinical, immunological and genetic data were collected from medical records of 15 pediatric patients, who were genetically identified using the whole-exome sequencing method.Results: Fifteen patients (6 APDS1 and 9 APDS2) were enrolled in this study. Recurrent respiratory tract infections followed by lymphoproliferation and autoimmunity were the most common manifestations (86.7%, 53.3% and 26.7%, respectively). Five patients (33.3%) had a Hyper-IgM-syndrome-like immunoglobulin profile. In the APDS1 group, splice site and missense mutations were found in half of the patients and the C-lobe domain of PIK3CD was the most affected region (50%). In the APDS2 group, splice site mutation was the most frequent mutation (77.8%) and the inter-SH2 domain was the most affected region of PIK3R1 (66.7%). Mortality rate was significantly higher in APDS2 group (P = .02) mainly due to chronic lung infections.Conclusion: Respiratory tract infections and humoral immunodeficiency are commonly the most important complication in pediatric APDS patients, and they can be fatal by ultimately causing catastrophic damage to the structure of lungs. Hence, physicians should be aware of its significance and further work-up of patients with recurrent respiratory tract infections especially in patients with lymphoproliferation. Moreover, delineation of genotype-phenotype associations with disease severity could be helpful in the timely application of appropriate management and patients' survival.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Zahra Chavoshzadeh
- Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roya Sherkat
- Acquired Immunodeficiency Research Center, lsfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahnaz Sadeghi Shabestari
- Children Hospital of Tabriz, Immunology Research Center of Tabriz, TB and Lung Research Center of Tabriz, Tabriz University of Medical Science, Tabriz, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Taghi Arzanian
- Pediatric Hematologist-Oncologist, Congenital Hematological Disorders Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bibi Shahin Shamsian
- Pediatric Hematologist-Oncologist, Congenital Hematological Disorders Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shabnam Eskandarzadeh
- Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Narges Eslami
- Pediatric Infections Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - William Rae
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK.,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Antonio Condino-Neto
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Javad Mohammadi
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Primary Immunodeficiencies, Iran University of Medical Science, Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran.,Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
17
|
Thouenon R, Moreno-Corona N, Poggi L, Durandy A, Kracker S. Activated PI3Kinase Delta Syndrome-A Multifaceted Disease. Front Pediatr 2021; 9:652405. [PMID: 34249806 PMCID: PMC8267809 DOI: 10.3389/fped.2021.652405] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
Autosomal dominant gain-of-function mutations in the PIK3CD gene encoding the catalytic subunit p110δ of phosphoinositide 3-kinase-δ (PI3K-δ) or autosomal dominant loss-of-function mutations in the PIK3R1 gene encoding the p85α, p55α and p50α regulatory subunits cause Activated PI3-kinase-δ syndrome (APDS; referred as type 1 APDS and type 2 APDS, respectively). Consequences of these mutations are PI3K-δ hyperactivity. Clinical presentation described for both types of APDS patients is very variable, ranging from mild or asymptomatic features to profound combined immunodeficiency. Massive lymphoproliferation, bronchiectasis, increased susceptibility to bacterial and viral infections and, at a lesser extent, auto-immune manifestations and occurrence of cancer, especially B cell lymphoma, have been described for both types of APDS patients. Here, we review clinical presentation and treatment options as well as fundamental immunological and biological features associated to PI3K-δ increased signaling.
Collapse
Affiliation(s)
- Romane Thouenon
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Nidia Moreno-Corona
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Lucie Poggi
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Anne Durandy
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| | - Sven Kracker
- Laboratory of Human Lymphohematopoiesis, Imagine Institute, INSERM UMR 1163, Université de Paris, Paris, France
| |
Collapse
|
18
|
Redenbaugh V, Coulter T. Disorders Related to PI3Kδ Hyperactivation: Characterizing the Clinical and Immunological Features of Activated PI3-Kinase Delta Syndromes. Front Pediatr 2021; 9:702872. [PMID: 34422726 PMCID: PMC8374435 DOI: 10.3389/fped.2021.702872] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/28/2021] [Indexed: 11/28/2022] Open
Abstract
Phosphoinositide-3-kinase δ (PI3Kδ) is found in immune cells and is part of the PI3K/AKT/mTOR/S6K signalling pathway essential to cell survival, growth and differentiation. Hyperactivation of PI3Kδ enzyme results in Activated PI3-kinase delta syndrome (APDS). This childhood onset, autosomal dominant, combined immunodeficiency, is caused by heterozygous gain of function (GOF) mutations in PIK3CD (encodes PI3Kδ catalytic subunit p110δ), mutations in PIK3R1 (encodes PI3Kδ regulatory subunit p85α) or LOF mutations in PTEN (terminates PI3Kδ signalling) leading to APDS1, APDS2 and APDS-Like (APDS-L), respectively. APDS was initially described in 2013 and over 285 cases have now been reported. Prompt diagnosis of APDS is beneficial as targeted pharmacological therapies such as sirolimus and potentially PI3Kδ inhibitors can be administered. In this review, we provide an update on the clinical and laboratory features of this primary immunodeficiency. We discuss the common manifestations such as sinopulmonary infections, bronchiectasis, lymphoproliferation, susceptibility to herpesvirus, malignancy, as well as more rare non-immune features such as short stature and neurodevelopmental abnormalities. Laboratory characteristics, such as antibody deficiency and B cell and T cell, phenotypes are also summarised.
Collapse
Affiliation(s)
- Vyanka Redenbaugh
- Regional Immunology Services of Northern Ireland, Belfast Health and Social Care Trust, Belfast, United Kingdom.,Mayo Clinic, Rochester, MN, United States
| | - Tanya Coulter
- Regional Immunology Services of Northern Ireland, Belfast Health and Social Care Trust, Belfast, United Kingdom
| |
Collapse
|
19
|
Nunes-Santos CJ, Uzel G, Rosenzweig SD. PI3K pathway defects leading to immunodeficiency and immune dysregulation. J Allergy Clin Immunol 2020; 143:1676-1687. [PMID: 31060715 DOI: 10.1016/j.jaci.2019.03.017] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 12/16/2022]
Abstract
The phosphatidylinositol 3-kinase (PI3K) signaling pathway is involved in a broad range of cellular processes, including growth, metabolism, differentiation, proliferation, motility, and survival. The PI3Kδ enzyme complex is primarily present in the immune system and comprises a catalytic (p110δ) and regulatory (p85α) subunit. Dynamic regulation of PI3Kδ activity is required to ensure normal function and differentiation of immune cells. In the last decade, discovery of germline mutations in genes involved in the PI3Kδ pathway (PIK3CD, PIK3R1, or phosphatase and tensin homolog [PTEN]) proved that both overactivation and underactivation (gain of function and loss of function, respectively) of PI3Kδ lead to impaired and dysregulated immunity. Although a small group of patients reported to underactivate PI3Kδ show predominantly humoral defects and autoimmune features, more than 200 patients have been described with overactivation of PI3Kδ, presenting with a much more complex phenotype of combined immunodeficiency and immune dysregulation. The clinical and immunologic characterization, as well as current pathophysiologic understanding and specific therapies for PI3K pathway defects leading to immunodeficiency and immune dysregulation, are reviewed here.
Collapse
Affiliation(s)
- Cristiane J Nunes-Santos
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Md; Faculdade de Medicina, Instituto da Crianca, Universidade de São Paulo, São Paulo, Brazil
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Md
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Md.
| |
Collapse
|
20
|
Yazar V, Kilic G, Bulut O, Canavar Yildirim T, Yagci FC, Aykut G, Klinman DM, Gursel M, Gursel I. A suppressive oligodeoxynucleotide expressing TTAGGG motifs modulates cellular energetics through the mTOR signaling pathway. Int Immunol 2020; 32:39-48. [PMID: 31633763 DOI: 10.1093/intimm/dxz059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/20/2019] [Indexed: 02/04/2023] Open
Abstract
Immune-mediated inflammation must be down-regulated to facilitate tissue remodeling during homeostatic restoration of an inflammatory response. Uncontrolled or over-exuberant immune activation can cause autoimmune diseases, as well as tissue destruction. A151, the archetypal example of a chemically synthesized suppressive oligodeoxynucleotide (ODN) based on repetitive telomere-derived TTAGGG sequences, was shown to successfully down-regulate a variety of immune responses. However, the degree, duration and breadth of A151-induced transcriptome alterations remain elusive. Here, we performed a comprehensive microarray analysis in combination with Ingenuity Pathway Analysis (IPA) using murine splenocytes to investigate the underlying mechanism of A151-dependent immune suppression. Our results revealed that A151 significantly down-regulates critical mammalian target of rapamycin (mTOR) activators (Pi3kcd, Pdpk1 and Rheb), elements downstream of mTOR signaling (Rps6ka1, Myc, Stat3 and Slc2a1), an important component of the mTORC2 protein complex (Rictor) and Mtor itself. The effects of A151 on mTOR signaling were dose- and time-dependent. Moreover, flow cytometry and immunoblotting analyses demonstrated that A151 is able to reverse mTOR phosphorylation comparably to the well-known mTOR inhibitor rapamycin. Furthermore, Seahorse metabolic assays showed an A151 ODN-induced decrease in both oxygen consumption and glycolysis implying that a metabolically inert state in macrophages could be triggered by A151 treatment. Overall, our findings suggested novel insights into the mechanism by which the immune system is metabolically modulated by A151 ODN.
