1
|
Rondeau V, Kalogeraki M, Roland L, Nader ZA, Gourhand V, Bonaud A, Lemos J, Khamyath M, Moulin C, Schell B, Delord M, Bidaut G, Lecourt S, Freitas C, Anginot A, Mazure N, McDermott DH, Parietti V, Setterblad N, Dulphy N, Bachelerie F, Aurrand-Lions M, Stockholm D, Lobry C, Murphy PM, Espéli M, Mancini SJC, Balabanian K. CXCR4 signaling determines the fate of hematopoietic multipotent progenitors by stimulating mTOR activity and mitochondrial metabolism. Sci Signal 2024; 17:eadl5100. [PMID: 39471249 DOI: 10.1126/scisignal.adl5100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/23/2024] [Accepted: 09/30/2024] [Indexed: 11/01/2024]
Abstract
Both cell-intrinsic and niche-derived, cell-extrinsic cues drive the specification of hematopoietic multipotent progenitors (MPPs) in the bone marrow, which comprise multipotent MPP1 cells and lineage-restricted MPP2, MPP3, and MPP4 subsets. Patients with WHIM syndrome, a rare congenital immunodeficiency caused by mutations that prevent desensitization of the chemokine receptor CXCR4, have an excess of myeloid cells in the bone marrow. Here, we investigated the effects of increased CXCR4 signaling on the localization and fate of MPPs. Knock-in mice bearing a WHIM syndrome-associated CXCR4 mutation (CXCR41013) phenocopied the myeloid skewing of bone marrow in patients. Whereas MPP4 cells in wild-type mice differentiated into lymphoid cells, MPP4s in CXCR41013 knock-in mice differentiated into myeloid cells. This myeloid rewiring of MPP4s in CXCR41013 knock-in mice was associated with enhanced signaling mediated by the kinase mTOR and increased oxidative phosphorylation (OXPHOS). MPP4s also localized further from arterioles in the bone marrow of knock-in mice compared with wild-type mice, suggesting that the loss of extrinsic cues from the perivascular niche may also contribute to their myeloid skewing. Chronic treatment with the CXCR4 antagonist AMD3100 or the mTOR inhibitor rapamycin restored the lymphoid potential of MPP4s in knock-in mice. Thus, CXCR4 desensitization drives the lymphoid potential of MPP4 cells by dampening the mTOR-dependent metabolic changes that promote myeloid differentiation.
Collapse
Affiliation(s)
- Vincent Rondeau
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Maria Kalogeraki
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Lilian Roland
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Zeina Abou Nader
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Vanessa Gourhand
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Amélie Bonaud
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Julia Lemos
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Mélanie Khamyath
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Clémentine Moulin
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Bérénice Schell
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Marc Delord
- Direction à la Recherche Clinique et à l'Innovation, Centre Hospitalier de Versailles, Le Chesnay, France
| | - Ghislain Bidaut
- Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Séverine Lecourt
- INSERM U1279, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
| | - Christelle Freitas
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Adrienne Anginot
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Nathalie Mazure
- Centre Méditerranéen de Médecine Moléculaire, INSERM U1065, Nice, France
| | - David H McDermott
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Véronique Parietti
- Université Paris Cité, UMS Saint-Louis INSERM U53/UAR2030, Paris, France
| | - Niclas Setterblad
- Université Paris Cité, UMS Saint-Louis INSERM U53/UAR2030, Paris, France
| | - Nicolas Dulphy
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | - Françoise Bachelerie
- Université Paris-Saclay, INSERM, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| | - Michel Aurrand-Lions
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
- Aix-Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Marseille, France
| | - Daniel Stockholm
- PSL Research University, EPHE, Paris, France
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Camille Lobry
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U944, Paris, France
| | - Philip M Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Marion Espéli
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| | | | - Karl Balabanian
- Université Paris Cité, Institut de Recherche Saint-Louis, INSERM U1160, Paris, France
- OPALE Carnot Institute, Organization for Partnerships in Leukemia, Hôpital Saint-Louis, Paris, France
| |
Collapse
|
2
|
Garcia-Carmona Y, Chavez J, Gernez Y, Geyer JT, Bussel JB, Cunningham-Rundles C. Unexpected diagnosis of WHIM syndrome in refractory autoimmune cytopenia. Blood Adv 2024; 8:5126-5136. [PMID: 39028950 PMCID: PMC11460441 DOI: 10.1182/bloodadvances.2024013301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/25/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024] Open
Abstract
ABSTRACT WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome is a rare primary immunodeficiency predominantly caused by heterozygous gain-of-function mutations in the C-terminus of the gene CXCR4. These CXCR4 variants display impaired receptor trafficking with persistence of the CXCR4 receptor on the surface, resulting in hyperactive downstream signaling after CXCL12 stimulation. In turn, this results in defective lymphoid differentiation, and reduced blood neutrophil and lymphocyte numbers. Here, we report a CXCR4 mutation that in 2 members of a kindred, led to life-long autoimmunity and lymphoid hypertrophy as the primary clinical manifestations of WHIM syndrome. We examine the functional effects of this mutation, and how these have affected phosphorylation, activation, and receptor internalization.
