1
|
Benavides N, White JC, Sanmillan ML, Thomas M, Le T, Caywood E, Giraudo CG. Novel Compound Heterozygous ZAP70 R37G A507T Mutations in Infant with Severe Immunodeficiency. J Clin Immunol 2023; 44:27. [PMID: 38129328 DOI: 10.1007/s10875-023-01608-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
Zeta-chain associated protein kinase 70 kDa (ZAP70) combined immunodeficiency (CID) is an autosomal recessive severe immunodeficiency that is characterized by abnormal T-cell receptor signaling. Children with the disorder typically present during the first year of life with diarrhea, failure to thrive, and recurrent bacterial, viral, or opportunistic infections. To date, the only potential cure is hematopoietic stem cell transplant (HSCT). The majority of described mutations causing disease occur in the homozygous state, though heterozygotes are reported without a clear understanding as to how the individual mutations interact to cause disease. This case describes an infant with novel ZAP-70 deficiency mutations involving the SH2 and kinase domains cured with allogeneic HSCT utilizing a reduced-intensity conditioning regimen and graft manipulation. We then were able to further elucidate the molecular signaling alterations imparted by these mutations that lead to altered immune function. In order to examine the effect of these novel compound ZAP70 heterozygous mutations on T cells, Jurkat CD4+ T cells were transfected with either wild type, or with individual ZAP70 R37G and A507T mutant constructs. Downstream TCR signaling events and protein localization results link these novel mutations to the expected immunological outcome as seen in the patient's primary cells. This study further characterizes mutations in the ZAP70 gene as combined immunodeficiency and the clinical phenotype.
Collapse
Affiliation(s)
- Nathalia Benavides
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA
| | - Jason C White
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA
- Department of Pediatric Hematology/Oncology, Nemours Children's Hospital Delaware, Wilmington, USA
| | - Maria L Sanmillan
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA
| | - Morgan Thomas
- Department of Genetics, Nemours Children's Hospital Delaware, Wilmington, USA
| | - Trong Le
- Department of Allergy/Immunology, Nemours Children's Hospital Delaware, Wilmington, USA
| | - Emi Caywood
- Department of Pediatric Hematology/Oncology, Nemours Children's Hospital Delaware, Wilmington, USA
| | - Claudio G Giraudo
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, USA.
| |
Collapse
|
2
|
Luo X, Liu Q, Zhou L, Tang X, Zhao X, Zhang Z. Two patients with ZAP-70 deficiency in China present with a different genetic, immunological, and clinical phenotype. BMC Pediatr 2023; 23:195. [PMID: 37101133 PMCID: PMC10131425 DOI: 10.1186/s12887-023-03975-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 03/28/2023] [Indexed: 04/28/2023] Open
Abstract
Zeta(ζ)-Chain Associated Protein Kinase 70 kDa (ZAP-70) deficiency is a rare autosomal recessive primary immunodeficiency disease. Little is known about this disease. In this study, we report two patients to extend the range of clinical phenotypes and immunophenotypes associated with ZAP-70 mutations. We describe the clinical, genetic, and immunological phenotypes of two patients with ZAP-70 deficiency in China, and the data are also compared with the literature. Case 1 presented with leaky severe combined immunodeficiency with low to the absence of CD8 + T cells, while case 2 suffered from a recurrent respiratory infection and had a past medical history of non-EBV-associated Hodgkin's lymphoma. Sequencing revealed novel compound heterozygous mutations in ZAP-70 of these patients. Case 2 is the second ZAP-70 patient presenting a normal CD8 + T cell number. These two cases have been treated with hematopoietic stem cell transplantation. Selective CD8 + T cell loss is an essential feature of the immunophenotype of ZAP-70 deficiency patients, but there are exceptions. Hematopoietic stem cell transplantation can provide excellent long-term immune function and resolution of clinical problems.
Collapse
Affiliation(s)
- Xianze Luo
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Qing Liu
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Lina Zhou
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Xuemei Tang
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Xiaodong Zhao
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China.
| | - Zhiyong Zhang
- Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China.
| |
Collapse
|
3
|
Infections in Inborn Errors of Immunity with Combined Immune Deficiency: A Review. Pathogens 2023; 12:pathogens12020272. [PMID: 36839544 PMCID: PMC9958715 DOI: 10.3390/pathogens12020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/13/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Enhanced susceptibility to microbes, often resulting in severe, intractable and frequent infections due to usually innocuous organisms at uncommon sites, is the most striking feature in individuals with an inborn error of immunity. In this narrative review, based on the International Union of Immunological Societies' 2022 (IUIS 2022) Update on phenotypic classification of human inborn errors of immunity, the focus is on commonly encountered Combined Immunodeficiency Disorders (CIDs) with susceptibility to infections. Combined immune deficiency disorders are usually commensurate with survival beyond infancy unlike Severe Combined Immune Deficiency (SCID) and are often associated with clinical features of a syndromic nature. Defective humoral and cellular immune responses result in susceptibility to a broad range of microbial infections. Although disease onset is usually in early childhood, mild defects may present in late childhood or even in adulthood. A precise diagnosis is imperative not only for determining management strategies, but also for providing accurate genetic counseling, including prenatal diagnosis, and also in deciding empiric treatment of infections upfront before investigation reports are available.