Collapse
Affiliation(s)
- Volkan Yazar
- Thorlab-Therapeutic Oligodeoxynucleotide Research Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, Ihsan Dogramaci Bilkent University, Ankara, Turkey
| | - Gizem Kilic
- Thorlab-Therapeutic Oligodeoxynucleotide Research Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, Ihsan Dogramaci Bilkent University, Ankara, Turkey
| | - Ozlem Bulut
- Thorlab-Therapeutic Oligodeoxynucleotide Research Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, Ihsan Dogramaci Bilkent University, Ankara, Turkey
| | - Tugce Canavar Yildirim
- Thorlab-Therapeutic Oligodeoxynucleotide Research Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, Ihsan Dogramaci Bilkent University, Ankara, Turkey
| | - Fuat C Yagci
- Thorlab-Therapeutic Oligodeoxynucleotide Research Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, Ihsan Dogramaci Bilkent University, Ankara, Turkey
| | - Gamze Aykut
- Thorlab-Therapeutic Oligodeoxynucleotide Research Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, Ihsan Dogramaci Bilkent University, Ankara, Turkey
| | - Dennis M Klinman
- Immune Modulation Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Mayda Gursel
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Ihsan Gursel
- Thorlab-Therapeutic Oligodeoxynucleotide Research Laboratory, Department of Molecular Biology and Genetics, Faculty of Science, Ihsan Dogramaci Bilkent University, Ankara, Turkey
| |
Collapse
|
21
|
Novel heterozygous PIK3CD mutation presenting with only laboratory markers of combined immunodeficiency. LYMPHOSIGN JOURNAL 2020. [DOI: 10.14785/lymphosign-2020-0003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Introduction: Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Delta (PIK3CD) is one part of a heterodimer forming the enzyme phosphoinositide 3-kinase (PI3K), found primarily in leukocytes. PIK3CD generates phosphatidyl-inositol 3,4,5-trisphosphate (PIP3), and is involved in cell growth, survival, proliferation, motility, and morphology. An increasing number of patients have been described with heterozygous PIK3CD gain-of-function (GOF) mutations, leading to combined immunodeficiency with both B- and T-cell dysfunction. Patients suffer recurrent respiratory infections, often associated with bronchiectasis and ear and sinus damage, as well as severe recurrent or persistent infections by herpesviruses, including EBV-induced lymphoproliferation. Aim: To present the clinical phenotypic variability of a novel PI3KCD mutation within a family. Methods: Patient information was collected prospectively and retrospectively from medical records. Comprehensive immune work up, genetic, and signaling evaluation was performed. Results: We describe here 2 patients, daughter and mother, with heterozygous PIK3CD mutation identified by whole exome sequencing and Sanger confirmation. The child was screen-positive by newborn screening for severe combined immunodeficiency (SCID). Cellular assays revealed an increase in the baseline phosphorylation of T cells in the patient. Furthermore, both patients had hyper-activation of the catalytic domain, resulting in increased phosphorylation of AKT upon activation. Discussion: GOF mutations affecting the PIK3CD gene are associated with an increased risk for lymphoproliferation leading to Activated PIK3-delta syndrome (APDS). The clinical course of APDS is highly variable, ranging from combined immunodeficiency with recurrent infections, autoimmune complications, and requiring stem cell transplantation, through isolated antibody deficiency, to asymptomatic adults. Our patient is the first to be identified by newborn screening for SCID. Surprisingly, the clinical course has so far been unremarkable, as well, the mother appears to be completely asymptomatic. Nevertheless, the persistent lymphopenia indicates PIK3CD dysfunction. Because of the wide gap between laboratory findings and clinical manifestations, this kindred poses both a diagnostic as well treatment challenge. Statement of novelty: We report here a novel PIK3CD mutation diagnosed due to abnormal newborn screen for SCID.
Collapse
|
22
|
Pecoraro A, Crescenzi L, Varricchi G, Marone G, Spadaro G. Heterogeneity of Liver Disease in Common Variable Immunodeficiency Disorders. Front Immunol 2020; 11:338. [PMID: 32184784 PMCID: PMC7059194 DOI: 10.3389/fimmu.2020.00338] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
Common variable immunodeficiency (CVID) is the most frequent primary immunodeficiency (PID) in adulthood and is characterized by severe reduction of immunoglobulin serum levels and impaired antibody production in response to vaccines and pathogens. Beyond the susceptibility to infections, CVID encompasses a wide spectrum of clinical manifestations related to a complex immune dysregulation that also affects liver. Although about 50% CVID patients present persistently deranged liver function, burden, and nature of liver involvement have not been systematically investigated in most cohort studies published in the last decades. Therefore, the prevalence of liver disease in CVID widely varies depending on the study design and the sampling criteria. This review seeks to summarize the evidence about the most relevant causes of liver involvement in CVID, including nodular regenerative hyperplasia (NRH), infections and malignancies. We also describe the clinical features of liver disease in some monogenic forms of PID included in the clinical spectrum of CVID as ICOS, NFKB1, NFKB2, CTLA-4, PI3Kδ pathway, ADA2, and IL21-R genetic defects. Finally, we discuss the clinical applications of the various diagnostic tools and the possible therapeutic approaches for the management of liver involvement in the context of CVID.
Collapse
Affiliation(s)
- Antonio Pecoraro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Ludovica Crescenzi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research, WAO Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Giancarlo Marone
- Department of Public Health, University of Naples Federico II, Naples, Italy.,Monaldi Hospital, Naples, Italy
| | - Giuseppe Spadaro
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research, WAO Center of Excellence, University of Naples Federico II, Naples, Italy
| |
Collapse
|
23
|
|
24
|
Taylor H, Laurence ADJ, Uhlig HH. The Role of PTEN in Innate and Adaptive Immunity. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a036996. [PMID: 31501268 DOI: 10.1101/cshperspect.a036996] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The lipid and protein phosphatase and tensin homolog (PTEN) controls the differentiation and activation of multiple immune cells. PTEN acts downstream from T- and B-cell receptors, costimulatory molecules, cytokine receptors, integrins, and also growth factor receptors. Loss of PTEN activity in human and mice is associated with cellular and humoral immune dysfunction, lymphoid hyperplasia, and autoimmunity. Although most patients with PTEN hamartoma tumor syndrome (PHTS) have no immunological symptoms, a subclinical immune dysfunction is present in many, and clinical immunodeficiency in few. Comparison of the immune phenotype caused by PTEN haploinsufficiency in PHTS, phosphoinositide 3-kinase (PI3K) gain-of-function in activated PI3K syndrome, and mice with conditional biallelic Pten deletion suggests a threshold model in which coordinated activity of several phosphatases control the PI3K signaling in a cell-type-specific manner. Emerging evidence highlights the role of PTEN in polygenic autoimmune disorders, infection, and the immunological response to cancer. Targeting the PI3K axis is an emerging therapeutic avenue.
Collapse
Affiliation(s)
- Henry Taylor
- Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, United Kingdom
| | - Arian D J Laurence
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Nuffield Department of Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.,Department of Haematology, University College London Hospitals NHS Trust, London WC1E 6AG, United Kingdom
| | - Holm H Uhlig
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Nuffield Department of Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.,Department of Paediatrics, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.,NIHR Oxford Biomedical Research Centre, Oxford OX3 9DU, United Kingdom
| |
Collapse
|
25
|
Singh A, Joshi V, Jindal AK, Mathew B, Rawat A. An updated review on activated PI3 kinase delta syndrome (APDS). Genes Dis 2019; 7:67-74. [PMID: 32181277 PMCID: PMC7063426 DOI: 10.1016/j.gendis.2019.09.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/21/2019] [Accepted: 09/30/2019] [Indexed: 01/09/2023] Open
Abstract
Activated Phosphoinositide 3-kinase δ syndrome (APDS) is a newly recognised primary immunodeficiency disease. It has currently been a hot topic of clinical research and new data are emerging regarding its pathogenesis, clinical manifestations and treatment. Patients with APDS syndrome have significant autoimmune manifestations and lymphoproliferation. It is important to differentiate APDS from the usual polygenic CVID in view of the availability of targeted therapy like mTOR inhibitors such as Rapamycin and selective PI3Kδ inhibitors. We provide a comprehensive review on this interesting disorder focusing light on its etiology, genetic research and emerging therapy.
Collapse
Affiliation(s)
| | | | | | | | - Amit Rawat
- Corresponding author. Paediatric Allergy Immunology Unit, Department of Paediatrics, Advanced Paediatric Centre, Postgraduate Institute of Medical Education & Research, Sector 12, Chandigarh, 160012, India.
| |
Collapse
|
26
|
Abstract
This article presents the most common gastrointestinal, hepatic, and pancreatic manifestations of the primary immunodeficiency diseases, including the appropriate laboratory testing, endoscopic evaluation, and recommendations for further management.
Collapse
Affiliation(s)
| | - Sarah Glover
- UF Health, PO Box 103643, Gainesville, FL 32610, USA.
| |
Collapse
|
27
|
Thauland TJ, Pellerin L, Ohgami RS, Bacchetta R, Butte MJ. Case Study: Mechanism for Increased Follicular Helper T Cell Development in Activated PI3K Delta Syndrome. Front Immunol 2019; 10:753. [PMID: 31031754 PMCID: PMC6473200 DOI: 10.3389/fimmu.2019.00753] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/20/2019] [Indexed: 12/31/2022] Open
Abstract
Gain-of-function variants in p110δ, the catalytic subunit of phosphatidylinositol 3-kinase (PI3K) expressed in lymphocytes, cause activated PI3-kinase δ syndrome (APDS), a primary immunodeficiency that is characterized by recurrent infections, viremia, lymphadenopathy, and autoimmunity. The mechanism of autoimmunity in APDS has not been well-understood. Here, we show the profound skewing of peripheral CD4+ T cells to a T follicular helper (TFH) phenotype in a patient with APDS bearing a novel p110δ variant, Y524S. We also saw a diminishment of transient Foxp3 expression in activated T cells. Mechanistic studies revealed that both the new variant and a previously described, pathogenic variant (E81K) enhanced an interaction between intracellular Osteopontin and p85α. This interaction had been shown in mice to promote TFH differentiation. Our results demonstrate a new influence of PI3K on human T cell differentiation that is unrelated to its lipid-kinase activity and suggest that TFH should be monitored in APDS patients.
Collapse
Affiliation(s)
- Timothy J. Thauland
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Laurence Pellerin
- Division of Pediatric Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - Robert S. Ohgami
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Rosa Bacchetta
- Division of Pediatric Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - Manish J. Butte
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
28
|
Tangye SG, Bier J, Lau A, Nguyen T, Uzel G, Deenick EK. Immune Dysregulation and Disease Pathogenesis due to Activating Mutations in PIK3CD-the Goldilocks' Effect. J Clin Immunol 2019; 39:148-158. [PMID: 30911953 DOI: 10.1007/s10875-019-00612-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/12/2019] [Indexed: 12/12/2022]
Abstract
"This porridge is too hot!" she exclaimed. So, she tasted the porridge from the second bowl. "This porridge is too cold," she said. So, she tasted the last bowl of porridge. "Ahhh, this porridge is just right," she said happily and she ate it all up. While this describes the adventures of Goldilocks in the classic fairytale "The Story of Goldilocks and the Three Bears," it is an ideal analogy for the need for balanced signaling mediated by phosphatidylinositol-3-kinase (PI3K), a key signaling hub in immune cells. Either too little or too much PI3K activity is deleterious, even pathogenic-it needs to be "just right"! This has been elegantly demonstrated by the identification of inborn errors of immunity in key components of the PI3K pathway, and the impact of these mutations on immune regulation. Detailed analyses of patients with germline activating mutations in PIK3CD, as well as the parallel generation of novel murine models of this disease, have shed substantial light on the role of PI3K in lymphocyte development and differentiation, and mechanisms of disease pathogenesis resulting not only from PIK3CD mutations but genetic lesions in other components of the PI3K pathway. Furthermore, by being able to pharmacologically target PI3K, these monogenic conditions have provided opportunities for the implementation of precision medicine as a therapy, as well as to gain further insight into the consequences of modulating the PI3K pathway in clinical settings.
