1
|
Le Voyer T, Maglorius Renkilaraj MRL, Moriya K, Pérez Lorenzo M, Nguyen T, Gao L, Rubin T, Cederholm A, Ogishi M, Arango-Franco CA, Béziat V, Lévy R, Migaud M, Rapaport F, Itan Y, Deenick EK, Cortese I, Lisco A, Boztug K, Abel L, Boisson-Dupuis S, Boisson B, Frosk P, Ma CS, Landegren N, Celmeli F, Casanova JL, Tangye SG, Puel A. Inherited human RelB deficiency impairs innate and adaptive immunity to infection. Proc Natl Acad Sci U S A 2024; 121:e2321794121. [PMID: 39231201 PMCID: PMC11406260 DOI: 10.1073/pnas.2321794121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/24/2024] [Indexed: 09/06/2024] Open
Abstract
We report two unrelated adults with homozygous (P1) or compound heterozygous (P2) private loss-of-function variants of V-Rel Reticuloendotheliosis Viral Oncogene Homolog B (RELB). The resulting deficiency of functional RelB impairs the induction of NFKB2 mRNA and NF-κB2 (p100/p52) protein by lymphotoxin in the fibroblasts of the patients. These defects are rescued by transduction with wild-type RELB complementary DNA (cDNA). By contrast, the response of RelB-deficient fibroblasts to Tumor Necrosis Factor (TNF) or IL-1β via the canonical NF-κB pathway remains intact. P1 and P2 have low proportions of naïve CD4+ and CD8+ T cells and of memory B cells. Moreover, their naïve B cells cannot differentiate into immunoglobulin G (IgG)- or immunoglobulin A (IgA)-secreting cells in response to CD40L/IL-21, and the development of IL-17A/F-producing T cells is strongly impaired in vitro. Finally, the patients produce neutralizing autoantibodies against type I interferons (IFNs), even after hematopoietic stem cell transplantation, attesting to a persistent dysfunction of thymic epithelial cells in T cell selection and central tolerance to some autoantigens. Thus, inherited human RelB deficiency disrupts the alternative NF-κB pathway, underlying a T- and B cell immunodeficiency, which, together with neutralizing autoantibodies against type I IFNs, confers a predisposition to viral, bacterial, and fungal infections.
Collapse
Affiliation(s)
- Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- Clinical Immunology Department, Assistance Publique Hôpitaux de Paris, Saint-Louis Hospital, Paris75010, France
| | - Majistor Raj Luxman Maglorius Renkilaraj
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
| | - Kunihiko Moriya
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
| | - Malena Pérez Lorenzo
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
| | - Tina Nguyen
- Garvan Institute of Medical Research, Darlinghurst, NSW2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | - Liwei Gao
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
| | - Tamar Rubin
- Division of Pediatric Clinical Immunology and Allergy, Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MBR3A 1S1, Canada
| | - Axel Cederholm
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, UppsalaSE-751 05, Sweden
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| | - Carlos A. Arango-Franco
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- Group of Inborn Errors of Immunity, Department of Microbiology and Parasitology, School of Medicine, University of Antioquia, Medellín050010, Colombia
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| | - Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| | - Mélanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
| | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| | - Yuval Itan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY10029
| | - Elissa K. Deenick
- Garvan Institute of Medical Research, Darlinghurst, NSW2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | - Irene Cortese
- Experimental Immunotherapeutics Unit, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD20892
| | - Andrea Lisco
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD20892
| | - Kaan Boztug
- St. Anna Children’s Cancer Research Institute, Vienna1090, Austria
- Medical University of Vienna, Department of Pediatrics and Adolescent Medicine, Vienna1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna1090, Austria
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| | - Stéphanie Boisson-Dupuis
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| | - Bertrand Boisson
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| | - Patrick Frosk
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MBR3E 0W2, Canada
| | - Cindy S. Ma
- Garvan Institute of Medical Research, Darlinghurst, NSW2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | - Nils Landegren
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, UppsalaSE-751 05, Sweden
| | - Fatih Celmeli
- Department of Allergy and Immunology, University of Medical Science, Antalya Education and Research Hospital, Antalya07100, Türkiye
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris75015, France
- HHMI, New York, NY10065
| | - Stuart G. Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW2010, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales Sydney, Sydney, NSW2052, Australia
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM UMR 1163, Paris75015, France
- Imagine Institute, Paris Cité University, Paris75015, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY10065
| |
Collapse
|
2
|
Alkan B, Tuncer MA, İnkaya AÇ. Advances in Virus-Specific T-Cell Therapy for Polyomavirus Infections: A Comprehensive Review. Int J Antimicrob Agents 2024; 64:107333. [PMID: 39245328 DOI: 10.1016/j.ijantimicag.2024.107333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/14/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
Polyomaviruses are a group of small, non-enveloped, double-stranded DNA viruses that can infect various hosts, including humans. BKPyV causes conditions such as human polyomavirus-associated nephropathy (HPyVAN), human polyomavirus-associated haemorrhagic cystitis (HPyVHC), and human polyomavirus-associated urothelial cancer (HPyVUC). JC polyomavirus (JCPyV), on the other hand, is the causative agent of progressive multifocal leukoencephalopathy (PML), a severe demyelinating disease of the central nervous system. PML primarily affects immunocompromised individuals, including those with HIV, recipients of certain immunosuppressive therapies, and transplant patients. The treatment options for HPyV infections have been limited, but recent developments in virus-specific T cell (VST) therapy have shown promise. Although VST therapy has shown potential in treating both BKPyV and JCPyV infections, several challenges remain. These include the time-consuming and costly preparation of VSTs, the need for sophisticated production facilities, and uncertainties regarding the optimal cell type and infusion frequency. To the best of our knowledge, 85 patients with haemorrhagic cystitis, 27 patients with BKPyV viremia, 2 patients with BKPyV nephritis, 14 patients with haemorrhagic cystitis and BKPyV viremia, and 32 patients with PML have been treated with VST in the literature. The overall response results were 82 complete response, 33 partial response, 35 no response, and 10 no-outcome-reported. This review underscores the importance of VST therapy as a promising treatment approach for polyomavirus infections, emphasising the need for continued research and clinical trials to refine and expand this innovative immunotherapeutic strategy.