Collapse
|
4
|
Dvorak CC, Haddad E, Heimall J, Dunn E, Buckley RH, Kohn DB, Cowan MJ, Pai SY, Griffith LM, Cuvelier GDE, Eissa H, Shah AJ, O'Reilly RJ, Pulsipher MA, Wright NAM, Abraham RS, Satter LF, Notarangelo LD, Puck JM. The diagnosis of severe combined immunodeficiency (SCID): The Primary Immune Deficiency Treatment Consortium (PIDTC) 2022 Definitions. J Allergy Clin Immunol 2023; 151:539-546. [PMID: 36456361 PMCID: PMC9905311 DOI: 10.1016/j.jaci.2022.10.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022]
Abstract
Severe combined immunodeficiency (SCID) results from defects in the differentiation of hematopoietic stem cells into mature T lymphocytes, with additional lymphoid lineages affected in particular genotypes. In 2014, the Primary Immune Deficiency Treatment Consortium published criteria for diagnosing SCID, which are now revised to incorporate contemporary approaches. Patients with typical SCID must have less than 0.05 × 109 autologous T cells/L on repetitive testing, with either pathogenic variant(s) in a SCID-associated gene, very low/undetectable T-cell receptor excision circles or less than 20% of CD4 T cells expressing naive markers, and/or transplacental maternally engrafted T cells. Patients with less profoundly impaired autologous T-cell differentiation are designated as having leaky/atypical SCID, with 2 or more of these: low T-cell numbers, oligoclonal T cells, low T-cell receptor excision circles, and less than 20% of CD4 T cells expressing naive markers. These patients must also have either pathogenic variant(s) in a SCID-associated gene or reduced T-cell proliferation to certain mitogens. Omenn syndrome requires a generalized erythematous rash, absent transplacentally acquired maternal engraftment, and 2 or more of these: eosinophilia, elevated IgE, lymphadenopathy, hepatosplenomegaly. Thymic stromal defects and other causes of secondary T-cell deficiency are excluded from the definition of SCID. Application of these revised Primary Immune Deficiency Treatment Consortium 2022 Definitions permits precise categorization of patients with T-cell defects but does not imply a preferred treatment strategy.
Collapse
Affiliation(s)
- Christopher C Dvorak
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco, San Francisco, Calif.
| | - Elie Haddad
- Department of Pediatrics, University of Montreal, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Jennifer Heimall
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, and Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Elizabeth Dunn
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco, San Francisco, Calif
| | - Rebecca H Buckley
- Division of Pediatric Allergy and Immunology, Duke University Medical Center, Durham, NC
| | - Donald B Kohn
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, Calif; Department of Pediatrics, University of California, Los Angeles, Los Angeles, Calif
| | - Morton J Cowan
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco, San Francisco, Calif
| | - Sung-Yun Pai
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, Bethesda, Md
| | - Linda M Griffith
- Division of Allergy Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Geoffrey D E Cuvelier
- Manitoba Blood and Marrow Transplant Program, CancerCare Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hesham Eissa
- Division of Pediatric Hematology-Oncology-BMT, University of Colorado, Aurora, Colo
| | - Ami J Shah
- Division of Pediatric Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Palo Alto, Calif
| | - Richard J O'Reilly
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapies Service, Memorial Sloan Kettering, New York, NY
| | - Michael A Pulsipher
- Division of Pediatric Hematology and Oncology, Intermountain Primary Childrens Hospital, Huntsman Cancer Institute at the University of Utah, Salt Lake City, Utah
| | - Nicola A M Wright
- Department of Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta, Canada
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio
| | - Lisa Forbes Satter
- Pediatric Immunology Allergy and Retrovirology, Baylor College of Medicine, Houston, Tex
| | - Luigi D Notarangelo
- Division of Allergy Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jennifer M Puck
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco, San Francisco, Calif
| |
Collapse
|
5
|