Collapse
Affiliation(s)
- Stuart G Tangye
- Immunology, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia. .,St Vincent's Clinical School, University of New South Wales, Darlinghurst, Australia.
| | - Julia Bier
- Immunology, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, University of New South Wales, Darlinghurst, Australia
| | - Anthony Lau
- Immunology, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, University of New South Wales, Darlinghurst, Australia
| | - Tina Nguyen
- Immunology, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, University of New South Wales, Darlinghurst, Australia
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Elissa K Deenick
- Immunology, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, University of New South Wales, Darlinghurst, Australia
| |
Collapse
|
29
|
Zhang Q, Ma H, Ma J, Wang D, Zhao Y, Wang T, Li Z, Wu R, Zhang R. Clinical and genetic analysis of immunodeficiency-related diseases associated with PIK3CD mutations. Pediatr Investig 2018; 2:257-262. [PMID: 32851276 PMCID: PMC7331349 DOI: 10.1002/ped4.12101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/12/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Qing Zhang
- Hematology and Oncology Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's HealthBeijingChina
| | - Honghao Ma
- Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Department of Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's HealthBeijingChina
| | - Jie Ma
- Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Department of Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's HealthBeijingChina
| | - Dong Wang
- Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Department of Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's HealthBeijingChina
| | - Yunze Zhao
- Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Department of Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's HealthBeijingChina
| | - Tianyou Wang
- Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Department of Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's HealthBeijingChina
| | - Zhigang Li
- Hematology and Oncology Laboratory, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's HealthBeijingChina
| | - Runhui Wu
- Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Department of Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's HealthBeijingChina
| | - Rui Zhang
- Beijing Key Laboratory of Pediatric Hematology Oncology; National Key Discipline of Pediatrics (Capital Medical University); Key Laboratory of Major Diseases in Children, Ministry of Education; Department of Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's HealthBeijingChina
| |
Collapse
|
30
|
Wang Y, Wang W, Liu L, Hou J, Ying W, Hui X, Zhou Q, Liu D, Yao H, Sun J, Wang X. Report of a Chinese Cohort with Activated Phosphoinositide 3-Kinase δ Syndrome. J Clin Immunol 2018; 38:854-863. [PMID: 30499059 DOI: 10.1007/s10875-018-0568-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/06/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE We aimed to report the clinical manifestations and immunological features of activated phosphatidylinositol 3-kinase δ syndrome 1 (APDS1) in a Chinese cohort. Moreover, we investigated the efficacy and safety of rapamycin therapy for Chinese patients with APDS1. METHODS Fifteen Chinese patients with APDS1 from 14 unrelated families were enrolled in this study. These patients were diagnosed based on clinical features, immunological phenotype, and whole-exome sequencing. Four patients were treated with rapamycin, and the clinical efficacy and safety of rapamycin were observed. The changes of phosphorylation of Akt and mammalian target of rapamycin (mTOR) signaling pathway after rapamycin treatment were detected by flow cytometry and real-time PCR. RESULTS The common clinical manifestations of the patients included lymphadenopathy (93%), recurrent sinopulmonary infections (93%), hepatosplenomegaly (93%), and diarrhea (78%). Epstein-Barr virus (EBV) (80%) and fungus (Aspergillus) (47%) were the most common pathogens. Immunological phenotype included elevated Immunoglobulin (Ig) M levels (100%), decreased naive T cells, increased senescent T cells, and expanded transitional B cells. Whole-exome sequencing indicated that 13 patients had heterogeneous PIK3CD E1021K mutations, 1 patient had heterogeneous E1025G mutation and 1 patient had heterogeneous Y524N mutation. Gain-of-function (GOF) PIK3CD mutations increased the phosphorylation of the Akt-mTOR signaling pathway. Four patients underwent rapamycin therapy, experiencing substantial improvement in clinical symptoms and immunological phenotype. Rapamycin inhibited the activated Akt-mTOR signaling pathway. CONCLUSIONS We described 15 Chinese patients with APDS1. Treatment with the mTOR inhibitor rapamycin improved patient outcomes.
Collapse
Affiliation(s)
- Ying Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Wenjie Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Luyao Liu
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Jia Hou
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Wenjing Ying
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Xiaoying Hui
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Qinhua Zhou
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Danru Liu
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Haili Yao
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China
| | - Jinqiao Sun
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| | - Xiaochuan Wang
- Department of Clinical Immunology, Children's Hospital of Fudan University, 399 Wanyuan Road, Shanghai, 201102, China.
| |
Collapse
|
31
|
Jhamnani RD, Nunes-Santos CJ, Bergerson J, Rosenzweig SD. Class-Switch Recombination (CSR)/Hyper-IgM (HIGM) Syndromes and Phosphoinositide 3-Kinase (PI3K) Defects. Front Immunol 2018; 9:2172. [PMID: 30319630 PMCID: PMC6168630 DOI: 10.3389/fimmu.2018.02172] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 09/03/2018] [Indexed: 11/13/2022] Open
Abstract
Antibody production and function represent an essential part of the immune response, particularly in fighting bacterial and viral infections. Multiple immunological phenotypes can result in dysregulation of the immune system humoral compartment, including class-switch recombination (CSR) defects associated with hyper-IgM (HIGM) syndromes. The CSR/HIGM syndromes are defined by the presence of normal or elevated plasma IgM levels in the context of low levels of switched IgG, IgA, and IgE isotypes. Recently described autosomal dominant gain-of-function (GOF) mutations in PIK3CD and PIK3R1 cause combined immunodeficiencies that can also present as CSR/HIGM defects. These defects, their pathophysiology and derived clinical manifestations are described in depth. Previously reported forms of CSR/HIGM syndromes are briefly reviewed and compared to the phosphoinositide 3-kinase (PI3K) pathway defects. Diseases involving the PI3K pathway represent a distinctive subset of CSR/HIGM syndromes, presenting with their own characteristic clinical and laboratory attributes as well as individual therapeutic approaches.
Collapse
Affiliation(s)
- Rekha D Jhamnani
- Allergy and Immunology Fellowship Program, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Cristiane J Nunes-Santos
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, United States.,Instituto da Crianca, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Jenna Bergerson
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, National Institutes of Health Clinical Center, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
32
|
Abstract
Activated phosphoinositide 3-kinase δ syndrome (APDS), also known as PASLI disease (p110d-activating mutation causing senescent T cells, lymphadenopathy, and immunodeficiency) are combined immunodeficiencies resulting from gain-of-function mutations in the genes (PIK3CD and PIK3R1) encoding the subunits of phosphoinositide 3-kinase δ (PI3Kδ) and were first described in 2013. These mutations result in the hyperactivation of the PI3K/AKT/mTOR/S6K signally pathways. In this mini-review we have detailed the current treatment options for APDS. These treatments including conventional immunodeficiency therapies such as immunoglobulin replacement, antibiotic prophylaxis, and hematopoietic stem cell transplant. We also discuss the more targeted therapies of mTOR inhibition with sirolimus and selective PI3Kδ inhibitors.
Collapse
Affiliation(s)
- Tanya I. Coulter
- Regional Immunology Service, Belfast Health and Social Care TrustBelfast, United Kingdom
| | - Andrew J. Cant
- Department of Paediatric Immunology and Stem Cell Transplant Unit, Newcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon Tyne, United Kingdom
| |
Collapse
|
33
|
Avery DT, Kane A, Nguyen T, Lau A, Nguyen A, Lenthall H, Payne K, Shi W, Brigden H, French E, Bier J, Hermes JR, Zahra D, Sewell WA, Butt D, Elliott M, Boztug K, Meyts I, Choo S, Hsu P, Wong M, Berglund LJ, Gray P, O'Sullivan M, Cole T, Holland SM, Ma CS, Burkhart C, Corcoran LM, Phan TG, Brink R, Uzel G, Deenick EK, Tangye SG. Germline-activating mutations in PIK3CD compromise B cell development and function. J Exp Med 2018; 215:2073-2095. [PMID: 30018075 PMCID: PMC6080914 DOI: 10.1084/jem.20180010] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/15/2018] [Accepted: 06/20/2018] [Indexed: 11/04/2022] Open
Abstract
Gain-of-function (GOF) mutations in PIK3CD, encoding the p110δ subunit of phosphatidylinositide 3-kinase (PI3K), cause a primary immunodeficiency. Affected individuals display impaired humoral immune responses following infection or immunization. To establish mechanisms underlying these immune defects, we studied a large cohort of patients with PIK3CD GOF mutations and established a novel mouse model using CRISPR/Cas9-mediated gene editing to introduce a common pathogenic mutation in Pik3cd In both species, hyperactive PI3K severely affected B cell development and differentiation in the bone marrow and the periphery. Furthermore, PI3K GOF B cells exhibited intrinsic defects in class-switch recombination (CSR) due to impaired induction of activation-induced cytidine deaminase (AID) and failure to acquire a plasmablast gene signature and phenotype. Importantly, defects in CSR, AID expression, and Ig secretion were restored by leniolisib, a specific p110δ inhibitor. Our findings reveal key roles for balanced PI3K signaling in B cell development and long-lived humoral immunity and memory and establish the validity of treating affected individuals with p110δ inhibitors.