Collapse
Affiliation(s)
- Baran Alkan
- Hacettepe University, Faculty of Medicine, Ankara
| | - M Asli Tuncer
- Hacettepe University, Faculty of Medicine, Department of Neurology, Ankara
| | - A Çağkan İnkaya
- Hacettepe University, Faculty of Medicine, Department of Infectious Diseases, Ankara.
| |
Collapse
|
3
|
Joly M, Conte C, Cazanave C, Le Moing V, Tattevin P, Delobel P, Sommet A, Martin-Blondel G. Progressive multifocal leukoencephalopathy: epidemiology and spectrum of predisposing conditions. Brain 2023; 146:349-358. [PMID: 35779271 DOI: 10.1093/brain/awac237] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/15/2022] [Accepted: 06/20/2022] [Indexed: 01/11/2023] Open
Abstract
Population-based data on the epidemiology of progressive multifocal leukoencephalopathy, its predisposing conditions and mortality rate are lacking, although such data are crucial to raise awareness among clinicians and to lay foundations for future therapeutic trials in immunomodulating therapies. In our study, patients were identified by interrogating the French national healthcare reimbursement database from 1 January 2008 to 31 December 2017, using progressive multifocal leukoencephalopathy International Classification of Diseases code and a patient's selection algorithm. Overall incidence rate, 1-year all-cause mortality rate and survival patterns were calculated, and factors associated with death were identified using a multivariate Cox proportional hazards regression model. Our cohort is the largest to date, comprising 584 patients with incident progressive multifocal leukoencephalopathy. The overall incidence in France from 2010 to 2017 was stable during the study period at 0.11 per 100 000 person-years, 95% confidence interval [0.10-0.12]. Predisposing diseases were HIV infection (43.7%), followed by haematological malignancies (21.9%), chronic inflammatory diseases (20.2%), solid organ transplantation (4.3%), solid neoplasm (4.1%) and primary immune deficiency (1.5%). The 1-year mortality rate was 38.2%, with a 95% confidence interval (34.2-42.2). In multivariate analysis, factors independently associated with death were older age [adjusted hazard ratio 0.33 (0.20-0.53) for patients aged 20 to 40 compared with patients aged over 60], male gender [adjusted hazard ratio 0.73 (0.54-0.99) for females compared with males] and predisposing immunosuppressive disease, with the highest risk for solid neoplasms [adjusted hazard ratio 4.34 (2.25-8.37)], followed by haematological malignancies [adjusted hazard ratio 3.13 (1.85-5.30)] and HIV infection [adjusted hazard ratio 1.83 (1.12-3.00)], compared with chronic inflammatory diseases. Immune reconstitution inflammatory syndrome was notified in 7.0% of patients. In conclusion, incidence of progressive multifocal leukoencephalopathy is stable in France, and HIV infection remains the main predisposing disease. This large-size cohort uncovers a higher risk of mortality for male patients compared to females, and the worst prognosis for patients with solid neoplasm, while prognosis in patients with haematological malignancies appeared less dismal than in previous studies.
Collapse
Affiliation(s)
- Marine Joly
- Department of Infectious and Tropical Diseases, Toulouse University Hospital Center, Toulouse 31300, France
| | - Cécile Conte
- Department of Medical Pharmacology, CIC 1436, Toulouse University Hospital Center, Toulouse 31300, France
| | - Charles Cazanave
- Department of Infectious and Tropical Diseases, Bordeaux University Hospital Center, Bordeaux 33300, France
| | - Vincent Le Moing
- Department of Infectious and Tropical Diseases, Montpellier University Hospital Center, Montpellier 34295, France
| | - Pierre Tattevin
- Department of Medical Intensive Care and Infectious Diseases, Rennes University Hospital Center, Rennes 35000, France
| | - Pierre Delobel
- Department of Infectious and Tropical Diseases, Toulouse University Hospital Center, Toulouse 31300, France.,Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity) INSERM UMR1291, CNRS UMR5051, University of Toulouse III, Toulouse 31300, France
| | - Agnès Sommet
- Department of Medical Pharmacology, CIC 1436, Toulouse University Hospital Center, Toulouse 31300, France
| | - Guillaume Martin-Blondel
- Department of Infectious and Tropical Diseases, Toulouse University Hospital Center, Toulouse 31300, France.,Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity) INSERM UMR1291, CNRS UMR5051, University of Toulouse III, Toulouse 31300, France
| |
Collapse
|
4
|
Hatchwell E, Smith EB, Jalilzadeh S, Bruno CD, Taoufik Y, Hendel-Chavez H, Liblau R, Brassat D, Martin-Blondel G, Wiendl H, Schwab N, Cortese I, Monaco MC, Imberti L, Capra R, Oksenberg JR, Gasnault J, Stankoff B, Richmond TA, Rancour DM, Koralnik IJ, Hanson BA, Major EO, Chow CR, Eis PS. Progressive multifocal leukoencephalopathy genetic risk variants for pharmacovigilance of immunosuppressant therapies. Front Neurol 2022; 13:1016377. [PMID: 36588876 PMCID: PMC9795231 DOI: 10.3389/fneur.2022.1016377] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022] Open
Abstract