Collapse
Affiliation(s)
- Yolanda Garcia-Carmona
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Jose Chavez
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Yael Gernez
- Department of Medicine, Stanford School of Medicine, Stanford, CA
| | - Julia T. Geyer
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY
| | - James B. Bussel
- Departments of Pediatrics, Medicine and Obstetrics, Weill Cornell School of Medicine, New York, NY
| | - Charlotte Cunningham-Rundles
- Division of Clinical Immunology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
3
|
Saotome K, McGoldrick LL, Ho JH, Ramlall TF, Shah S, Moore MJ, Kim JH, Leidich R, Olson WC, Franklin MC. Structural insights into CXCR4 modulation and oligomerization. Nat Struct Mol Biol 2024:10.1038/s41594-024-01397-1. [PMID: 39313635 DOI: 10.1038/s41594-024-01397-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 08/28/2024] [Indexed: 09/25/2024]
Abstract
Activation of the chemokine receptor CXCR4 by its chemokine ligand CXCL12 regulates diverse cellular processes. Previously reported crystal structures of CXCR4 revealed the architecture of an inactive, homodimeric receptor. However, many structural aspects of CXCR4 remain poorly understood. Here, we use cryo-electron microscopy to investigate various modes of human CXCR4 regulation. CXCL12 activates CXCR4 by inserting its N terminus deep into the CXCR4 orthosteric pocket. The binding of US Food and Drug Administration-approved antagonist AMD3100 is stabilized by electrostatic interactions with acidic residues in the seven-transmembrane-helix bundle. A potent antibody blocker, REGN7663, binds across the extracellular face of CXCR4 and inserts its complementarity-determining region H3 loop into the orthosteric pocket. Trimeric and tetrameric structures of CXCR4 reveal modes of G-protein-coupled receptor oligomerization. We show that CXCR4 adopts distinct subunit conformations in trimeric and tetrameric assemblies, highlighting how oligomerization could allosterically regulate chemokine receptor function.
Collapse
Affiliation(s)
- Kei Saotome
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA.
| | | | - Jo-Hao Ho
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | - Sweta Shah
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | - Jee Hae Kim
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | | | | |
Collapse
|
4
|
Mickey D, Camacho JV, Khan A, Kaufman D. Immunodeficiency: Quantitative and qualitative phagocytic cell defects. Allergy Asthma Proc 2024; 45:299-304. [PMID: 39294912 DOI: 10.2500/aap.2024.45.240049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The immune system is divided into two major branches: innate and adaptive. The innate immune system is the body's first line of defense and rapidly responds in a nonspecific manner to various microorganisms, foreign materials, or injuries. Phagocytes, which include macrophages, monocytes, and neutrophils, are innate immune cells that can surround and kill microorganisms, ingest foreign material, and remove dead cells. They also indirectly boost both innate and adaptive immune responses through various activation signals. Phagocytic defects characteristically lead to fungal and bacterial infections of the respiratory tract, lymph nodes, skin, and other organ systems, and they are commonly associated with inflammatory bowel disease. This primer will review high-yield innate defects of phagocytic cells, including defects of respiratory (oxidative) burst, defects of neutrophil migration, cyclic and severe congenital neutropenias and associated disorders, and other phagocyte defect disorders.