Collapse
Affiliation(s)
- Danielle T Avery
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Alisa Kane
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW), New South Wales, Australia.,Department of Immunology and Allergy, Liverpool Hospital, Liverpool, New South Wales, Australia.,South Western Sydney Clinical School, UNSW Sydney, Liverpool, New South Wales, Australia.,Clinical Immunogenomics Research Consortia Australia (CIRCA), Sydney, New South Wales, Australia
| | - Tina Nguyen
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW), New South Wales, Australia
| | - Anthony Lau
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW), New South Wales, Australia
| | - Akira Nguyen
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW), New South Wales, Australia
| | - Helen Lenthall
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Kathryn Payne
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Wei Shi
- Molecular Immunology and Bioinformatics Divisions, Walter & Eliza Hall Institute for Medical Research, Parkville, Victoria, Australia.,University of Melbourne, Parkville, Victoria, Australia
| | - Henry Brigden
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Elise French
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Julia Bier
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW), New South Wales, Australia
| | - Jana R Hermes
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - David Zahra
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - William A Sewell
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW), New South Wales, Australia.,Immunology Department, SydPath, St. Vincent's Hospital, Sydney, New South Wales, Australia
| | - Danyal Butt
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW), New South Wales, Australia
| | - Michael Elliott
- Sydney Medical School, University of Sydney, Sydney, Australia.,Chris O'Brien Lifehouse Cancer Centre, Royal Prince Alfred Hospital, Sydney, Australia
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,St. Anna Children's Hospital and Children's Cancer Research Institute, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Isabelle Meyts
- Department of Immunology and Microbiology, Childhood Immunology, Department of Pediatrics, University Hospitals Leuven and KU Leuven, Leuven, Belgium
| | - Sharon Choo
- Department of Allergy and Immunology, Royal Children's Hospital Melbourne, Victoria, Australia
| | - Peter Hsu
- Clinical Immunogenomics Research Consortia Australia (CIRCA), Sydney, New South Wales, Australia.,Children's Hospital at Westmead, New South Wales, Australia
| | - Melanie Wong
- Clinical Immunogenomics Research Consortia Australia (CIRCA), Sydney, New South Wales, Australia.,Children's Hospital at Westmead, New South Wales, Australia
| | - Lucinda J Berglund
- Clinical Immunogenomics Research Consortia Australia (CIRCA), Sydney, New South Wales, Australia.,Immunopathology Department, Westmead Hospital, Westmead, New South Wales, Australia.,Faculty of Medicine, University of Sydney, Sydney, New South Wales, Australia
| | - Paul Gray
- Clinical Immunogenomics Research Consortia Australia (CIRCA), Sydney, New South Wales, Australia.,University of New South Wales School of Women's and Children's Health, New South Wales, Australia
| | - Michael O'Sullivan
- Department of Immunology and Allergy, Princess Margaret Hospital, Subiaco, Western Australia, Australia
| | - Theresa Cole
- Department of Allergy and Immunology, Royal Children's Hospital Melbourne, Victoria, Australia
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Cindy S Ma
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW), New South Wales, Australia.,Clinical Immunogenomics Research Consortia Australia (CIRCA), Sydney, New South Wales, Australia
| | - Christoph Burkhart
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Lynn M Corcoran
- Molecular Immunology and Bioinformatics Divisions, Walter & Eliza Hall Institute for Medical Research, Parkville, Victoria, Australia.,University of Melbourne, Parkville, Victoria, Australia
| | - Tri Giang Phan
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW), New South Wales, Australia.,Clinical Immunogenomics Research Consortia Australia (CIRCA), Sydney, New South Wales, Australia
| | - Robert Brink
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW), New South Wales, Australia.,Clinical Immunogenomics Research Consortia Australia (CIRCA), Sydney, New South Wales, Australia
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Elissa K Deenick
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia .,St. Vincent's Clinical School, University of New South Wales (UNSW), New South Wales, Australia.,Clinical Immunogenomics Research Consortia Australia (CIRCA), Sydney, New South Wales, Australia
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia .,St. Vincent's Clinical School, University of New South Wales (UNSW), New South Wales, Australia.,Clinical Immunogenomics Research Consortia Australia (CIRCA), Sydney, New South Wales, Australia
| |
Collapse
|
34
|
Nunes-Santos CDJ, Rosenzweig SD. Bacille Calmette-Guerin Complications in Newly Described Primary Immunodeficiency Diseases: 2010-2017. Front Immunol 2018; 9:1423. [PMID: 29988375 PMCID: PMC6023996 DOI: 10.3389/fimmu.2018.01423] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/07/2018] [Indexed: 12/25/2022] Open
Abstract
Bacille Calmette–Guerin (BCG) vaccine is widely used as a prevention strategy against tuberculosis. BCG is a live vaccine, usually given early in life in most countries. While safe to most recipients, it poses a risk to immunocompromised patients. Several primary immunodeficiency diseases (PIDD) have been classically associated with complications related to BCG vaccine. However, a number of new inborn errors of immunity have been described lately in which little is known about adverse reactions following BCG vaccination. The aim of this review is to summarize the existing data on BCG-related complications in patients diagnosed with PIDD described since 2010. When BCG vaccination status or complications were not specifically addressed in those manuscripts, we directly contacted the corresponding authors for further clarification. We also analyzed data on other mycobacterial infections in these patients. Based on our analysis, around 8% of patients with gain-of-function mutations in STAT1 had mycobacterial infections, including localized complications in 3 and disseminated disease in 4 out of 19 BCG-vaccinated patients. Localized BCG reactions were also frequent in activated PI3Kδ syndrome type 1 (3/10) and type 2 (2/18) vaccinated children. Also, of note, no BCG-related complications have been described in either CTLA4 or LRBA protein-deficient patients; and not enough information on BCG-vaccinated NFKB1 or NFKB2-deficient patients was available to drive any conclusions about these diseases. Despite the high prevalence of environmental mycobacterial infections in GATA2-deficient patients, only one case of BCG reaction has been reported in a patient who developed disseminated disease. In conclusion, BCG complications could be expected in some particular, recently described PIDD and it remains a preventable risk factor for pediatric PIDD patients.
Collapse
Affiliation(s)
- Cristiane de Jesus Nunes-Santos
- Faculdade de Medicina, Instituto da Crianca, Universidade de São Paulo, São Paulo, Brazil.,Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, NIH Clinical Center, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
35
|
Jung S, Gámez-Díaz L, Proietti M, Grimbacher B. "Immune TOR-opathies," a Novel Disease Entity in Clinical Immunology. Front Immunol 2018; 9:966. [PMID: 29867948 PMCID: PMC5954032 DOI: 10.3389/fimmu.2018.00966] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/18/2018] [Indexed: 12/30/2022] Open
Abstract
Primary immunodeficiencies (PIDs) represent a group of mostly monogenic disorders caused by loss- or gain-of-function mutations in over 340 known genes that lead to abnormalities in the development and/or the function of the immune system. However, mutations in different genes can affect the same cell-signaling pathway and result in overlapping clinical phenotypes. In particular, mutations in the genes encoding for members of the phosphoinositide3-kinase (PI3K)/AKT/mTOR/S6 kinase (S6K) signaling cascade or for molecules interacting with this pathway have been associated with different PIDs that are often characterized by the coexistence of both immune deficiency and autoimmunity. The serine/threonine kinase mechanistic/mammalian target of rapamycin (mTOR), which acts downstream of PI3K and AKT, is emerging as a key regulator of immune responses. It integrates a variety of signals from the microenvironment to control cell growth, proliferation, and metabolism. mTOR plays therefore a central role in the regulation of immune cells’ differentiation and functions. Here, we review the different PIDs that share an impairment of the PI3K/AKT/mTOR/S6K pathway and we propose to name them “immune TOR-opathies” by analogy with a group of neurological disorders that has been originally defined by PB Crino and that are due to aberrant mTOR signaling (1). A better understanding of the role played by this complex intracellular cascade in the pathophysiology of “immune TOR-opathies” is crucial to develop targeted therapies.
Collapse
Affiliation(s)
- Sophie Jung
- CNRS, UPR 3572 (I2CT), Institut de Biologie Moléculaire et Cellulaire (IBMC), Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Pôle de Médecine et de Chirurgie Bucco-Dentaires, Strasbourg - Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France.,Center for Chronic Immunodeficiency (CCI), Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Laura Gámez-Díaz
- Center for Chronic Immunodeficiency (CCI), Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michele Proietti
- Center for Chronic Immunodeficiency (CCI), Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency (CCI), Medical Center - Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
36
|
Dornan GL, Burke JE. Molecular Mechanisms of Human Disease Mediated by Oncogenic and Primary Immunodeficiency Mutations in Class IA Phosphoinositide 3-Kinases. Front Immunol 2018; 9:575. [PMID: 29616047 PMCID: PMC5868324 DOI: 10.3389/fimmu.2018.00575] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/07/2018] [Indexed: 12/13/2022] Open
Abstract
The signaling lipid phosphatidylinositol 3,4,5, trisphosphate (PIP3) is an essential mediator of many vital cellular processes, including growth, survival, and metabolism. PIP3 is generated through the action of the class I phosphoinositide 3-kinases (PI3K), and their activity is tightly controlled through interactions with regulatory proteins and activating stimuli. The class IA PI3Ks are composed of three distinct p110 catalytic subunits (p110α, p110β, and p110δ), and they play different roles in specific tissues due to disparities in both expression and engagement downstream of cell-surface receptors. Disruption of PI3K regulation is a frequent driver of numerous human diseases. Activating mutations in the PIK3CA gene encoding the p110α catalytic subunit of class IA PI3K are frequently mutated in several cancer types, and mutations in the PIK3CD gene encoding the p110δ catalytic subunit have been identified in primary immunodeficiency patients. All class IA p110 subunits interact with p85 regulatory subunits, and mutations/deletions in different p85 regulatory subunits have been identified in both cancer and primary immunodeficiencies. In this review, we will summarize our current understanding for the molecular basis of how class IA PI3K catalytic activity is regulated by p85 regulatory subunits, and how activating mutations in the PI3K catalytic subunits PIK3CA and PIK3CD (p110α, p110δ) and regulatory subunits PIK3R1 (p85α) mediate PI3K activation and human disease.
Collapse
Affiliation(s)
- Gillian L Dornan
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
37
|
Maccari ME, Abolhassani H, Aghamohammadi A, Aiuti A, Aleinikova O, Bangs C, Baris S, Barzaghi F, Baxendale H, Buckland M, Burns SO, Cancrini C, Cant A, Cathébras P, Cavazzana M, Chandra A, Conti F, Coulter T, Devlin LA, Edgar JDM, Faust S, Fischer A, Garcia-Prat M, Hammarström L, Heeg M, Jolles S, Karakoc-Aydiner E, Kindle G, Kiykim A, Kumararatne D, Grimbacher B, Longhurst H, Mahlaoui N, Milota T, Moreira F, Moshous D, Mukhina A, Neth O, Neven B, Nieters A, Olbrich P, Ozen A, Pachlopnik Schmid J, Picard C, Prader S, Rae W, Reichenbach J, Rusch S, Savic S, Scarselli A, Scheible R, Sediva A, Sharapova SO, Shcherbina A, Slatter M, Soler-Palacin P, Stanislas A, Suarez F, Tucci F, Uhlmann A, van Montfrans J, Warnatz K, Williams AP, Wood P, Kracker S, Condliffe AM, Ehl S. Disease Evolution and Response to Rapamycin in Activated Phosphoinositide 3-Kinase δ Syndrome: The European Society for Immunodeficiencies-Activated Phosphoinositide 3-Kinase δ Syndrome Registry. Front Immunol 2018; 9:543. [PMID: 29599784 PMCID: PMC5863269 DOI: 10.3389/fimmu.2018.00543] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 03/02/2018] [Indexed: 02/02/2023] Open
Abstract
Activated phosphoinositide 3-kinase (PI3K) δ Syndrome (APDS), caused by autosomal dominant mutations in PIK3CD (APDS1) or PIK3R1 (APDS2), is a heterogeneous primary immunodeficiency. While initial cohort-descriptions summarized the spectrum of clinical and immunological manifestations, questions about long-term disease evolution and response to therapy remain. The prospective European Society for Immunodeficiencies (ESID)-APDS registry aims to characterize the disease course, identify outcome predictors, and evaluate treatment responses. So far, 77 patients have been recruited (51 APDS1, 26 APDS2). Analysis of disease evolution in the first 68 patients pinpoints the early occurrence of recurrent respiratory infections followed by chronic lymphoproliferation, gastrointestinal manifestations, and cytopenias. Although most manifestations occur by age 15, adult-onset and asymptomatic courses were documented. Bronchiectasis was observed in 24/40 APDS1 patients who received a CT-scan compared with 4/15 APDS2 patients. By age 20, half of the patients had received at least one immunosuppressant, but 2-3 lines of immunosuppressive therapy were not unusual before age 10. Response to rapamycin was rated by physician visual analog scale as good in 10, moderate in 9, and poor in 7. Lymphoproliferation showed the best response (8 complete, 11 partial, 6 no remission), while bowel inflammation (3 complete, 3 partial, 9 no remission) and cytopenia (3 complete, 2 partial, 9 no remission) responded less well. Hence, non-lymphoproliferative manifestations should be a key target for novel therapies. This report from the ESID-APDS registry provides comprehensive baseline documentation for a growing cohort that will be followed prospectively to establish prognostic factors and identify patients for treatment studies.