Dvorak CC, Haddad E, Heimall J, Dunn E, Cowan MJ, Pai SY, Kapoor N, Satter LF, Buckley RH, O'Reilly RJ, Chandra S, Bednarski JJ, Williams O, Rayes A, Moore TB, Ebens CL, Davila Saldana BJ, Petrovic A, Chellapandian D, Cuvelier GDE, Vander Lugt MT, Caywood EH, Chandrakasan S, Eissa H, Goldman FD, Shereck E, Aquino VM, Desantes KB, Madden LM, Miller HK, Yu L, Broglie L, Gillio A, Shah AJ, Knutsen AP, Andolina JP, Joshi AY, Szabolcs P, Kapadia M, Martinez CA, Parrot RE, Sullivan KE, Prockop SE, Abraham RS, Thakar MS, Leiding JW, Kohn DB, Pulsipher MA, Griffith LM, Notarangelo LD, Puck JM. The diagnosis of severe combined immunodeficiency: Implementation of the PIDTC 2022 Definitions. J Allergy Clin Immunol 2023; 151:547-555.e5. [PMID: 36456360 PMCID: PMC9905305 DOI: 10.1016/j.jaci.2022.10.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Shearer et al in 2014 articulated well-defined criteria for the diagnosis and classification of severe combined immunodeficiency (SCID) as part of the Primary Immune Deficiency Treatment Consortium's (PIDTC's) prospective and retrospective studies of SCID. OBJECTIVE Because of the advent of newborn screening for SCID and expanded availability of genetic sequencing, revision of the PIDTC 2014 Criteria was needed. METHODS We developed and tested updated PIDTC 2022 SCID Definitions by analyzing 379 patients proposed for prospective enrollment into Protocol 6901, focusing on the ability to distinguish patients with various SCID subtypes. RESULTS According to PIDTC 2022 Definitions, 18 of 353 patients eligible per 2014 Criteria were considered not to have SCID, whereas 11 of 26 patients ineligible per 2014 Criteria were determined to have SCID. Of note, very low numbers of autologous T cells (<0.05 × 109/L) characterized typical SCID under the 2022 Definitions. Pathogenic variant(s) in SCID-associated genes was identified in 93% of patients, with 7 genes (IL2RG, RAG1, ADA, IL7R, DCLRE1C, JAK3, and RAG2) accounting for 89% of typical SCID. Three genotypes (RAG1, ADA, and RMRP) accounted for 57% of cases of leaky/atypical SCID; there were 13 other rare genotypes. Patients with leaky/atypical SCID were more likely to be diagnosed at more than age 1 year than those with typical SCID lacking maternal T cells: 20% versus 1% (P < .001). Although repeat testing proved important, an initial CD3 T-cell count of less than 0.05 × 109/L differentiated cases of typical SCID lacking maternal cells from leaky/atypical SCID: 97% versus 7% (P < .001). CONCLUSIONS The PIDTC 2022 Definitions describe SCID and its subtypes more precisely than before, facilitating analyses of SCID characteristics and outcomes.
Collapse
Affiliation(s)
- Christopher C Dvorak
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco, San Francisco, Calif.
| | - Elie Haddad
- Department of Pediatrics, University of Montreal, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Jennifer Heimall
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania and the Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Elizabeth Dunn
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco, San Francisco, Calif
| | - Morton J Cowan
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco, San Francisco, Calif
| | - Sung-Yun Pai
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, Bethesda, Md
| | - Neena Kapoor
- Hematology, Oncology and TCT, Children's Hospital Los Angeles, Los Angeles, Calif
| | - Lisa Forbes Satter
- Pediatric Immunology Allergy and Retrovirology, Baylor College of Medicine, Houston, Tex
| | - Rebecca H Buckley
- Division of Pediatric Allergy and Immunology, Duke University Medical Center, Durham, NC
| | - Richard J O'Reilly
- Department of Pediatrics, Stem Cell Transplantation and Cellular Therapies Service, Memorial Sloan Kettering, New York, NY
| | - Sharat Chandra
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Jeffrey J Bednarski
- Division of Pediatric Hematology and Oncology, Washington University School of Medicine, St Louis, Mo
| | | | - Ahmad Rayes
- Division of Pediatric Hematology and Oncology, Intermountain Primary Childrens Hospital, Huntsman Cancer Institute at the University of Utah, Salt Lake City, Utah
| | - Theodore B Moore
- Department of Pediatrics, UCLA David Geffen School of Medicine, Los Angeles, Calif
| | - Christen L Ebens
- Division of Pediatric Blood and Marrow Transplantation & Cellular Therapy, University of Minnesota, Minneapolis, Minn
| | | | - Aleksandra Petrovic
- Division of Pediatric Immunology and Bone Marrow Transplantation, University of Washington, Seattle Children's Hospital, Seattle, Wash
| | - Deepak Chellapandian
- Center for Cell and Gene Therapy for Non Malignant Conditions, Johns Hopkins All Children's Hospital, St Petersburg, Fla
| | - Geoffrey D E Cuvelier
- Manitoba Blood and Marrow Transplant Program, CancerCare Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mark T Vander Lugt
- Blood and Marrow Transplant Program, University of Michigan, Ann Arbor, Mich
| | - Emi H Caywood
- Nemours Children's Health Delaware, Thomas Jefferson University, Wilmington, Del
| | - Shanmuganathan Chandrakasan
- Bone Marrow Transplantation Program, Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, Ga
| | - Hesham Eissa
- Division of Pediatric Hematology-Oncology-BMT, University of Colorado, Aurora, Colo
| | - Frederick D Goldman
- Division of Hematology/Oncology/BMT, Department of Pediatrics, University of Alabama, Birmingham, Ala
| | - Evan Shereck
- Division of Pediatric Hematology/Oncology, Oregon Health & Science University, Portland, Ore
| | - Victor M Aquino
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, University of Texas Southwestern Medical Center, Dallas, Tex
| | - Kenneth B Desantes
- Division of Pediatric Heme/Onc & Bone Marrow Transplant, University of Wisconsin School of Medicine, Madison, Wis
| | - Lisa M Madden