Background Progressive multifocal leukoencephalopathy (PML) is a rare and often lethal brain disorder caused by the common, typically benign polyomavirus 2, also known as JC virus (JCV). In a small percentage of immunosuppressed individuals, JCV is reactivated and infects the brain, causing devastating neurological defects. A wide range of immunosuppressed groups can develop PML, such as patients with: HIV/AIDS, hematological malignancies (e.g., leukemias, lymphomas, and multiple myeloma), autoimmune disorders (e.g., psoriasis, rheumatoid arthritis, and systemic lupus erythematosus), and organ transplants. In some patients, iatrogenic (i.e., drug-induced) PML occurs as a serious adverse event from exposure to immunosuppressant therapies used to treat their disease (e.g., hematological malignancies and multiple sclerosis). While JCV infection and immunosuppression are necessary, they are not sufficient to cause PML. Methods We hypothesized that patients may also have a genetic susceptibility from the presence of rare deleterious genetic variants in immune-relevant genes (e.g., those that cause inborn errors of immunity). In our prior genetic study of 184 PML cases, we discovered 19 candidate PML risk variants. In the current study of another 152 cases, we validated 4 of 19 variants in both population controls (gnomAD 3.1) and matched controls (JCV+ multiple sclerosis patients on a PML-linked drug ≥ 2 years). Results The four variants, found in immune system genes with strong biological links, are: C8B, 1-57409459-C-A, rs139498867; LY9 (alias SLAMF3), 1-160769595-AG-A, rs763811636; FCN2, 9-137779251-G-A, rs76267164; STXBP2, 19-7712287-G-C, rs35490401. Carriers of any one of these variants are shown to be at high risk of PML when drug-exposed PML cases are compared to drug-exposed matched controls: P value = 3.50E-06, OR = 8.7 [3.7-20.6]. Measures of clinical validity and utility compare favorably to other genetic risk tests, such as BRCA1 and BRCA2 screening for breast cancer risk and HLA-B*15:02 pharmacogenetic screening for pharmacovigilance of carbamazepine to prevent Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis. Conclusion For the first time, a PML genetic risk test can be implemented for screening patients taking or considering treatment with a PML-linked drug in order to decrease the incidence of PML and enable safer use of highly effective therapies used to treat their underlying disease.
Collapse
Affiliation(s)
- Eli Hatchwell
- Population Bio UK, Inc., Oxfordshire, United Kingdom,*Correspondence: Eli Hatchwell
| | | | | | | | - Yassine Taoufik
- Department of Hematology and Immunology, Hôpitaux Universitaires Paris-Saclay and INSERM 1186, Institut Gustave Roussy, Villejuif, France
| | - Houria Hendel-Chavez
- Department of Hematology and Immunology, Hôpitaux Universitaires Paris-Saclay and INSERM 1186, Institut Gustave Roussy, Villejuif, France
| | - Roland Liblau
- Infinity, Université Toulouse, CNRS, INSERM, UPS, Toulouse, France,Department of Immunology, CHU Toulouse, Hôpital Purpan, Toulouse, France
| | - David Brassat
- Infinity, Université Toulouse, CNRS, INSERM, UPS, Toulouse, France,Department of Immunology, CHU Toulouse, Hôpital Purpan, Toulouse, France
| | - Guillaume Martin-Blondel
- Infinity, Université Toulouse, CNRS, INSERM, UPS, Toulouse, France,Department of Infectious and Tropical Diseases, Toulouse University Hospital Center, Toulouse, France
| | - Heinz Wiendl
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Nicholas Schwab
- Department of Neurology With Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Irene Cortese
- Experimental Immunotherapeutics Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Maria Chiara Monaco
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Luisa Imberti
- Centro di Ricerca Emato-Oncologica AIL (CREA) and Diagnostic Department, ASST Spedali Civili of Brescia, Brescia, Italy
| | - Ruggero Capra
- Lombardia Multiple Sclerosis Network, Brescia, Italy
| | - Jorge R. Oksenberg
- Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Jacques Gasnault
- Department of Internal Medicine, Hôpitaux Universitaires Paris-Sud, Le Kremlin-Bicêtre, France
| | - Bruno Stankoff
- Department of Neurology, Hôpital Saint-Antoine, Paris, France
| | | | | | - Igor J. Koralnik
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Barbara A. Hanson
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Eugene O. Major
- Laboratory of Molecular Medicine and Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | | | - Peggy S. Eis
- Population Bio, Inc., New York, NY, United States,Peggy S. Eis
| |
Collapse
|
5
|
Bahrami S, Arshi S, Nabavi M, Bemanian MH, Fallahpour M, Rezaeifar A, Shokri S. Progressive multifocal leukoencephalopathy in a patient with novel mutation in the RAC2 gene: a case report. J Med Case Rep 2022; 16:235. [PMID: 35689244 PMCID: PMC9188039 DOI: 10.1186/s13256-022-03333-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 02/17/2022] [Indexed: 11/21/2022] Open
Abstract
Background Progressive multifocal leukoencephalopathy is a rare demyelinating disease that is often secondary to lytic destruction of oligodendrocytes and, to a lesser extent, to astrocytes’ response to human neurotrophic John Cunningham polyomavirus. Any underlying congenital disorder of primary or secondary immunodeficiency may predispose to virus infection and possible invasion of the brain. We present the first reported case of progressive multifocal leukoencephalopathy due to a mutation in the RAC2 gene. Case presentation We describe the case of a 34-year-old Iranian man with recurrent infections from the age of 2 years, along with other disorders such as nephritic syndrome, factor XI deficiency, and hypogammaglobulinemia. He was treated regularly with intravenous immunoglobulin from the age of 10 years with a diagnosis of common variable immune deficiency. Genetic testing confirmed a novel homozygous mutation in the RAC2 gene in the patient. Owing to the onset of neurological symptoms a few months ago, the patient was completely avaluated, which confirmed the diagnosis of PML. Despite all efforts, the patient died shortly after progression of neurological symptoms. Conclusions According to previous studies, progressive multifocal leukoencephalopathy has been associated with 26 cases of primary immunodeficiency. Our patient presents a new case of primary immunodeficiency with progressive multifocal leukoencephalopathy. Accurate examination of these cases can help us to gain insight into the immune response to John Cunningham virus and better treat this potentially deadly disease.