Collapse
Affiliation(s)
- Maria Elena Maccari
- Center for Chronic Immunodeficiency, Medical Center
– University of Freiburg, Freiburg,
Germany,Department of Pediatrics and Adolescent Medicine,
Medical Center – University of Freiburg,
Freiburg, Germany,*Correspondence: Maria Elena Maccari,
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of
Laboratory Medicine, Karolinska Institute at Karolinska University Hospital
Huddinge, Stockholm,
Sweden,Research Center for Immunodeficiencies, Pediatric
Center of Excellence, Children’s Medical Center, Tehran University of Medical
Sciences, Tehran, Iran
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatric
Center of Excellence, Children’s Medical Center, Tehran University of Medical
Sciences, Tehran, Iran
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy
(SR-TIGET), Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS
San Raffaele Scientific Institute, Milan,
Italy
| | - Olga Aleinikova
- Research Department, Belarusian Research Center for
Pediatric Oncology, Hematology and Immunology,
Minsk, Belarus
| | - Catherine Bangs
- Central Manchester University Hospitals NHS
Foundation Trust, Manchester, United
Kingdom
| | - Safa Baris
- Division of Pediatric Allergy/Immunology, Marmara
University, Istanbul,
Turkey
| | - Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy
(SR-TIGET), Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS
San Raffaele Scientific Institute, Milan,
Italy
| | - Helen Baxendale
- Cambridge Centre for Lung Defense, Papworth
Hospital, Cambridge, United
Kingdom
| | - Matthew Buckland
- Institute of Immunity and Transplantation, Royal
Free Hospital, London, United
Kingdom
| | - Siobhan O. Burns
- Institute of Immunity and Transplantation, Royal
Free Hospital, London, United
Kingdom
| | - Caterina Cancrini
- University Department of Pediatrics, Bambino
Gesù Children’s Hospital IRCCS,
Rome, Italy,Department of Systems Medicine, University of
Rome Tor Vergata, Rome,
Italy
| | - Andrew Cant
- Department of Paediatric Immunology, Newcastle
upon Tyne Hospital NHS Foundation Trust, Newcastle upon
Tyne, United Kingdom
| | - Pascal Cathébras
- Internal Medicine, University Hospital of
Saint-Etienne, Saint-Etienne,
France
| | - Marina Cavazzana
- Biotherapy Department, Assistance
Publique-Hôpitaux de Paris (AP-HP), Necker Children’s
Hospital, Paris, France,Laboratory of Human Lymphohematopoiesis, INSERM
UMR 1163, Imagine Institute, Paris,
France,Paris Descartes-Sorbonne Paris Cité
University, Paris,
France
| | - Anita Chandra
- Department of Clinical Immunology, Addenbrookes
Hospital, Cambridge, United
Kingdom,Department of Medicine, University of
Cambridge, Cambridge, United
Kingdom
| | - Francesca Conti
- University Department of Pediatrics, Bambino
Gesù Children’s Hospital IRCCS,
Rome, Italy,Department of Systems Medicine, University of
Rome Tor Vergata, Rome,
Italy
| | - Tanya Coulter
- Regional Immunology Service, The Royal Hospitals
& Queen’s University, Belfast,
United Kingdom
| | - Lisa A. Devlin
- Regional Immunology Service, The Royal Hospitals
& Queen’s University, Belfast,
United Kingdom
| | - J. David M. Edgar
- Regional Immunology Service, The Royal Hospitals
& Queen’s University, Belfast,
United Kingdom
| | - Saul Faust
- NIHR Clinical Research Facility, University
Hospital Southampton NHSFT, Southampton,
United Kingdom
| | - Alain Fischer
- Paris Descartes-Sorbonne Paris Cité
University, Paris,
France,Department of Pediatric Immunology, Hematology
and Rheumatology, Assistance Publique-Hôpitaux de Paris (AP-HP), Necker
Children’s Hospital, Paris,
France,INSERM UMR 1163, Imagine Institute,
Paris, France
| | - Marina Garcia-Prat
- Pediatric Infectious Diseases and
Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Vall
d’Hebron Research Institute (VHIR),
Barcelona, Spain
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of
Laboratory Medicine, Karolinska Institute at Karolinska University Hospital
Huddinge, Stockholm,
Sweden
| | - Maximilian Heeg
- Center for Chronic Immunodeficiency, Medical Center
– University of Freiburg, Freiburg,
Germany,Department of Pediatrics and Adolescent Medicine,
Medical Center – University of Freiburg,
Freiburg, Germany
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University
Hospital of Wales, Cardiff, United
Kingdom
| | | | - Gerhard Kindle
- Center for Chronic Immunodeficiency, Medical Center
– University of Freiburg, Freiburg,
Germany
| | - Ayca Kiykim
- Division of Pediatric Allergy/Immunology, Marmara
University, Istanbul,
Turkey
| | | | - Bodo Grimbacher
- Center for Chronic Immunodeficiency, Medical Center
– University of Freiburg, Freiburg,
Germany
| | - Hilary Longhurst
- Institute of Immunity and Transplantation, Royal
Free Hospital, London, United
Kingdom
| | - Nizar Mahlaoui
- Department of Pediatric Immunology, Hematology
and Rheumatology, Assistance Publique-Hôpitaux de Paris (AP-HP), Necker
Children’s Hospital, Paris,
France,French National Reference Center for Primary
Immune Deficiencies (CEREDIH), Necker Enfants Malades University Hospital, Assistance
Publique-Hôpitaux de Paris, Paris,
France
| | - Tomas Milota
- Department of Immunology, 2nd Faculty of Medicine
Charles University and Motol University Hospital,
Prague, Czechia
| | - Fernando Moreira
- Institute of Immunity and Transplantation, Royal
Free Hospital, London, United
Kingdom
| | - Despina Moshous
- Paris Descartes-Sorbonne Paris Cité
University, Paris,
France,Department of Pediatric Immunology, Hematology
and Rheumatology, Assistance Publique-Hôpitaux de Paris (AP-HP), Necker
Children’s Hospital, Paris,
France,INSERM UMR 1163, Imagine Institute,
Paris, France
| | - Anna Mukhina
- Department of Immunology, Research and Clinical
Center for Pediatric Hematology, Oncology and Immunology,
Moscow, Russia
| | - Olaf Neth
- Sección de Infectologıa,
Rheumatología and Inmunodeficiencias, Unidad de Pediatria, Hospital Virgen
del Rocıo, Instituto de Biomedicina de Sevilla (IBiS),
Sevilla, Spain
| | - Benedicte Neven
- Paris Descartes-Sorbonne Paris Cité
University, Paris,
France,Department of Pediatric Immunology, Hematology
and Rheumatology, Assistance Publique-Hôpitaux de Paris (AP-HP), Necker
Children’s Hospital, Paris,
France,Laboratory of Immunogenetics of Pediatric
Autoimmunity, INSERM UMR 1163, Imagine Institute,
Paris, France
| | - Alexandra Nieters
- Center for Chronic Immunodeficiency, Medical Center
– University of Freiburg, Freiburg,
Germany
| | - Peter Olbrich
- Sección de Infectologıa,
Rheumatología and Inmunodeficiencias, Unidad de Pediatria, Hospital Virgen
del Rocıo, Instituto de Biomedicina de Sevilla (IBiS),
Sevilla, Spain
| | - Ahmet Ozen
- Division of Pediatric Allergy/Immunology, Marmara
University, Istanbul,
Turkey
| | - Jana Pachlopnik Schmid
- Division of Immunology, University
Children’s Hospital Zurich and Children’s Research Centre, University
Zurich, Zurich,
Switzerland
| | - Capucine Picard
- Study Center for Primary Immunodeficiencies,
Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris
(AP-HP), Necker Medical School, Paris,
France,Laboratory of Lymphocyte Activation and
Susceptibility to EBV Infection, INSERM UMR 1163, Imagine Institute,
Paris, France
| | - Seraina Prader
- Division of Immunology, University
Children’s Hospital Zurich and Children’s Research Centre, University
Zurich, Zurich,
Switzerland
| | - William Rae
- NIHR Clinical Research Facility, University
Hospital Southampton NHSFT, Southampton,
United Kingdom
| | - Janine Reichenbach
- Division of Immunology, University
Children’s Hospital Zurich and Children’s Research Centre, University
Zurich, Zurich,
Switzerland
| | - Stephan Rusch
- Center for Chronic Immunodeficiency, Medical Center
– University of Freiburg, Freiburg,
Germany
| | - Sinisa Savic
- Study Center for Primary Immunodeficiencies,
Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris
(AP-HP), Necker Medical School, Paris,
France
| | - Alessia Scarselli
- University Department of Pediatrics, Bambino
Gesù Children’s Hospital IRCCS,
Rome, Italy,Department of Systems Medicine, University of
Rome Tor Vergata, Rome,
Italy
| | - Raphael Scheible
- Center for Chronic Immunodeficiency, Medical Center
– University of Freiburg, Freiburg,
Germany
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine
Charles University and Motol University Hospital,
Prague, Czechia
| | - Svetlana O. Sharapova
- Research Department, Belarusian Research Center for
Pediatric Oncology, Hematology and Immunology,
Minsk, Belarus
| | - Anna Shcherbina
- Department of Immunology, Research and Clinical
Center for Pediatric Hematology, Oncology and Immunology,
Moscow, Russia
| | - Mary Slatter
- Department of Systems Medicine, University of
Rome Tor Vergata, Rome,
Italy
| | - Pere Soler-Palacin
- Pediatric Infectious Diseases and
Immunodeficiencies Unit, Hospital Universitari Vall d’Hebron, Vall
d’Hebron Research Institute (VHIR),
Barcelona, Spain
| | - Aurelie Stanislas
- Biotherapy Department, Assistance
Publique-Hôpitaux de Paris (AP-HP), Necker Children’s
Hospital, Paris, France
| | | | - Francesca Tucci
- San Raffaele Telethon Institute for Gene Therapy
(SR-TIGET), Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS
San Raffaele Scientific Institute, Milan,
Italy
| | - Annette Uhlmann
- Center for Chronic Immunodeficiency, Medical Center
– University of Freiburg, Freiburg,
Germany
| | | | - Klaus Warnatz
- Center for Chronic Immunodeficiency, Medical Center
– University of Freiburg, Freiburg,
Germany
| | - Anthony Peter Williams
- NIHR Clinical Research Facility, University
Hospital Southampton NHSFT, Southampton,
United Kingdom
| | - Phil Wood
- Department of Clinical Immunology and Allergy, St
James’s University Hospital, Leeds,
United Kingdom
| | - Sven Kracker
- Laboratory of Human Lymphohematopoiesis, INSERM
UMR 1163, Imagine Institute, Paris,
France,Paris Descartes-Sorbonne Paris Cité
University, Paris,
France
| | - Alison Mary Condliffe
- Department of Infection, Immunity and
Cardiovascular Science, University of Sheffield,
Sheffield, United Kingdom
| | - Stephan Ehl
- Center for Chronic Immunodeficiency, Medical Center
– University of Freiburg, Freiburg,
Germany,Department of Pediatrics and Adolescent Medicine,
Medical Center – University of Freiburg,
Freiburg, Germany
| |
Collapse
|
38
|
Mace EM. Phosphoinositide-3-Kinase Signaling in Human Natural Killer Cells: New Insights from Primary Immunodeficiency. Front Immunol 2018; 9:445. [PMID: 29563913 PMCID: PMC5845875 DOI: 10.3389/fimmu.2018.00445] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/19/2018] [Indexed: 12/19/2022] Open
Abstract
Human natural killer (NK) cells play a critical role in the control of viral infections and malignancy. Their importance in human health and disease is illustrated by severe viral infections in patients with primary immunodeficiencies that affect NK cell function and/or development. The recent identification of patients with phosphoinositide-3-kinase (PI3K)-signaling pathway mutations that can cause primary immunodeficiency provides valuable insight into the role that PI3K signaling plays in human NK cell maturation and lytic function. There is a rich literature that demonstrates a requirement for PI3K in multiple key aspects of NK cell biology, including development/maturation, homing, priming, and function. Here, I briefly review these previous studies and place them in context with recent findings from the study of primary immunodeficiency patients, particularly those with hyperactivating mutations in PI3Kδ signaling.