- Pediatric Bone Marrow Transplant Program, Texas Transplant Institute, San Antonio, Tex
| | | | - Lolie Yu
- Division of Pediatric Hematology-Oncology/HSCT, LSUHSC and Children's Hospital, New Orleans, La
| | - Larisa Broglie
- Division of Pediatric Hematology, Oncology, and Blood and Marrow Transplantation, Medical College of Wisconsin, Milwaukee, Wis
| | - Alfred Gillio
- Joseph M. Sanzani's Children's Hospital at Hackensack University Medical Center, Hackensack, NJ
| | - Ami J Shah
- Division of Pediatric Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Stanford School of Medicine, Palo Alto, Calif
| | - Alan P Knutsen
- Division of Pediatric Allergy & Immunology, Saint Louis University, St Louis, Mo
| | - Jeffrey P Andolina
- Department of Pediatrics, Golisano Children's Hospital, University of Rochester, Rochester, NY
| | - Avni Y Joshi
- Division of Pediatric Allergy and Immunology, Mayo Clinic Childrens Center, Rochester, Minn
| | - Paul Szabolcs
- Division of Blood and Marrow Transplantation and Cellular Therapies, University of Pittsburgh School of Medicine, Pittsburgh, Pa
| | - Malika Kapadia
- Division of Pediatric Oncology, Dana Farber/Boston Children's Cancer and Blood Disorders Center, Department of Pediatrics, Harvard University Medical School, Boston, Mass
| | - Caridad A Martinez
- Hematology/Oncology/BMT, Texas Children's Hospital, Baylor College of Medicine, Houston, Tex
| | - Roberta E Parrot
- Division of Pediatric Allergy and Immunology, Duke University Medical Center, Durham, NC
| | - Kathleen E Sullivan
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania and the Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Susan E Prockop
- Division of Pediatric Oncology, Dana Farber/Boston Children's Cancer and Blood Disorders Center, Department of Pediatrics, Harvard University Medical School, Boston, Mass
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital and The Ohio State University College of Medicine, Columbus, Ohio
| | - Monica S Thakar
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Department of Pediatrics, University of Washington, Seattle, Wash
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins University, Baltimore, Md
| | - Donald B Kohn
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, Calif; Department of Pediatrics, University of California, Los Angeles, Los Angeles, Calif
| | - Michael A Pulsipher
- Division of Pediatric Hematology and Oncology, Intermountain Primary Childrens Hospital, Huntsman Cancer Institute at the University of Utah, Salt Lake City, Utah
| | - Linda M Griffith
- Division of Allergy Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Luigi D Notarangelo
- Division of Allergy Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jennifer M Puck
- Division of Pediatric Allergy, Immunology, and Bone Marrow Transplantation, University of California San Francisco, San Francisco, Calif
| |
Collapse
|
6
|
Ye Z, Qian L, Hu W, Miao S, Wang Y, Lu J, Zhou Y, Lu X, Zhang Y, Zheng C, Sun H, Tang W, Tang Z, Sun S, Dong K, Qian X, Zhai X, Huang Y. Clinical outcome of infantile-onset inflammatory bowel disease in 102 patients with interleukin-10 signalling deficiency. Aliment Pharmacol Ther 2022; 55:1414-1422. [PMID: 35187668 DOI: 10.1111/apt.16837] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/07/2021] [Accepted: 02/04/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND Infantile-onset inflammatory bowel disease can be caused by defects in interleukin-10 signalling. The natural history and clinical outcomes of allogeneic haematopoietic stem cell transplantation, medical treatment and surgery have not been thoroughly described. AIMS This study evaluates disease progression and clinical outcome in patients with interleukin-10 signalling deficiency. METHODS One hundred and nine patients with interleukin-10 signalling deficiency were retrospectively reviewed from a single tertiary centre. The Kaplan-Meier method was applied to calculate probabilities of survival and interval between transplant and stoma closure. RESULTS One hundred and nine patients were reviewed, and 102 patients were included in the survival analysis. One hundred and eight patients were identified with IL10RA mutations, and one patient harboured IL10RB mutation. Seventy-three patients received haematopoietic stem cell transplantation. The overall survival after transplantation was 64.2% (95% confidence interval, 52.8 to 75.6), and without transplantation, it was 47.5% (95% confidence interval, 14.8 to 80.2, P = 0.47). The median timeframe between transplant and stoma closure was 19.6 months. The probability of survival was significantly lower in patients with perforation (P < 0.001), ileus (P = 0.038) and without thalidomide treatment (P < 0.001) among patients who did not receive haematopoietic stem cell transplantation. The survival probability was not associated with timeframe between transplant and onset, graft source and genotypes. CONCLUSIONS The survival probability was not significantly different between patients with transplantation and the non-transplanted patients.