Collapse
Affiliation(s)
- Sima Bahrami
- Department of Allergy and Clinical Immunology, Iran University of Medical Sciences, 1445613131, Tehran, Iran
| | - Saba Arshi
- Department of Allergy and Clinical Immunology, Iran University of Medical Sciences, 1445613131, Tehran, Iran
| | - Mohammad Nabavi
- Department of Allergy and Clinical Immunology, Iran University of Medical Sciences, 1445613131, Tehran, Iran
| | - Mohammad Hassan Bemanian
- Department of Allergy and Clinical Immunology, Iran University of Medical Sciences, 1445613131, Tehran, Iran
| | - Morteza Fallahpour
- Department of Allergy and Clinical Immunology, Iran University of Medical Sciences, 1445613131, Tehran, Iran
| | - Afshin Rezaeifar
- Department of Allergy and Clinical Immunology, Iran University of Medical Sciences, 1445613131, Tehran, Iran
| | - Sima Shokri
- Department of Allergy and Clinical Immunology, Iran University of Medical Sciences, 1445613131, Tehran, Iran.
| |
Collapse
|
6
|
Fatal JC-virus Granular Cerebellar Neuronopathy in a Patient Diagnosed with ALPS and Hypogammaglobulinemia. J Clin Immunol 2022; 42:869-872. [PMID: 35178641 DOI: 10.1007/s10875-022-01227-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/06/2022] [Indexed: 10/19/2022]
|
7
|
Iwami K, Nakamichi K, Matsushima M, Nagai A, Shirai S, Nakakubo S, Takahashi-Iwata I, Yamada M, Yabe I. Progressive multifocal leukoencephalopathy with mild clinical conditions and detection of archetype-like JC virus in cerebrospinal fluid. J Neurovirol 2021; 27:917-922. [PMID: 34550545 DOI: 10.1007/s13365-021-01017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease of the central nervous system with a poor prognosis and is primarily caused by JC virus (JCV) with a mutation called prototype. We encountered a case of PML with moderate progression and analyzed the mutational patterns of JCV in the cerebrospinal fluid (CSF). A 19-year-old Japanese woman with mild neurological symptoms was diagnosed with combined immunodeficiency following pneumocystis pneumonia. Brain magnetic resonance imaging scan showed multiple brain lesions, and real-time polymerase chain reaction testing detected JCV in the CSF, leading to the diagnosis of PML. The disease course of PML was stable after administration of mefloquine and mirtazapine with immunoglobulin replacement therapy. In the JCV genome cloned from the patient CSF, DNA sequences of the gene encoding the capsid protein (VP1) and the non-coding control region exhibited small mutations. However, they were quite similar to those of the archetype JCV, which persists asymptomatically in healthy individuals. These findings provide insight into the mutational characteristics of JCV in PML with mild symptoms and progression.
Collapse
Affiliation(s)
- Kosuke Iwami
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kazuo Nakamichi
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Masaaki Matsushima
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Azusa Nagai
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinichi Shirai
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Sho Nakakubo
- Department of Respiratory Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ikuko Takahashi-Iwata
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masafumi Yamada
- Department of Pediatrics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
Seguier J, Briantais A, Ebbo M, Meunier B, Aurran T, Coze S, Kaphan E, De Sainte Marie B, Sbihi Z, Latour S, Cerf-Bensussan N, Picard C, Vély F, Barlogis V, Schleinitz N. Late-Onset Progressive Multifocal Leukoencephalopathy (PML) and Lymphoma in a 65-Year-Old Patient with XIAP Deficiency. J Clin Immunol 2021; 41:1975-1978. [PMID: 34580798 DOI: 10.1007/s10875-021-01139-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Julie Seguier
- Aix-Marseille Univ, APHM, Médecine Interne Hôpital de La Timone, 264 rue Saint Pierre 13385 cedex 5, Marseille, France.