Collapse
Affiliation(s)
- Emily M Mace
- Department of Pediatrics, Baylor College of Medicine, Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
39
|
Cohen JI. Herpesviruses in the Activated Phosphatidylinositol-3-Kinase-δ Syndrome. Front Immunol 2018; 9:237. [PMID: 29599765 PMCID: PMC5863522 DOI: 10.3389/fimmu.2018.00237] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 01/26/2018] [Indexed: 11/13/2022] Open
Abstract
The phosphatidylinositol-3-kinase (PI3K)/Akt pathway is important for multiple stages of herpesvirus replication including virus entry, replication, latency, and reactivation. Recently, patients with gain-of-function mutations in the p110δ-catalytic subunit of PI3K or in the p85-regulatory subunit of PI3K have been reported. These patients have constitutively active PI3K with hyperactivation of Akt. They present with lymphoproliferation and often have infections, particularly recurrent respiratory infections and/or severe virus infections. The most frequent virus infections are due to Epstein-Barr virus (EBV) and cytomegalovirus (CMV); patients often present with persistent EBV and/or CMV viremia, EBV lymphoproliferative disease, or CMV lymphadenitis. No patients have been reported with CMV pneumonia, colitis, or retinitis. Other herpesvirus infections have included herpes simplex pneumonia, recurrent zoster, and varicella after vaccination with the varicella vaccine. Additional viral infections have included adenovirus viremia, severe warts, and extensive Molluscum contagiosum virus infection. The increased susceptibility to virus infections in these patients is likely due to a reduced number of long-lived memory CD8 T cells and an increased number of terminally differentiated effector CD8 T cells.
Collapse
Affiliation(s)
- Jeffrey I Cohen
- Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
40
|
Carpier JM, Lucas CL. Epstein-Barr Virus Susceptibility in Activated PI3Kδ Syndrome (APDS) Immunodeficiency. Front Immunol 2018; 8:2005. [PMID: 29387064 PMCID: PMC5776011 DOI: 10.3389/fimmu.2017.02005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/26/2017] [Indexed: 12/18/2022] Open
Abstract
Activated PI3Kδ Syndrome (APDS) is an inherited immune disorder caused by heterozygous, gain-of-function mutations in the genes encoding the phosphoinositide 3-kinase delta (PI3Kδ) subunits p110δ or p85δ. This recently described primary immunodeficiency disease (PID) is characterized by recurrent sinopulmonary infections, lymphoproliferation, and susceptibility to herpesviruses, with Epstein–Barr virus (EBV) infection being most notable. A broad range of PIDs having disparate, molecularly defined genetic etiology can cause susceptibility to EBV, lymphoproliferative disease, and lymphoma. Historically, PID patients with loss-of-function mutations causing defective cell-mediated cytotoxicity or antigen receptor signaling were found to be highly susceptible to pathological EBV infection. By contrast, the gain of function in PI3K signaling observed in APDS patients paradoxically renders these patients susceptible to EBV, though the underlying mechanisms are incompletely understood. At a cellular level, APDS patients exhibit deranged B lymphocyte development and defects in class switch recombination, which generally lead to defective immunoglobulin production. Moreover, APDS patients also demonstrate an abnormal skewing of T cells toward terminal effectors with short telomeres and senescence markers. Here, we review APDS with a particular focus on how the altered lymphocyte biology in these patients may confer EBV susceptibility.
Collapse
Affiliation(s)
- Jean-Marie Carpier
- Immunobiology Department, Yale University School of Medicine, New Haven, CT, United States
| | - Carrie L Lucas
- Immunobiology Department, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
41
|
Rae W, Gao Y, Ward D, Mattocks CJ, Eren E, Williams AP. A novel germline gain-of-function variant in PIK3CD. Clin Immunol 2017; 181:29-31. [PMID: 28578023 DOI: 10.1016/j.clim.2017.05.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/04/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022]
Affiliation(s)
- William Rae
- Department of Immunology, University Hospital Southampton NHSFT, Southampton, UK; NIHR Wellcome Trust Clinical Research Facility Southampton, University Hospital Southampton NHSFT, University of Southampton, UK.
| | - Yifang Gao
- NIHR Cancer Research UK Experimental Cancer Medicine Centre, Southampton, UK; Wessex Investigational Science Hub Laboratory, University of Southampton, University Hospital Southampton NHSFT, Southampton, UK
| | - Daniel Ward
- Wessex Investigational Science Hub Laboratory, University of Southampton, University Hospital Southampton NHSFT, Southampton, UK; Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK
| | - Christopher J Mattocks
- Wessex Investigational Science Hub Laboratory, University of Southampton, University Hospital Southampton NHSFT, Southampton, UK; Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK
| | - Efrem Eren
- Department of Immunology, University Hospital Southampton NHSFT, Southampton, UK
| | - Anthony P Williams
- Department of Immunology, University Hospital Southampton NHSFT, Southampton, UK; NIHR Cancer Research UK Experimental Cancer Medicine Centre, Southampton, UK; Wessex Investigational Science Hub Laboratory, University of Southampton, University Hospital Southampton NHSFT, Southampton, UK
| |
Collapse
|
42
|
Coulter TI, Chandra A, Bacon CM, Babar J, Curtis J, Screaton N, Goodlad JR, Farmer G, Steele CL, Leahy TR, Doffinger R, Baxendale H, Bernatoniene J, Edgar JDM, Longhurst HJ, Ehl S, Speckmann C, Grimbacher B, Sediva A, Milota T, Faust SN, Williams AP, Hayman G, Kucuk ZY, Hague R, French P, Brooker R, Forsyth P, Herriot R, Cancrini C, Palma P, Ariganello P, Conlon N, Feighery C, Gavin PJ, Jones A, Imai K, Ibrahim MAA, Markelj G, Abinun M, Rieux-Laucat F, Latour S, Pellier I, Fischer A, Touzot F, Casanova JL, Durandy A, Burns SO, Savic S, Kumararatne DS, Moshous D, Kracker S, Vanhaesebroeck B, Okkenhaug K, Picard C, Nejentsev S, Condliffe AM, Cant AJ. Clinical spectrum and features of activated phosphoinositide 3-kinase δ syndrome: A large patient cohort study. J Allergy Clin Immunol 2017; 139:597-606.e4. [PMID: 27555459 PMCID: PMC5292996 DOI: 10.1016/j.jaci.2016.06.021] [Citation(s) in RCA: 310] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 05/02/2016] [Accepted: 06/03/2016] [Indexed: 11/16/2022]
Abstract
BACKGROUND Activated phosphoinositide 3-kinase δ syndrome (APDS) is a recently described combined immunodeficiency resulting from gain-of-function mutations in PIK3CD, the gene encoding the catalytic subunit of phosphoinositide 3-kinase δ (PI3Kδ). OBJECTIVE We sought to review the clinical, immunologic, histopathologic, and radiologic features of APDS in a large genetically defined international cohort. METHODS We applied a clinical questionnaire and performed review of medical notes, radiology, histopathology, and laboratory investigations of 53 patients with APDS. RESULTS Recurrent sinopulmonary infections (98%) and nonneoplastic lymphoproliferation (75%) were common, often from childhood. Other significant complications included herpesvirus infections (49%), autoinflammatory disease (34%), and lymphoma (13%). Unexpectedly, neurodevelopmental delay occurred in 19% of the cohort, suggesting a role for PI3Kδ in the central nervous system; consistent with this, PI3Kδ is broadly expressed in the developing murine central nervous system. Thoracic imaging revealed high rates of mosaic attenuation (90%) and bronchiectasis (60%). Increased IgM levels (78%), IgG deficiency (43%), and CD4 lymphopenia (84%) were significant immunologic features. No immunologic marker reliably predicted clinical severity, which ranged from asymptomatic to death in early childhood. The majority of patients received immunoglobulin replacement and antibiotic prophylaxis, and 5 patients underwent hematopoietic stem cell transplantation. Five patients died from complications of APDS. CONCLUSION APDS is a combined immunodeficiency with multiple clinical manifestations, many with incomplete penetrance and others with variable expressivity. The severity of complications in some patients supports consideration of hematopoietic stem cell transplantation for severe childhood disease. Clinical trials of selective PI3Kδ inhibitors offer new prospects for APDS treatment.