Collapse
Affiliation(s)
- Ziqing Ye
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai, China
| | - Lai Qian
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai, China
| | - Wenhui Hu
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai, China
| | - Shijian Miao
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai, China
| | - Yuhuan Wang
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai, China
| | - Junping Lu
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai, China
| | - Ying Zhou
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaolan Lu
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai, China
| | - Ye Zhang
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai, China
| | - Cuifang Zheng
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai, China
| | - Hua Sun
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai, China
| | - Wenjuan Tang
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai, China
| | - Zifei Tang
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai, China
| | - Song Sun
- Department of Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - Kuiran Dong
- Department of Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaowen Qian
- Department of Hematology and Oncology, Children's Hospital of Fudan University, Shanghai, China
| | - Xiaowen Zhai
- Department of Hematology and Oncology, Children's Hospital of Fudan University, Shanghai, China
| | - Ying Huang
- Department of Gastroenterology, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
7
|
Ling E, Broides A, Ling G, Shubinsky G, Hadad N, Nahum A, Simon AJ, Lev A, Somech R. A novel zeta-associated protein 70 homozygous mutation causing combined immunodeficiency presenting as neonatal autoimmune hemolytic anemia. Immunol Res 2021; 69:100-106. [PMID: 33484432 DOI: 10.1007/s12026-021-09172-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
Biallelic mutations in the zeta-associated protein 70 (ZAP70) gene cause combined immunodeficiency (CID). Neonatal screening for severe CID in Israel is implemented since 2015. We report on clinical, flow cytometry, and genetic data of an unusual ZAP70 deficiency patient. A 10-week-old Bedouin female presented with severe autoimmune hemolytic anemia. Cytomegalovirus (CMV) negative packed cell therapy was given without improvement; indexes of hemolysis worsened. At this time, thrombocytopenia was noted. The patient was treated with single dose of 1 g/kg intravenous immunoglobulin with rapid resolution of hemolysis. Serum immunoglobulin concentrations were normal; flow cytometry revealed severe CD8 lymphocytopenia. Lymphocyte proliferation test demonstrated reduced response to concanavalin A and phytohemagglutinin. Gated T cells were negative for intracellular ZAP70. A genetic analysis revealed a missense homozygous c.1388C > T (p.A463V) mutation, confirming the diagnosis of ZAP70 deficiency. She later on developed urinary tract infection due to ESBL producing E. coli treated with amikacin and severe CMV infection that partially responded to ganciclovir therapy and at 7 months of age, she successfully underwent allogeneic hematopoietic stem cell transplantation. Neonatal screening by T cell receptor excision circles (TRECs) for SCID was normal, yet very low TRECs were recorded at the time of CID diagnosis. Normal neonatal screening for SCID does not rule out the diagnosis of CID due to ZAP70 deficiency. This type of CID can present with autoimmunity as the sole initial manifestation of the disease.
Collapse
Affiliation(s)
- Eduard Ling
- Department of Pediatrics B and Pediatric Rheumatology Clinic, Soroka University Medical Center, Rager Avenue, Beer Sheva, Israel. .,Soroka University Medical Center, Beer Sheva, Israel. .,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Arnon Broides
- Soroka University Medical Center, Beer Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Pediatric Immunology Clinic, Beer Sheva, Israel
| | - Galina Ling
- Soroka University Medical Center, Beer Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Pediatric Gastroenterology and Nutrition Unit and Pediatric Ambulatory Service, Tel Aviv, Israel
| | - George Shubinsky
- Soroka University Medical Center, Beer Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Flow Cytometry Unit, Beer Sheva, Israel
| | - Nurit Hadad
- Soroka University Medical Center, Beer Sheva, Israel.,Infectious Disease Laboratory, Tel Aviv, Israel
| | - Amit Nahum
- Soroka University Medical Center, Beer Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,Pediatric Immunology Clinic, Beer Sheva, Israel
| | - Amos J Simon
- Pediatric Immunology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Atar Lev
- Pediatric Immunology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel
| | - Raz Somech
- Pediatric Immunology Unit, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
8
|
EBMT/ESID inborn errors working party guidelines for hematopoietic stem cell transplantation for inborn errors of immunity. Bone Marrow Transplant 2021; 56:2052-2062. [PMID: 34226669 PMCID: PMC8410590 DOI: 10.1038/s41409-021-01378-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/26/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023]
|
9
|
Sharifinejad N, Jamee M, Zaki-Dizaji M, Lo B, Shaghaghi M, Mohammadi H, Jadidi-Niaragh F, Shaghaghi S, Yazdani R, Abolhassani H, Aghamohammadi A, Azizi G. Clinical, Immunological, and Genetic Features in 49 Patients With ZAP-70 Deficiency: A Systematic Review. Front Immunol 2020; 11:831. [PMID: 32431715 PMCID: PMC7214800 DOI: 10.3389/fimmu.2020.00831] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Zeta-Chain Associated Protein Kinase 70 kDa (ZAP-70) deficiency is a rare combined immunodeficiency (CID) caused by recessive homozygous/compound heterozygous loss-of-function mutations in the ZAP70 gene. Patients with ZAP-70 deficiency present with a variety of clinical manifestations, particularly recurrent respiratory infections and cutaneous involvements. Therefore, a systematic review of ZAP-70 deficiency is helpful to achieve a comprehensive view of this disease. Methods: We searched PubMed, Web of Science, and Scopus databases for all reported ZAP-70 deficient patients and screened against the described eligibility criteria. A total of 49 ZAP-70 deficient patients were identified from 33 articles. For all patients, demographic, clinical, immunologic, and molecular data were collected. Results: ZAP-70 deficient patients have been reported in the literature with a broad spectrum of clinical manifestations including recurrent respiratory infections (81.8%), cutaneous involvement (57.9%), lymphoproliferation (32.4%), autoimmunity (19.4%), enteropathy (18.4%), and increased risk of malignancies (8.1%). The predominant immunologic phenotype was low CD8+ T cell counts (97.9%). Immunologic profiling showed defective antibody production (57%) and decreased lymphocyte responses to mitogenic stimuli such as phytohemagglutinin (PHA) (95%). Mutations of the ZAP70 gene were located throughout the gene, and there was no mutational hotspot. However, most of the mutations were located in the kinase domain. Hematopoietic stem cell transplantation (HSCT) was applied as the major curative treatment in 25 (51%) of the patients, 18 patients survived transplantation, while two patients died and three required a second transplant in order to achieve full remission. Conclusion: Newborns with consanguineous parents, positive family history of CID, and low CD8+ T cell counts should be considered for ZAP-70 deficiency screening, since early diagnosis and treatment with HSCT can lead to a more favorable outcome. Based on the current evidence, there is no genotype-phenotype correlation in ZAP-70 deficient patients.