| | - Antoine Briantais
- Aix-Marseille Univ, APHM, Médecine Interne Hôpital de La Timone, 264 rue Saint Pierre 13385 cedex 5, Marseille, France
| | - Mikael Ebbo
- Aix-Marseille Univ, APHM, Médecine Interne Hôpital de La Timone, 264 rue Saint Pierre 13385 cedex 5, Marseille, France
| | - Benoit Meunier
- Aix-Marseille Univ, APHM, Médecine Interne Hôpital de La Timone, 264 rue Saint Pierre 13385 cedex 5, Marseille, France
| | - Thérèse Aurran
- Institut Paoli-Calmettes, Hématologie, Marseille, France
| | - Stéphanie Coze
- Aix-Marseille Univ, APHM, Radiologie Hôpital Nord, Marseille, France
| | - Elsa Kaphan
- Aix-Marseille Univ, APHM, Neurologie Hôpital de La Timone, Marseille, France
| | - Benjamin De Sainte Marie
- Aix-Marseille Univ, APHM, Médecine Interne Hôpital de La Timone, 264 rue Saint Pierre 13385 cedex 5, Marseille, France
| | - Zineb Sbihi
- Laboratory of Lymphocyte Activation and Susceptibility To EBV Infection, Inserm UMR 1163, Institut Imagine, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility To EBV Infection, Inserm UMR 1163, Institut Imagine, Paris, France.,Université de Paris, Paris, France
| | - Nadine Cerf-Bensussan
- Université de Paris, Paris, France.,Laboratory of Intestinal Immunity, Inserm UMR 1163, Institut Imagine, Paris, France
| | - Capucine Picard
- Laboratory of Lymphocyte Activation and Susceptibility To EBV Infection, Inserm UMR 1163, Institut Imagine, Paris, France.,Université de Paris, Paris, France.,Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris (APHP), Paris, France.,Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris, France.,Centre de Références Des Déficits Immunitaires Héréditaires (CEREDIH), Necker-Enfants Malades Hospital, Assistance Publique Hôpitaux de Paris (APHP), Paris, France
| | - Frédéric Vély
- Aix-Marseille Univ, APHM, Marseille Immunopôle Hôpital de La Timone, Marseille, France
| | - Vincent Barlogis
- Aix-Marseille Univ, APHM, Pédiatrie Et Hématologie Pédiatrique Hôpital de La Timone, Marseille, France
| | - Nicolas Schleinitz
- Aix-Marseille Univ, APHM, Médecine Interne Hôpital de La Timone, 264 rue Saint Pierre 13385 cedex 5, Marseille, France
| |
Collapse
|
9
|
Complications neurologiques de l’infection par le virus JC : revue générale. Rev Med Interne 2021; 42:177-185. [DOI: 10.1016/j.revmed.2020.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/28/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
|
10
|
Berzero G, Basso S, Stoppini L, Palermo A, Pichiecchio A, Paoletti M, Lucev F, Gerevini S, Rossi A, Vegezzi E, Diamanti L, Bini P, Gastaldi M, Delbue S, Perotti C, Seminari E, Faraci M, Luppi M, Baldanti F, Zecca M, Marchioni E, Comoli P. Adoptive Transfer of JC Virus-Specific T Lymphocytes for the Treatment of Progressive Multifocal Leukoencephalopathy. Ann Neurol 2021; 89:769-779. [PMID: 33459417 PMCID: PMC8248385 DOI: 10.1002/ana.26020] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Progressive multifocal leukoencephalopathy (PML) is still burdened by high mortality in a subset of patients, such as those affected by hematological malignancies. The aim of this study was to analyze the safety and carry out preliminary evaluation of the efficacy of polyomavirus JC (JCPyV)-specific T cell therapy in a cohort of hematological patients with PML. METHODS Between 2014 and 2019, 9 patients with a diagnosis of "definite PML" according to the 2013 consensus who were showing progressive clinical deterioration received JCPyV-specific T cells. Cell lines were expanded from autologous or allogenic peripheral blood mononuclear cells by stimulation with JCPyV antigen-derived peptides. RESULTS None of the patients experienced treatment-related adverse events. In the evaluable patients, an increase in the frequency of circulating JCPyV-specific lymphocytes was observed, with a decrease or clearance of JCPyV viral load in cerebrospinal fluid. In responsive patients, transient appearance of punctate areas of contrast enhancement within, or close to, PML lesions was observed, which was interpreted as a sign of immune control and which regressed spontaneously without the need for steroid treatment. Six of 9 patients achieved PML control, with 5 alive and in good clinical condition at their last follow-up. INTERPRETATION Among other novel treatments, T cell therapy is emerging as a viable treatment option in patients with PML, particularly for those not amenable to restoration of specific immunity. Neurologists should be encouraged to refer PML patients to specialized centers to allow access to this treatment strategy. ANN NEUROL 2021;89:769-779.