Collapse
Affiliation(s)
- Tanya I Coulter
- Department of Immunology, School of Medicine, Trinity College, Dublin, and St James's Hospital, Dublin, Ireland; Department of Paediatric Immunology and Infectious Diseases, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Anita Chandra
- Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge, United Kingdom; Lymphocyte Signalling & Development, Babraham Institute, Cambridge, United Kingdom; Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Chris M Bacon
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom; Northern England Haemato-Oncology Diagnostic Service, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Judith Babar
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - James Curtis
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nick Screaton
- Department of Radiology, Papworth Hospital NHS Foundation Trust, Papworth Everard Hospital, Cambridge, United Kingdom
| | - John R Goodlad
- Department of Pathology, Western General Hospital, Edinburgh, United Kingdom
| | | | | | - Timothy Ronan Leahy
- Department of Paediatric Immunology and Infectious Diseases, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Rainer Doffinger
- Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge, United Kingdom; National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Helen Baxendale
- Papworth Hospital NHS trust, Papworth Everard, Cambridge, United Kingdom
| | - Jolanta Bernatoniene
- Department of Infectious Disease and Immunology, University Hospitals Bristol NHS Foundation Trust, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - J David M Edgar
- Regional Immunology Service, The Royal Hospitals, Belfast, United Kingdom
| | | | - Stephan Ehl
- Center for Chronic Immunodeficiency, University Hospital Freiburg, Freiburg, Germany
| | - Carsten Speckmann
- Center for Chronic Immunodeficiency, University Hospital Freiburg, Freiburg, Germany; Department of Pediatrics and Adolescent Medicine, University Medical Center, Freiburg, Germany
| | - Bodo Grimbacher
- Center for Chronic Immunodeficiency, University Hospital Freiburg, Freiburg, Germany
| | - Anna Sediva
- Institute of Immunology, University Hospital Motol, Prague, Czech Republic
| | - Tomas Milota
- Institute of Immunology, University Hospital Motol, Prague, Czech Republic
| | - Saul N Faust
- Faculty of Medicine and Institute of Life Sciences, University of Southampton, Southampton, United Kingdom; NIHR Wellcome Trust Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom
| | - Anthony P Williams
- Faculty of Medicine and Institute of Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Grant Hayman
- Department of Immunology, Epsom & St Helier University Hospitals NHS Trust, Surrey, United Kingdom
| | - Zeynep Yesim Kucuk
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Rosie Hague
- Department of Royal Hospital for Children, Glasgow, United Kingdom
| | - Paul French
- Department of Pathology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Richard Brooker
- Royal Aberdeen Childrens' Hospital, Aberdeen, United Kingdom
| | | | - Richard Herriot
- Royal Aberdeen Childrens' Hospital, Aberdeen, United Kingdom
| | - Caterina Cancrini
- Department of Pediatrics, Ospedale Pediatrico Bambino Gesù and University of Rome "Tor Vergata", Rome, Italy
| | - Paolo Palma
- Department of Pediatrics, Ospedale Pediatrico Bambino Gesù and University of Rome "Tor Vergata", Rome, Italy
| | - Paola Ariganello
- Department of Pediatrics, Ospedale Pediatrico Bambino Gesù and University of Rome "Tor Vergata", Rome, Italy
| | - Niall Conlon
- Department of Immunology, School of Medicine, Trinity College, Dublin, and St James's Hospital, Dublin, Ireland
| | - Conleth Feighery
- Department of Immunology, School of Medicine, Trinity College, Dublin, and St James's Hospital, Dublin, Ireland
| | - Patrick J Gavin
- Department of Paediatric Immunology and Infectious Diseases, Our Lady's Children's Hospital Crumlin, Dublin, Ireland
| | - Alison Jones
- Department of Immunology, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Mohammad A A Ibrahim
- King's College London, King's Health Partners, King's College Hospital NHS Foundation Trust, School of Medicine, Division of Asthma, Allergy & Lung Biology, Department of Immunological Medicine, London, United Kingdom
| | - Gašper Markelj
- Department of Allergology, Rheumatology and Clinical Immunology, University Children's Hospital, University Medical Center, Ljubljana, Slovenia
| | - Mario Abinun
- Department of Paediatric Immunology, Newcastle upon Tyne hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, United Kingdom
| | - Frédéric Rieux-Laucat
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; INSERM UMR1163, Paris, France
| | - Sylvain Latour
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; INSERM UMR1163, Paris, France
| | - Isabelle Pellier
- Unité d'Onco-hémato-immunologie Pédiatrique, CHU Angers, Angers, France; Centre de Référence Déficits Immunitaires Héréditaires, AP-HP, Paris, France; Inserm UMR 892, Angers, France; CNRS UMR 6299, Angers, France
| | - Alain Fischer
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; INSERM UMR1163, Paris, France; Department of Pediatric Immunology, Hematology and Rheumatology, AP-HP, Necker Children's Hospital, Paris, France; Collège de France, Paris, France
| | - Fabien Touzot
- Départment de Biothérapie, Centre d'Investigation Clinique intégré en Biothérapies, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; INSERM UMR1163, Paris, France
| | - Jean-Laurent Casanova
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; Department of Pediatric Immunology, Hematology and Rheumatology, AP-HP, Necker Children's Hospital, Paris, France; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Imagine Institute, Necker Children's Hospital, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Howard Hughes Medical Institute, Chevy Chase, Md
| | - Anne Durandy
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; INSERM UMR1163, Paris, France
| | - Siobhan O Burns
- University College London Institute of Immunity and Transplantation, London, United Kingdom
| | - Sinisa Savic
- Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, United Kingdom
| | - D S Kumararatne
- Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Despina Moshous
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; Department of Pediatric Immunology, Hematology and Rheumatology, AP-HP, Necker Children's Hospital, Paris, France
| | - Sven Kracker
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; INSERM UMR1163, Paris, France
| | | | - Klaus Okkenhaug
- Lymphocyte Signalling & Development, Babraham Institute, Cambridge, United Kingdom
| | - Capucine Picard
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France; INSERM UMR1163, Paris, France; Department of Pediatric Immunology, Hematology and Rheumatology, AP-HP, Necker Children's Hospital, Paris, France; Centre de Référence Déficits Immunitaires Héréditaires, AP-HP, Paris, France; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR1163, Imagine Institute, Necker Children's Hospital, Paris, France; St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Sergey Nejentsev
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Alison M Condliffe
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.
| | - Andrew James Cant
- Department of Paediatric Immunology, Newcastle upon Tyne hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom; Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
43
|
Mettman D, Thiffault I, Dinakar C, Saunders C. Immunodeficiency-Associated Lymphoid Hyperplasia As a Cause of Intussusception in a Case of Activated PI3K-δ Syndrome. Front Pediatr 2017; 5:71. [PMID: 28469999 PMCID: PMC5395656 DOI: 10.3389/fped.2017.00071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/22/2017] [Indexed: 11/13/2022] Open
Abstract
Activated PI3K-δ syndrome refers to a recently described primary immunodeficiency syndrome consisting of recurrent sinopulmonary infections, lymphadenopathy, mucosal lymphoid aggregates, increased susceptibility to Epstein-Barr virus and cytomegalovirus, and increased incidence of B-cell lymphomas. Variants in PIK3CD, which encodes the phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit delta isoform, enhance membrane association and kinase activity, resulting in increased signal transduction through the PI3K-Akt pathway. Whole-exome sequencing revealed a pathogenic PIK3CD variant in a patient with history of immunologic impairment, recurrent sinopulmonary infections, and lymphoid hyperplasia presenting as intussusception. This case illustrates that while lymphoid hyperplasia secondary to immunodeficiency is most often unsurprising and non-threatening, it can present as an emergency-like intussusception.
Collapse
Affiliation(s)
- Daniel Mettman
- Department of Pathology and Laboratory Medicine, University of Kansas School of Medicine, Kansas City, MO, USA
| | - Isabelle Thiffault
- Department of Pathology and Laboratory Medicine, University of Kansas School of Medicine, Kansas City, MO, USA.,Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO, USA.,Department of Pathology and Laboratory Medicine, Children's Mercy Hospitals, Kansas City, MO, USA
| | - Chitra Dinakar
- Stanford University School of Medicine, Stanford, CA, USA
| | - Carol Saunders
- Department of Pathology and Laboratory Medicine, University of Kansas School of Medicine, Kansas City, MO, USA.,Center for Pediatric Genomic Medicine, Children's Mercy Hospital, Kansas City, MO, USA.,Department of Pathology and Laboratory Medicine, Children's Mercy Hospitals, Kansas City, MO, USA
| |
Collapse
|
44
|
Lucas CL, Chandra A, Nejentsev S, Condliffe AM, Okkenhaug K. PI3Kδ and primary immunodeficiencies. Nat Rev Immunol 2016; 16:702-714. [PMID: 27616589 PMCID: PMC5291318 DOI: 10.1038/nri.2016.93] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Primary immunodeficiencies are inherited disorders of the immune system, often caused by the mutation of genes required for lymphocyte development and activation. Recently, several studies have identified gain-of-function mutations in the phosphoinositide 3-kinase (PI3K) genes PIK3CD (which encodes p110δ) and PIK3R1 (which encodes p85α) that cause a combined immunodeficiency syndrome, referred to as activated PI3Kδ syndrome (APDS; also known as p110δ-activating mutation causing senescent T cells, lymphadenopathy and immunodeficiency (PASLI)). Paradoxically, both loss-of-function and gain-of-function mutations that affect these genes lead to immunosuppression, albeit via different mechanisms. Here, we review the roles of PI3Kδ in adaptive immunity, describe the clinical manifestations and mechanisms of disease in APDS and highlight new insights into PI3Kδ gleaned from these patients, as well as implications of these findings for clinical therapy.
Collapse
Affiliation(s)
- Carrie L Lucas
- Molecular Development of the Immune System Section, Laboratory of Immunology, and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
- Immunobiology Department, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | - Anita Chandra
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, UK
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Sergey Nejentsev
- Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Alison M Condliffe
- Department of Infection, Immunity &Cardiovascular Disease, University of Sheffield, Sheffield S10 2RX, UK
| | - Klaus Okkenhaug
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge CB22 3AT, UK
| |
Collapse
|
45
|
Worth AJJ, Houldcroft CJ, Booth C. Severe Epstein-Barr virus infection in primary immunodeficiency and the normal host. Br J Haematol 2016; 175:559-576. [PMID: 27748521 DOI: 10.1111/bjh.14339] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV) infection is ubiquitous in humans, but the majority of infections have an asymptomatic or self-limiting clinical course. Rarely, individuals may develop a pathological EBV infection with a variety of life threatening complications (including haemophagocytosis and malignancy) and others develop asymptomatic chronic EBV viraemia. Although an impaired ability to control EBV infection has long been recognised as a hallmark of severe T-cell immunodeficiency, the advent of next generation sequencing has identified a series of Primary Immunodeficiencies in which EBV-related pathology is the dominant feature. Chronic active EBV infection is defined as chronic EBV viraemia associated with systemic lymphoproliferative disease, in the absence of immunodeficiency. Descriptions of larger cohorts of patients with chronic active EBV in recent years have significantly advanced our understanding of this clinical syndrome. In this review we summarise the current understanding of the pathophysiology and natural history of these diseases and clinical syndromes, and discuss approaches to the investigation and treatment of severe or atypical EBV infection.
Collapse
Affiliation(s)
- Austen J J Worth
- Department of Immunology, Great Ormond Street Hospital, London, UK.,Molecular and Cellular Immunology Section, UCL Institute of Child Health, London, UK
| | - Charlotte J Houldcroft
- Infection, Inflammation and Rheumatology Section, UCL Institute of Child Health, London, UK
| | - Claire Booth
- Department of Immunology, Great Ormond Street Hospital, London, UK.,Molecular and Cellular Immunology Section, UCL Institute of Child Health, London, UK
| |
Collapse
|
46
|
Olbrich P, Lorenz M, Cura Daball P, Lucena JM, Rensing-Ehl A, Sanchez B, Führer M, Camacho-Lovillo M, Melon M, Schwarz K, Neth O, Speckmann C. Activated PI3Kδ syndrome type 2: Two patients, a novel mutation, and review of the literature. Pediatr Allergy Immunol 2016; 27:640-4. [PMID: 27116393 DOI: 10.1111/pai.12585] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2016] [Indexed: 02/04/2023]
Abstract
BACKGROUND Autosomal dominant gain-of-function mutations in PIK3R1 encoding for the regulatory subunit (p85α, p55α, and p50α) of Class IA phosphoinositide 3-kinase (PI3K) result in the activated PI3Kδ syndrome (APDS) type 2 characterized by childhood-onset combined immunodeficiency, lymphoproliferation, and immune dysregulation. To improve clinical awareness and understanding of these rare diseases, we reviewed all hitherto published cases with APDS type 1 and type 2 for their clinical and immunologic symptoms and added novel clinical, immunologic, and genetic findings of two patients with APDS type 2. METHODS Clinical, immunologic, and genetic evaluation of two new patients with APDS2 was performed followed by the systematic collection of all available previously published data of patients with APDS1 and APDS2. RESULTS Patients with APDS type 1 (n = 49) and type 2 (n = 15) showed an indistinguishable immunologic phenotype. Overlapping clinical features shared by APDS type 1 and type 2 were observed, but our review also revealed previously unnoticed clinical differences such as remarkably high incidence of microcephaly, poor growth/short stature in patients with APDS2. Clinical management and outcome were variable and included prophylactic antibiotics, immunosuppression, immunoglobulin substitution, and hematopoietic stem cell transplantation. CONCLUSIONS A disease-specific registry collecting prospective and long-term follow-up data of patients with APDS, as currently set up by the European Society for Immunodeficiencies, are needed to better understand the natural history and to optimize treatment concepts and thereby improving the outcome of this heterogenous patient group.