Collapse
|
5
|
Hoy SM. Mavorixafor: First Approval. Drugs 2024; 84:969-975. [PMID: 39004659 DOI: 10.1007/s40265-024-02063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/16/2024]
Abstract
Mavorixafor (XOLREMDI™) is an oral, selective C-X-C chemokine receptor 4 (CXCR4) antagonist developed by X4 Pharmaceuticals that blocks the binding of C-X-C chemokine ligand 12 (also known as stromal derived factor-1) to CXCR4. In April 2024, it became the first therapy to be approved for WHIM syndrome (named by an acronym for its observed characteristics of Warts, Hypogammaglobulinaemia, Infections and Myelokathexis) in the USA, where it is indicated for use in patients aged ≥ 12 years with WHIM syndrome to increase the number of circulating mature neutrophils and lymphocytes. Clinical development of mavorixafor is ongoing for chronic neutropenic disorders. This article summarizes the milestones in the development of mavorixafor leading to this first approval for use in patients aged ≥ 12 years with WHIM syndrome to increase the number of circulating mature neutrophils and lymphocytes.
Collapse
Affiliation(s)
- Sheridan M Hoy
- Springer Nature, Private Bag 65901, Mairangi Bay, Auckland, 0754, New Zealand.
| |
Collapse
|
6
|
Zmajkovicova K, Pawar S, Sharapova SO, Geier CB, Wiest I, Nguyen C, Monticelli H, Maier-Munsa S, Chen K, Sleasman JW, Aleshkevich S, Polyakova E, Sakovich I, Warnatz K, Grimbacher B, Proietti M, Sondheimer N, Ujhazi B, Gordon S, Ellison M, Yilmaz M, Walter JE, Badarau A, Taveras AG, Neff JL, Bledsoe JR, Tarrant TK. A novel transmembrane CXCR4 variant that expands the WHIM genotype-phenotype paradigm. Blood Adv 2024; 8:3754-3759. [PMID: 38768429 PMCID: PMC11296240 DOI: 10.1182/bloodadvances.2023011875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/07/2024] [Accepted: 04/22/2024] [Indexed: 05/22/2024] Open
Affiliation(s)
| | - Sumit Pawar
- Formerly X4 Pharmaceuticals (Austria) GmbH, Vienna, Austria
| | - Svetlana O. Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology, and Immunology, Minsk, Belarus
| | - Christoph B. Geier
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ivana Wiest
- Formerly X4 Pharmaceuticals (Austria) GmbH, Vienna, Austria
| | - Chi Nguyen
- X4 Pharmaceuticals (Austria) GmbH, Vienna, Austria
| | | | | | | | - John W. Sleasman
- Division of Allergy, Immunology, Department of Pediatrics, Duke University School of Medicine, Durham, NC
| | - Svetlana Aleshkevich
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology, and Immunology, Minsk, Belarus
| | - Ekaterina Polyakova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology, and Immunology, Minsk, Belarus
| | - Inga Sakovich
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology, and Immunology, Minsk, Belarus
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michele Proietti
- Department of Rheumatology and Clinical Immunology, Hannover Medical School, Hannover, Germany
- RESIST-Cluster of Excellence 2155, Hannover Medical School, Hannover, Germany
| | - Neal Sondheimer
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Boglarka Ujhazi
- Division of Allergy and Immunology, Department of Medicine, Johns Hopkins All Children's Hospital, St Petersburg, FL
| | - Sumai Gordon
- Division of Allergy and Immunology, Department of Medicine, Johns Hopkins All Children's Hospital, St Petersburg, FL
| | - Maryssa Ellison
- Division of Allergy and Immunology, Department of Medicine, Johns Hopkins All Children's Hospital, St Petersburg, FL
| | - Melis Yilmaz
- Division of Allergy and Immunology, Department of Medicine, Johns Hopkins All Children's Hospital, St Petersburg, FL
- Division of Allergy & Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Jolan E. Walter
- Division of Allergy and Immunology, Department of Medicine, Johns Hopkins All Children's Hospital, St Petersburg, FL
- Division of Allergy & Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL
- Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, MA
| | | | | | - Jadee L. Neff
- Division of Hematopathology, Department of Pathology, Duke University, Durham, NC
| | | | - Teresa K. Tarrant
- Division of Rheumatology and Immunology, Department of Medicine, Duke University, Durham, NC
- Durham Veterans Affairs Medical Center, Durham, NC