Collapse
Affiliation(s)
- Giulia Berzero
- Neuroncology Unit, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Sabrina Basso
- Cell Factory, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy.,Pediatric Hematology-Oncology Unit, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Luca Stoppini
- Cell Factory, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy.,Pediatric Hematology-Oncology Unit, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Andrea Palermo
- Neuroncology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Anna Pichiecchio
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Neuroradiology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Federica Lucev
- Neuroradiology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Simonetta Gerevini
- Department of Neuroradiology, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Andrea Rossi
- Neuroradiology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Elisa Vegezzi
- Neuroncology Unit, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Luca Diamanti
- Neuroncology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Paola Bini
- Neuroncology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Serena Delbue
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Cesare Perotti
- Transfusion Service, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Elena Seminari
- Infectious Disease Department, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Maura Faraci
- HSCT Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Mario Luppi
- Department of Medical and Surgical Sciences, Section of Hematology, University of Modena and Reggio Emilia, Azienda Ospedaliero-Universitaria Policlinico, Modena, Italy
| | - Fausto Baldanti
- Molecular Virology, IRCCS Fondazione Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Marco Zecca
- Pediatric Hematology-Oncology Unit, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | | | - Patrizia Comoli
- Cell Factory, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy.,Pediatric Hematology-Oncology Unit, IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
11
|
Solis M, Guffroy A, Lersy F, Soulier E, Gallais F, Renaud M, Douiri N, Argemi X, Hansmann Y, De Sèze J, Kremer S, Fafi-Kremer S. Inadequate Immune Humoral Response against JC Virus in Progressive Multifocal Leukoencephalopathy Non-Survivors. Viruses 2020; 12:v12121380. [PMID: 33276614 PMCID: PMC7761562 DOI: 10.3390/v12121380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/17/2020] [Accepted: 11/29/2020] [Indexed: 11/16/2022] Open
Abstract
JC virus (JCV) causes progressive multifocal leukoencephalopathy (PML) in immunosuppressed patients. There is currently no effective specific antiviral treatment and PML management relies on immune restoration. Prognosis markers are crucially needed in this disease because of its high mortality rate. In this work, we investigated the compartmentalization of JCV strains as well as the humoral neutralizing response in various matrices to further understand the pathophysiology of PML and define markers of survival. Four patients were included, of which three died in the few months following PML onset. Cerebrospinal fluid (CSF) viral loads were the highest, with plasma samples having lower viral loads and urine samples being mostly negative. Whether at PML onset or during follow-up, neutralizing antibody (NAb) titers directed against the same autologous strain (genotype or mutant) were the highest in plasma, with CSF titers being on average 430-fold lower and urine titers 500-fold lower at the same timepoint. Plasma NAb titers against autologous genotype or mutant were lower in non-survivor patients, though no neutralization “blind spot” was observed. The surviving patient was followed up until nine months after PML onset and presented, at that time, an increase in neutralizing titers, from 38-fold against the autologous genotype to around 200-fold against PML mutants. Our results suggest that patients’ humoral neutralizing response against their autologous strain may play a role in PML outcome, with survivors developing high NAb titers in both plasma and CSF.
Collapse
Affiliation(s)
- Morgane Solis
- Virology Laboratory, Strasbourg University Hospitals, 67000 Strasbourg, France; (M.S.); (F.G.)
- INSERM UMR-S 1109 LabEx TRANSPLANTEX, Strasbourg University, 67000 Strasbourg, France;
| | - Aurélien Guffroy
- Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases, Strasbourg University Hospitals, 67000 Strasbourg, France;
| | - François Lersy
- Service d’Imagerie 2, Strasbourg University Hospitals, 67000 Strasbourg, France; (F.L.); (S.K.)
| | - Eric Soulier
- INSERM UMR-S 1109 LabEx TRANSPLANTEX, Strasbourg University, 67000 Strasbourg, France;
| | - Floriane Gallais
- Virology Laboratory, Strasbourg University Hospitals, 67000 Strasbourg, France; (M.S.); (F.G.)
- INSERM UMR-S 1109 LabEx TRANSPLANTEX, Strasbourg University, 67000 Strasbourg, France;
| | - Mathilde Renaud
- Neurology Department, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg University Hospitals, 67000 Strasbourg, France; (M.R.); (J.D.S.)
| | - Nawal Douiri
- Department of Infectious Diseases, Strasbourg University Hospitals, 67000 Strasbourg, France; (N.D.); (X.A.); (Y.H.)
| | - Xavier Argemi
- Department of Infectious Diseases, Strasbourg University Hospitals, 67000 Strasbourg, France; (N.D.); (X.A.); (Y.H.)
| | - Yves Hansmann
- Department of Infectious Diseases, Strasbourg University Hospitals, 67000 Strasbourg, France; (N.D.); (X.A.); (Y.H.)
| | - Jérôme De Sèze
- Neurology Department, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg University Hospitals, 67000 Strasbourg, France; (M.R.); (J.D.S.)
- Clinical Investigation Center, INSERM 1434, Strasbourg University Hospitals, 67000 Strasbourg, France
| | - Stéphane Kremer
- Service d’Imagerie 2, Strasbourg University Hospitals, 67000 Strasbourg, France; (F.L.); (S.K.)
- Engineering Science, Computer Science and Imaging Laboratory (ICube), Integrative Multimodal Imaging in Healthcare, UMR 7357, University of Strasbourg-CNRS, 67000 Strasbourg, France
| | - Samira Fafi-Kremer
- Virology Laboratory, Strasbourg University Hospitals, 67000 Strasbourg, France; (M.S.); (F.G.)
- INSERM UMR-S 1109 LabEx TRANSPLANTEX, Strasbourg University, 67000 Strasbourg, France;
- Correspondence: ; Tel.: +33-3-69-55-14-38; Fax: +33-3-68-85-37-50
| |
Collapse
|
12
|
Al-Louzi O, Roy S, Osuorah I, Parvathaneni P, Smith BR, Ohayon J, Sati P, Pham DL, Jacobson S, Nath A, Reich DS, Cortese I. Progressive multifocal leukoencephalopathy lesion and brain parenchymal segmentation from MRI using serial deep convolutional neural networks. NEUROIMAGE-CLINICAL 2020; 28:102499. [PMID: 33395989 PMCID: PMC7708929 DOI: 10.1016/j.nicl.2020.102499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 11/15/2022]
Abstract
PML has characteristic dynamic changes in brain and lesion volume on MRI. JCnet is an automated method for brain atrophy and lesion segmentation in PML. JCnet improves PML lesion segmentation accuracy compared to conventional methods. JCnet can accurately track PML lesion changes over time.