Collapse
Affiliation(s)
- Peter Olbrich
- Seccion de Infectología e Inmunopatología, Unidad de Pediatria, Hospital Virgen del Rocío, Sevilla/Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| | - Myriam Lorenz
- The Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Paola Cura Daball
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - José Manuel Lucena
- Unidad de Inmunología, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Anne Rensing-Ehl
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Berta Sanchez
- Unidad de Inmunología, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Marita Führer
- The Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Marisol Camacho-Lovillo
- Seccion de Infectología e Inmunopatología, Unidad de Pediatria, Hospital Virgen del Rocío, Sevilla/Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| | - Marta Melon
- Seccion de Infectología e Inmunopatología, Unidad de Pediatria, Hospital Virgen del Rocío, Sevilla/Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| | - Klaus Schwarz
- The Institute for Transfusion Medicine, University of Ulm, Ulm, Germany.,Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service, Baden-Württemberg-Hessen, Ulm, Germany
| | - Olaf Neth
- Seccion de Infectología e Inmunopatología, Unidad de Pediatria, Hospital Virgen del Rocío, Sevilla/Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| | - Carsten Speckmann
- Center for Chronic Immunodeficiency (CCI), Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.,Center for Pediatrics, Department of Pediatric Hematology and Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
47
|
Tsujita Y, Mitsui-Sekinaka K, Imai K, Yeh TW, Mitsuiki N, Asano T, Ohnishi H, Kato Z, Sekinaka Y, Zaha K, Kato T, Okano T, Takashima T, Kobayashi K, Kimura M, Kunitsu T, Maruo Y, Kanegane H, Takagi M, Yoshida K, Okuno Y, Muramatsu H, Shiraishi Y, Chiba K, Tanaka H, Miyano S, Kojima S, Ogawa S, Ohara O, Okada S, Kobayashi M, Morio T, Nonoyama S. Phosphatase and tensin homolog (PTEN) mutation can cause activated phosphatidylinositol 3-kinase δ syndrome-like immunodeficiency. J Allergy Clin Immunol 2016; 138:1672-1680.e10. [PMID: 27426521 DOI: 10.1016/j.jaci.2016.03.055] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 02/27/2016] [Accepted: 03/16/2016] [Indexed: 11/15/2022]
Abstract
BACKGROUND Activated phosphatidylinositol 3-kinase δ syndrome (APDS) is a recently discovered primary immunodeficiency disease (PID). Excess phosphatidylinositol 3-kinase (PI3K) activity linked to mutations in 2 PI3K genes, PIK3CD and PIK3R1, causes APDS through hyperphosphorylation of AKT, mammalian target of rapamycin (mTOR), and S6. OBJECTIVE This study aimed to identify novel genes responsible for APDS. METHODS Whole-exome sequencing was performed in Japanese patients with PIDs. Immunophenotype was assessed through flow cytometry. Hyperphosphorylation of AKT, mTOR, and S6 in lymphocytes was examined through immunoblotting, flow cytometry, and multiplex assays. RESULTS We identified heterozygous mutations of phosphatase and tensin homolog (PTEN) in patients with PIDs. Immunoblotting and quantitative PCR analyses indicated that PTEN expression was decreased in these patients. Patients with PTEN mutations and those with PIK3CD mutations, including a novel E525A mutation, were further analyzed. The clinical symptoms and immunologic defects of patients with PTEN mutations, including lymphocytic AKT, mTOR, and S6 hyperphosphorylation, resemble those of patients with APDS. Because PTEN is known to suppress the PI3K pathway, it is likely that defective PTEN results in activation of the PI3K pathway. CONCLUSION PTEN loss-of-function mutations can cause APDS-like immunodeficiency because of aberrant PI3K pathway activation in lymphocytes.
Collapse
Affiliation(s)
- Yuki Tsujita
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | | | - Kohsuke Imai
- Department of Pediatrics, National Defense Medical College, Saitama, Japan; Department of Community Pediatrics, Perinatal and Maternal Medicine, Tokyo Medical and Dental University (TMDU), Tokyo, Japan.
| | - Tzu-Wen Yeh
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Noriko Mitsuiki
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takaki Asano
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Hidenori Ohnishi
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Zenichiro Kato
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu, Japan; Structural Medicine, United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Yujin Sekinaka
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Kiyotaka Zaha
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Tamaki Kato
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| | - Tsubasa Okano
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Takehiro Takashima
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | | | - Mitsuaki Kimura
- Department of Allergy and Clinical Immunology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Tomoaki Kunitsu
- Department of Pediatrics, Shiga University of Medical Science, Shiga, Japan
| | - Yoshihiro Maruo
- Department of Pediatrics, Shiga University of Medical Science, Shiga, Japan
| | - Hirokazu Kanegane
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Masatoshi Takagi
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Yusuke Okuno
- Department of Pediatrics, Nagoya University Gradual School of Medicine, Nagoya, Japan
| | - Hideki Muramatsu
- Department of Pediatrics, Nagoya University Gradual School of Medicine, Nagoya, Japan
| | - Yuichi Shiraishi
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science University of Tokyo, Tokyo, Japan
| | - Kenichi Chiba
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science University of Tokyo, Tokyo, Japan
| | - Hiroko Tanaka
- Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science University of Tokyo, Tokyo, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science University of Tokyo, Tokyo, Japan; Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science University of Tokyo, Tokyo, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Gradual School of Medicine, Nagoya, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Kyoto University, Kyoto, Japan
| | - Osamu Ohara
- Department of Technology Development, Kazusa DNA Research Institute, Chiba, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Shigeaki Nonoyama
- Department of Pediatrics, National Defense Medical College, Saitama, Japan
| |
Collapse
|
48
|
Bogaert DJA, Dullaers M, Lambrecht BN, Vermaelen KY, De Baere E, Haerynck F. Genes associated with common variable immunodeficiency: one diagnosis to rule them all? J Med Genet 2016; 53:575-90. [PMID: 27250108 DOI: 10.1136/jmedgenet-2015-103690] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/10/2016] [Indexed: 12/15/2022]
Abstract
Common variable immunodeficiency (CVID) is a primary antibody deficiency characterised by hypogammaglobulinaemia, impaired production of specific antibodies after immunisation and increased susceptibility to infections. CVID shows a considerable phenotypical and genetic heterogeneity. In contrast to many other primary immunodeficiencies, monogenic forms count for only 2-10% of patients with CVID. Genes that have been implicated in monogenic CVID include ICOS, TNFRSF13B (TACI), TNFRSF13C (BAFF-R), TNFSF12 (TWEAK), CD19, CD81, CR2 (CD21), MS4A1 (CD20), TNFRSF7 (CD27), IL21, IL21R, LRBA, CTLA4, PRKCD, PLCG2, NFKB1, NFKB2, PIK3CD, PIK3R1, VAV1, RAC2, BLK, IKZF1 (IKAROS) and IRF2BP2 With the increasing number of disease genes identified in CVID, it has become clear that CVID is an umbrella diagnosis and that many of these genetic defects cause distinct disease entities. Moreover, there is accumulating evidence that at least a subgroup of patients with CVID has a complex rather than a monogenic inheritance. This review aims to discuss current knowledge regarding the molecular genetic basis of CVID with an emphasis on the relationship with the clinical and immunological phenotype.
Collapse
Affiliation(s)
- Delfien J A Bogaert
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium Department of Pediatric Immunology and Pulmonology, Centre for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium
| | - Melissa Dullaers
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation, VIB Inflammation Research Center, Ghent, Belgium Department of Internal Medicine, Ghent University, Ghent, Belgium
| | - Karim Y Vermaelen
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium Department of Internal Medicine, Ghent University, Ghent, Belgium Tumor Immunology Laboratory, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Filomeen Haerynck
- Clinical Immunology Research Lab, Department of Pulmonary Medicine, Ghent University Hospital, Ghent, Belgium Department of Pediatric Immunology and Pulmonology, Centre for Primary Immunodeficiency, Jeffrey Modell Diagnosis and Research Centre, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
49
|
Janssen WJM, Geluk HCA, Boes M. F-actin remodeling defects as revealed in primary immunodeficiency disorders. Clin Immunol 2016; 164:34-42. [PMID: 26802313 DOI: 10.1016/j.clim.2016.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
Abstract
Primary immunodeficiencies (PIDs) are a heterogeneous group of immune-related diseases. PIDs develop due to defects in gene-products that have consequences to immune cell function. A number of PID-proteins is involved in the remodeling of filamentous actin (f-actin) to support the generation of a contact zone between the antigen-specific T cell and antigen presenting cell (APC): the immunological synapse (IS). IS formation is the first step towards T-cell activation and essential for clonal expansion and acquisition of effector function. We here evaluated PIDs in which aberrant f-actin-driven IS formation may contribute to the PID disease phenotypes as seen in patients. We review examples of such contributions to PID phenotypes from literature, and highlight cases in which PID-proteins were evaluated for a role in f-actin polymerization and IS formation. We conclude with the proposition that patient groups might benefit from stratifying them in distinct functional groups in regard to their f-actin remodeling phenotypes in lymphocytes.
Collapse
Affiliation(s)
- W J M Janssen
- Laboratory of Translational Immunology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - H C A Geluk
- Laboratory of Translational Immunology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - M Boes
- Laboratory of Translational Immunology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands.
| |
Collapse
|
50
|
Abstract
Genomic DNA sequencing technologies have been one of the great advances of the 21st century, having decreased in cost by seven orders of magnitude and opening up new fields of investigation throughout research and clinical medicine. Genomics coupled with biochemical investigation has allowed the molecular definition of a growing number of new genetic diseases that reveal new concepts of immune regulation. Also, defining the genetic pathogenesis of these diseases has led to improved diagnosis, prognosis, genetic counseling, and, most importantly, new therapies. We highlight the investigational journey from patient phenotype to treatment using the newly defined XMEN disease, caused by the genetic loss of the MAGT1 magnesium transporter, as an example. This disease illustrates how genomics yields new fundamental immunoregulatory insights as well as how research genomics is integrated into clinical immunology. At the end, we discuss two other recently described diseases, CHAI/LATAIE (CTLA-4 deficiency) and PASLI (PI3K dysregulation), as additional examples of the journey from unknown immunological diseases to new precision medicine treatments using genomics.
Collapse
Affiliation(s)
- Michael Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immunology, and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland;
| | - Bernice Lo
- Molecular Development of the Immune System Section, Laboratory of Immunology, and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland;
| | - Carrie L Lucas
- Molecular Development of the Immune System Section, Laboratory of Immunology, and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland;
| |
Collapse
|