Collapse
Affiliation(s)
- Niusha Sharifinejad
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Alborz Office of USERN, Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Mahnaz Jamee
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran.,Alborz Office of USERN, Universal Scientific Education and Research Network (USERN), Alborz University of Medical Sciences, Karaj, Iran
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Bernice Lo
- Sidra Medicine, Division of Translational Medicine, Research Branch, Doha, Qatar
| | - Mohammadreza Shaghaghi
- Johns Hopkins Hospital, Baltimore, MD, United States.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Shaghaghi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
10
|
Castagnoli R, Delmonte OM, Calzoni E, Notarangelo LD. Hematopoietic Stem Cell Transplantation in Primary Immunodeficiency Diseases: Current Status and Future Perspectives. Front Pediatr 2019; 7:295. [PMID: 31440487 PMCID: PMC6694735 DOI: 10.3389/fped.2019.00295] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/03/2019] [Indexed: 12/29/2022] Open
Abstract
Primary immunodeficiencies (PID) are disorders that for the most part result from mutations in genes involved in immune host defense and immunoregulation. These conditions are characterized by various combinations of recurrent infections, autoimmunity, lymphoproliferation, inflammatory manifestations, atopy, and malignancy. Most PID are due to genetic defects that are intrinsic to hematopoietic cells. Therefore, replacement of mutant cells by healthy donor hematopoietic stem cells (HSC) represents a rational therapeutic approach. Full or partial ablation of the recipient's marrow with chemotherapy is often used to allow stable engraftment of donor-derived HSCs, and serotherapy may be added to the conditioning regimen to reduce the risks of graft rejection and graft versus host disease (GVHD). Initially, hematopoietic stem cell transplantation (HSCT) was attempted in patients with severe combined immunodeficiency (SCID) as the only available curative treatment. It was a challenging procedure, associated with elevated rates of morbidity and mortality. Overtime, outcome of HSCT for PID has significantly improved due to availability of high-resolution HLA typing, increased use of alternative donors and new stem cell sources, development of less toxic, reduced-intensity conditioning (RIC) regimens, and cellular engineering techniques for graft manipulation. Early identification of infants affected by SCID, prior to infectious complication, through newborn screening (NBS) programs and prompt genetic diagnosis with Next Generation Sequencing (NGS) techniques, have also ameliorated the outcome of HSCT. In addition, HSCT has been applied to treat a broader range of PID, including disorders of immune dysregulation. Yet, the broad spectrum of clinical and immunological phenotypes associated with PID makes it difficult to define a universal transplant regimen. As such, integration of knowledge between immunologists and transplant specialists is necessary for the development of innovative transplant protocols and to monitor their results during follow-up. Despite the improved outcome observed after HSCT, patients with severe forms of PID still face significant challenges of short and long-term transplant-related complications. To address this issue, novel HSCT strategies are being implemented aiming to improve both survival and long-term quality of life. This article will discuss the current status and latest developments in HSCT for PID, and present data regarding approach and outcome of HSCT in recently described PID, including disorders associated with immune dysregulation.