Progressive multifocal leukoencephalopathy (PML) is a rare opportunistic brain infection caused by the JC virus and associated with substantial morbidity and mortality. Accurate MRI assessment of PML lesion burden and brain parenchymal atrophy is of decisive value in monitoring the disease course and response to therapy. However, there are currently no validated automatic methods for quantification of PML lesion burden or associated parenchymal volume loss. Furthermore, manual brain or lesion delineations can be tedious, require the use of valuable time resources by radiologists or trained experts, and are often subjective. In this work, we introduce JCnet (named after the causative viral agent), an end-to-end, fully automated method for brain parenchymal and lesion segmentation in PML using consecutive 3D patch-based convolutional neural networks. The network architecture consists of multi-view feature pyramid networks with hierarchical residual learning blocks containing embedded batch normalization and nonlinear activation functions. The feature maps across the bottom-up and top-down pathways of the feature pyramids are merged, and an output probability membership generated through convolutional pathways, thus rendering the method fully convolutional. Our results show that this approach outperforms and improves longitudinal consistency compared to conventional, state-of-the-art methods of healthy brain and multiple sclerosis lesion segmentation, utilized here as comparators given the lack of available methods validated for use in PML. The ability to produce robust and accurate automated measures of brain atrophy and lesion segmentation in PML is not only valuable clinically but holds promise toward including standardized quantitative MRI measures in clinical trials of targeted therapies. Code is available at: https://github.com/omarallouz/JCnet.
Collapse
Affiliation(s)
- Omar Al-Louzi
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA; Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Snehashis Roy
- Section of Neural Function, National Institute of Mental Health, Bethesda, MD, USA
| | - Ikesinachi Osuorah
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Prasanna Parvathaneni
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Bryan R Smith
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Joan Ohayon
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Dzung L Pham
- Center for Neuroscience and Regenerative Medicine, The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA; Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Irene Cortese
- Neuroimmunology Clinic, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.
| |
Collapse
|
13
|
Long-Term Survival after Progressive Multifocal Leukoencephalopathy in a Patient with Primary Immune Deficiency and NFKB1 Mutation. J Clin Immunol 2020; 40:1138-1143. [PMID: 32918165 DOI: 10.1007/s10875-020-00862-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE To describe the development of progressive multifocal leukoencephalopathy (PML) in a patient with primary immune deficiency (PID) due to a NFKB1 (nuclear factor kB subunit 1) mutation, who was treated successfully with a combination of mirtazapine and mefloquine. METHODS We've based the treatment of our patient on literature research and provide a review of PML in CVID patients. RESULTS Only a few reports have been published on the occurrence of PML in PID. PML is mainly observed in patients with reduced cellular immunity, which was not the case in our patient. Successful treatment options in this population are limited. Though severely disabled, our patient still survives, more than 4 years after symptom onset and shows consistent improvement on MRI (magnetic resonance imaging) and CSF (cerebrospinal fluid) analysis. CONCLUSION We conclude that some patients with PML might be treatable and can show long-term survival although neurological deficits remain. Involvement of humoral immunity in the pathogenesis of PML as well as the possible role of NFKB1 mutations in response to specific pathogens deserves further investigation.
Collapse
|
14
|
Ravell JC, Chauvin SD, He T, Lenardo M. An Update on XMEN Disease. J Clin Immunol 2020; 40:671-681. [PMID: 32451662 PMCID: PMC7369250 DOI: 10.1007/s10875-020-00790-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/07/2020] [Indexed: 12/23/2022]
Abstract
“X-linked immunodeficiency with magnesium defect, Epstein-Barr virus (EBV) infection, and neoplasia” (XMEN) disease is an inborn error of glycosylation and immunity caused by loss of function mutations in the magnesium transporter 1 (MAGT1) gene. It is a multisystem disease that strongly affects certain immune cells. MAGT1 is now confirmed as a non-catalytic subunit of the oligosaccharyltransferase complex and facilitates Asparagine (N)-linked glycosylation of specific substrates, making XMEN a congenital disorder of glycosylation manifesting as a combined immune deficiency. The clinical disease has variable expressivity and impaired glycosylation of key MAGT1-dependent glycoproteins in addition to Mg2+ abnormalities can explain some of the immune manifestations. NKG2D, an activating receptor critical for cytotoxic function against EBV, is poorly glycosylated and invariably decreased on CD8+ T cells and natural killer (NK) cells from XMEN patients. It is the best biomarker of the disease. The characterization of EBV-naïve XMEN patients has clarified features of the genetic disease that were previously attributed to EBV infection. Extra-immune manifestations, including hepatic and neurological abnormalities have recently been reported. EBV-associated lymphomas remain the main cause of severe morbidity. Unfortunately, treatment options to address the underlying mechanism of disease remain limited and Mg2+ supplementation has not proven successful. Here, we review the expanding clinical phenotype and recent advances in glycobiology that have increased our understanding of XMEN disease. We also propose updating XMEN to “X-linked MAGT1 deficiency with increased susceptibility to EBV-infection and N-linked glycosylation defect” in light of these novel findings.
Collapse
Affiliation(s)
- Juan C Ravell
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| | - Samuel D Chauvin
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, DIR, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA
| | - Tingyan He
- Department of Rheumatology and Immunology, Shenzhen Children's Hospital, Shenzhen, 518038, China.
| | - Michael Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, and Clinical Genomics Program, DIR, National Institute of Allergy and Infectious Diseases (NIAID), Bethesda, MD, USA.
| |
Collapse
|
15
|
Eis PS, Bruno CD, Richmond TA, Koralnik IJ, Hanson BA, Major EO, Chow CR, Hendel-Chavez H, Stankoff B, Gasnault J, Taoufik Y, Hatchwell E. Germline Genetic Risk Variants for Progressive Multifocal Leukoencephalopathy. Front Neurol 2020; 11:186. [PMID: 32256442 PMCID: PMC7094807 DOI: 10.3389/fneur.2020.00186] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/27/2020] [Indexed: 12/18/2022] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a rare demyelinating disorder of the brain caused by reactivation of the JC virus (JCV), a polyomavirus that infects at least 60% of the population but is asymptomatic or results in benign symptoms in most people. PML occurs as a secondary disease in a variety of disorders or as a serious adverse event from immunosuppressant agents, but is mainly found in three groups: HIV-infected patients, patients with hematological malignancies, or multiple sclerosis (MS) patients on the immunosuppressant therapy natalizumab. It is severely debilitating and is deadly in ~50% HIV cases, ~90% of hematological malignancy cases, and ~24% of MS-natalizumab cases. A PML risk prediction test would have clinical utility in all at risk patient groups but would be particularly beneficial in patients considering therapy with immunosuppressant agents known to cause PML, such as natalizumab, rituximab, and others. While a JC antibody test is currently used in the clinical decision process for natalizumab, it is suboptimal because of its low specificity and requirement to periodically retest patients for seroconversion or to assess if a patient's JCV index has increased. Whereas a high specificity genetic risk prediction test comprising host genetic risk variants (i.e., germline variants occurring at higher frequency in PML patients compared to the general population) could be administered one time to provide clinicians with additional risk prediction information that is independent of JCV serostatus. Prior PML case reports support the hypothesis that PML risk is greater in patients with a genetically caused immunodeficiency disorder. To identify germline PML risk variants, we performed exome sequencing on 185 PML cases (70 in a discovery cohort and 115 in a replication cohort) and used the gnomAD variant database for interpretation. Our study yielded 19 rare variants (maximum allele frequency of 0.02 in gnomAD ethnically matched populations) that impact 17 immune function genes (10 are known to cause inborn errors of immunity). Modeling of these variants in a PML genetic risk test for MS patients considering natalizumab treatment indicates that at least a quarter of PML cases may be preventable.
Collapse
Affiliation(s)
- Peggy S Eis
- Population Bio, Inc., New York, NY, United States
| | | | - Todd A Richmond
- Richmond Bioinformatics Consulting, Seattle, WA, United States
| | - Igor J Koralnik
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Barbara A Hanson
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Eugene O Major
- Laboratory of Molecular Medicine and Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | | | - Houria Hendel-Chavez
- Department of Hematology and Immunology, Hôpitaux Universitaires Paris-Sud, INSERM 1184, Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France
| | - Bruno Stankoff
- Department of Neurology, Hôpital Saint-Antoine, Paris, France
| | - Jacques Gasnault
- Department of Internal Medicine, Hôpitaux Universitaires Paris-Sud, Le Kremlin-Bicêtre, France
| | - Yassine Taoufik
- Department of Hematology and Immunology, Hôpitaux Universitaires Paris-Sud, INSERM 1184, Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France
| | - Eli Hatchwell
- Population Bio UK, Inc., Oxfordshire, United Kingdom
| |
Collapse
|
16
|
Kartau M, Sipilä JOT, Auvinen E, Palomäki M, Verkkoniemi-Ahola A. Progressive Multifocal Leukoencephalopathy: Current Insights. Degener Neurol Neuromuscul Dis 2019; 9:109-121. [PMID: 31819703 PMCID: PMC6896915 DOI: 10.2147/dnnd.s203405] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022] Open
Abstract
Cases of PML should be evaluated according to predisposing factors, as these subgroups differ by incidence rate, clinical course, and prognosis. The three most significant groups at risk of PML are patients with hematological malignancies mostly previously treated with immunotherapies but also untreated, patients with HIV infection, and patients using monoclonal antibody (mAb) treatments. Epidemiological data is scarce and partly conflicting, but the distribution of the subgroups appears to have changed. While there is no specific anti-JCPyV treatment, restoration of the immune function is the most effective approach to PML treatment. Research is warranted to determine whether immune checkpoint inhibitors could benefit certain PML subgroups. There are no systematic national or international records of PML diagnoses or a risk stratification algorithm, except for MS patients receiving natalizumab (NTZ). These are needed to improve PML risk assessment and to tailor better prevention strategies.
Collapse
Affiliation(s)
- Marge Kartau
- Clinical Neurosciences, Neurology, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| | - Jussi OT Sipilä
- Department of Neurology, Siun Sote, North Carelia Central Hospital, Joensuu, Finland
- Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Eeva Auvinen
- Department of Virology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maarit Palomäki
- Neuroradiology, HUS Medical Imaging Center, Helsinki, Finland
| | - Auli Verkkoniemi-Ahola
- Clinical Neurosciences, Neurology, Helsinki University Hospital and Helsinki University, Helsinki, Finland
| |
Collapse
|
17
|
McLean-Tooke A, Phatouros CC, Chidlow G, Smith DW, Silbert P. Granule Cell Neuronopathy in a Patient with Common Variable Immunodeficiency. J Clin Immunol 2019; 39:267-269. [PMID: 30993493 DOI: 10.1007/s10875-019-00624-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 04/02/2019] [Indexed: 11/26/2022]
Affiliation(s)
- Andrew McLean-Tooke
- Department of Clinical Immunology, Sir Charles Gairdner Hospital, Perth, WA, Australia.
- Department of Laboratory Immunology, PathWest QEII Medical Centre, Perth, WA, Australia.
| | - Constantine Chris Phatouros
- Neurological Intervention & Imaging Service of Western Australia, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Glenys Chidlow
- Department of Microbiology, PathWest Laboratory Medicine WA, Perth, WA, Australia
| | - David W Smith
- Department of Microbiology, PathWest Laboratory Medicine WA, Perth, WA, Australia
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, WA, Australia
| | - Peter Silbert
- School of Medicine, University of Western Australia, Perth, WA, Australia
| |
Collapse
|