Collapse
Affiliation(s)
- Riccardo Castagnoli
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Department of Pediatrics, Foundation IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Ottavia Maria Delmonte
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Enrica Calzoni
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States.,Department of Molecular and Translational Medicine, A. Nocivelli Institute for Molecular Medicine, University of Brescia, Brescia, Italy
| | - Luigi Daniele Notarangelo
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
11
|
Neven B, Ferrua F. Hematopoietic Stem Cell Transplantation for Combined Immunodeficiencies, on Behalf of IEWP-EBMT. Front Pediatr 2019; 7:552. [PMID: 32039114 PMCID: PMC6992555 DOI: 10.3389/fped.2019.00552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/17/2019] [Indexed: 12/29/2022] Open
Abstract
Combined immunodeficiencies (CIDs) are a clinically and genetically heterogeneous group of primary immunodeficiencies (PIDs) that affect T-lymphocyte immunity with abnormal development or function. As compared to severe combined immune deficiencies (SCID), these patients are usually diagnosed later. They display a broad infectious susceptibility; immune dysregulation manifestations and chronic lymphoproliferation are also frequent. These complications and their specific treatments can lead to persistent damage to several organs. Prognosis of CIDs is worse as compared to other PIDs. The curative treatment is usually hematopoietic stem cell transplantation (HSCT), but difficult questions remain regarding the definitive indication of HSCT and its timing; the final decision depends on a conjunction of factors such as immunological parameters, severity of clinical manifestations, and natural history of the disease, when molecular diagnosis is known. CD40L deficiency, a CID caused by mutations in CD40LG gene, well illustrates the dilemma between HSCT vs. long-term supportive treatment. This disease leads to higher risk of developing infections from bacterial and intracellular pathogens, especially Pneumocystis and Cryptosporidium spp. While supportive care allows improved survival during childhood, organ damages may develop with increasing age, mainly chronic lung disease and biliary tract disease (secondary to Cryptosporidium spp. infection) that may evolve later to sclerosing cholangitis, a severe complication associated with increased mortality. Early HSCT before organ damage development is associated with best survival and cure rate, while HSCT remains a risky therapeutic option for older patients, for those with organ damage, especially severe liver disease, and/or for those with limited or no donor availability. Prospective studies are needed to analyze risks of HSCT compared to those of life-long supportive therapy, including quality of life measures.
Collapse
Affiliation(s)
- Benedicte Neven
- Université de Paris, Paris, France.,Pediatric Hematology-Immunology and Rheumatology Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France.,INSERM U1163 and Imagine Institute, Paris, France
| | - Francesca Ferrua
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), Pediatric Immunohematology and Bone Marrow Transplantation Unit, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
12
|
Bakhtiar S, Fekadu J, Seidel MG, Gambineri E. Allogeneic Hematopoietic Stem Cell Transplantation for Congenital Immune Dysregulatory Disorders. Front Pediatr 2019; 7:461. [PMID: 31799221 PMCID: PMC6865355 DOI: 10.3389/fped.2019.00461] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/23/2019] [Indexed: 12/30/2022] Open
Abstract
Primary immunodeficiency disorders that predominantly affect immune regulation and mechanisms of self-tolerance have come into the limelight, because at least for a subgroup of monogenetic disorders, a targeted therapy has become available. Nevertheless, their management often involves the treatment of severely compromising, refractory, multi-organ autoimmunity, leading to further increased susceptibility to infections and complications of long-term immune suppressive treatment, including the risk of malignancy. While evidence for allogeneic hematopoietic stem cell transplantation (alloHSCT) as a curative treatment option for severely affected patients by this disease category accumulates, clear indications, and guidelines for alloHSCT are lacking. Predictive and stratification-relevant tools such as disease activity scores are largely missing and often there is not a consistent genotype-phenotype correlation within the same family to facilitate the decision whether to transplant or not. In this review, we provide a literature-based update on indications and outcomes of alloHSCT for congenital immune dysregulative inborn errors of immunity according to the IUIS classification 2017.
Collapse
Affiliation(s)
- Shahrzad Bakhtiar
- Division for Pediatric Stem Cell Transplantation and Immunology, University Hospital Frankfurt, Frankfurt, Germany
| | - Julia Fekadu
- Division for Pediatric Stem Cell Transplantation and Immunology, University Hospital Frankfurt, Frankfurt, Germany
| | - Markus G Seidel
- Research Unit for Pediatric Hematology and Immunology, Division of Pediatric Hematology-Oncology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Eleonora Gambineri
- NEUROFARBA Department, University of Florence, University of Florence, Florence, Italy.,Haematology-Oncology Department, Anna Meyer Children's Hospital, Florence, Italy
| |
Collapse
|
13
|
Crowley E, Muise A. Inflammatory Bowel Disease: What Very Early Onset Disease Teaches Us. Gastroenterol Clin North Am 2018; 47:755-772. [PMID: 30337031 DOI: 10.1016/j.gtc.2018.07.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of the gastrointestinal tract, of which ulcerative colitis and Crohn's disease are the 2 most prevailing entities. Very early onset IBD (VEO-IBD) children diagnosed with IBD under age 6 years. Although the etiology of IBD is mostly unknown, it involves a complex interaction among host genetics, microbiota, environmental factors, and aberrant immune responses. Advances in the understanding of the genetic contribution, which appears to be much more significant in younger children, gives us a useful insight into the pathogenesis and potential future therapeutic targets in IBD.
Collapse
Affiliation(s)
- Eileen Crowley
- Cell Biology Program, Division of Gastroenterology, Hepatology and Nutrition, Inflammatory Bowel Disease Center, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; School of Medicine, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland; Department of Pediatric Gastroenterology, Hepatology and Nutrition, SickKids, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada
| | - Aleixo Muise
- Department of Biochemistry, Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Department of Pediatrics, Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada; Division of Gastroenterology, Hepatology and Nutrition, Cell Biology Program, Research Institute, The Hospital for Sick Children, University of Toronto, SickKids, Inflammatory Bowel Disease Centre, 555 University Avenue, Toronto, Ontario M5G 1X8, Canada.
| |
Collapse
|
14
|
Affiliation(s)
- Byron B. Au-Yeung
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Neel H. Shah
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | - Lin Shen
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, California 94143, USA;,
| | - Arthur Weiss
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, University of California, San Francisco, California 94143, USA;,
- Howard Hughes Medical Institute, University of California, San Francisco, California 94143, USA
| |
Collapse
|
15
|
Pugh JL, Nemat-Gorgani N, Norman PJ, Guethlein LA, Parham P. Human NK Cells Downregulate Zap70 and Syk in Response to Prolonged Activation or DNA Damage. THE JOURNAL OF IMMUNOLOGY 2017; 200:1146-1158. [PMID: 29263215 DOI: 10.4049/jimmunol.1700542] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 11/15/2017] [Indexed: 01/28/2023]
Abstract
The extent of NK cell activity during the innate immune response affects downstream immune functions and, ultimately, the outcome of infectious or malignant disease. However, the mechanisms that terminate human NK cell responses have yet to be defined. When activation receptors expressed on NK cell surfaces bind to ligands on diseased cells, they initiate a signal that is propagated by a number of intracellular kinases, including Zap70 and Syk, eventually leading to NK cell activation. We assayed Zap70 and Syk content in NK cells from healthy human donors and identified a subset of NK cells with unusually low levels of these two kinases. We found that this Zap70lowSyklow subset consisted of NK cells expressing a range of surface markers, including CD56hi and CD56low NK cells. Upon in vitro stimulation with target cells, Zap70lowSyklow NK cells failed to produce IFN-γ and lysed target cells at one third the capacity of Zap70hiSykhi NK cells. We determined two independent in vitro conditions that induce the Zap70lowSyklow phenotype in NK cells: continuous stimulation with activation beads and DNA damage. The expression of inhibitory receptors, including NKG2A and inhibitory killer Ig-like receptors (KIRs), was negatively correlated with the Zap70lowSyklow phenotype. Moreover, expression of multiple KIRs reduced the likelihood of Zap70 downregulation during continuous activation, regardless of whether NK cells had been educated through KIR-HLA interactions in vivo. Our findings show that human NK cells are able to terminate their functional activity without the aid of other immune cells through the downregulation of activation kinases.
Collapse
Affiliation(s)
- Jason L Pugh
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; and.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Neda Nemat-Gorgani
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; and.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Paul J Norman
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; and.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Lisbeth A Guethlein
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; and.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305; and .,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
16
|
Sullivan KD, Evans D, Pandey A, Hraha TH, Smith KP, Markham N, Rachubinski AL, Wolter-Warmerdam K, Hickey F, Espinosa JM, Blumenthal T. Trisomy 21 causes changes in the circulating proteome indicative of chronic autoinflammation. Sci Rep 2017; 7:14818. [PMID: 29093484 PMCID: PMC5665944 DOI: 10.1038/s41598-017-13858-3] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/02/2017] [Indexed: 12/11/2022] Open
Abstract
Trisomy 21 (T21) causes Down syndrome (DS), but the mechanisms by which T21 produces the different disease spectrum observed in people with DS are unknown. We recently identified an activated interferon response associated with T21 in human cells of different origins, consistent with overexpression of the four interferon receptors encoded on chromosome 21, and proposed that DS could be understood partially as an interferonopathy. However, the impact of T21 on systemic signaling cascades in living individuals with DS is undefined. To address this knowledge gap, we employed proteomics approaches to analyze blood samples from 263 individuals, 165 of them with DS, leading to the identification of dozens of proteins that are consistently deregulated by T21. Most prominent among these proteins are numerous factors involved in immune control, the complement cascade, and growth factor signaling. Importantly, people with DS display higher levels of many pro-inflammatory cytokines (e.g. IL-6, MCP-1, IL-22, TNF-α) and pronounced complement consumption, resembling changes seen in type I interferonopathies and other autoinflammatory conditions. Therefore, these results are consistent with the hypothesis that increased interferon signaling caused by T21 leads to chronic immune dysregulation, and justify investigations to define the therapeutic value of immune-modulatory strategies in DS.
Collapse
Affiliation(s)
- Kelly D Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA.,Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Donald Evans
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Ahwan Pandey
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA.,Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | | | - Keith P Smith
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Neil Markham
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Angela L Rachubinski
- JFK Partners/Developmental Pediatrics, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA
| | - Kristine Wolter-Warmerdam
- Anna and John J. Sie Center for Down Syndrome, Children's Hospital Colorado, Aurora, Colorado, 80045, USA
| | - Francis Hickey
- Anna and John J. Sie Center for Down Syndrome, Children's Hospital Colorado, Aurora, Colorado, 80045, USA
| | - Joaquin M Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA. .,Department of Pharmacology, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA. .,Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, 80203, USA.
| | - Thomas Blumenthal
- Linda Crnic Institute for Down Syndrome, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA. .,Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, Colorado, 80203, USA. .,Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, 80045, USA.
| |
Collapse
|