| |
Collapse
|
7
|
Benavides-Nieto M, Adam F, Martin E, Boussard C, Lagresle-Peyrou C, Callebaut I, Kauskot A, Repérant C, Feng M, Bordet JC, Castelle M, Morelle G, Brouzes C, Zarhrate M, Panikulam P, Lambert N, Picard C, Bodet D, Rouger-Gaudichon J, Revy P, de Villartay JP, Moshous D. Somatic RAP1B gain-of-function variant underlies isolated thrombocytopenia and immunodeficiency. J Clin Invest 2024; 134:e169994. [PMID: 39225097 PMCID: PMC11364392 DOI: 10.1172/jci169994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
The ubiquitously expressed small GTPase Ras-related protein 1B (RAP1B) acts as a molecular switch that regulates cell signaling, cytoskeletal remodeling, and cell trafficking and activates integrins in platelets and lymphocytes. The residue G12 in the P-loop is required for the RAP1B-GTPase conformational switch. Heterozygous germline RAP1B variants have been described in patients with syndromic thrombocytopenia. However, the causality and pathophysiological impact remained unexplored. We report a boy with neonatal thrombocytopenia, combined immunodeficiency, neutropenia, and monocytopenia caused by a heterozygous de novo single nucleotide substitution, c.35G>A (p.G12E) in RAP1B. We demonstrate that G12E and the previously described G12V and G60R were gain-of-function variants that increased RAP1B activation, talin recruitment, and integrin activation, thereby modifying late responses such as platelet activation, T cell proliferation, and migration. We show that in our patient, G12E was a somatic variant whose allele frequency decreased over time in the peripheral immune compartment, but remained stable in bone marrow cells, suggesting a differential effect in distinct cell populations. Allogeneic hematopoietic stem cell transplantation fully restored the patient's hemato-immunological phenotype. Our findings define monoallelic RAP1B gain-of-function variants as a cause for constitutive immunodeficiency and thrombocytopenia. The phenotypic spectrum ranged from isolated hematological manifestations in our patient with somatic mosaicism to complex syndromic features in patients with reported germline RAP1B variants.
Collapse
Affiliation(s)
- Marta Benavides-Nieto
- Université Paris Cité, Paris, France
- Imagine Institute, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue Contre le Cancer, Ligue 2023, INSERM UMR 1163, Paris, France
- General Pediatrics–Infectious Diseases and Internal Medicine, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris (AP-HP) Nord, Paris, France
| | - Frédéric Adam
- INSERM UMR S 1176, Laboratory for Hemostasis, Inflammation and Thrombosis (HITh), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Emmanuel Martin
- Laboratory Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Charlotte Boussard
- Université Paris Cité, Paris, France
- Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades University Hospital, AP-HP, Paris, France
- Laboratory Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Chantal Lagresle-Peyrou
- Biotherapy Clinical Investigation Center, AP-HP, Paris, France
- Laboratory Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Isabelle Callebaut
- Sorbonne University, Muséum National d’Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Alexandre Kauskot
- INSERM UMR S 1176, Laboratory for Hemostasis, Inflammation and Thrombosis (HITh), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Christelle Repérant
- INSERM UMR S 1176, Laboratory for Hemostasis, Inflammation and Thrombosis (HITh), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Miao Feng
- INSERM UMR S 1176, Laboratory for Hemostasis, Inflammation and Thrombosis (HITh), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Jean-Claude Bordet
- Laboratoire d’Hémostase, Centre de Biologie Est, Hospices Civils de Lyon, Bron, France
| | - Martin Castelle
- Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades University Hospital, AP-HP, Paris, France
| | - Guillaume Morelle
- Université Paris Cité, Paris, France
- Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades University Hospital, AP-HP, Paris, France
| | - Chantal Brouzes
- Laboratory of Onco-Hematology, Necker-Enfants Malades University Hospital, AP-HP, Paris, France, and INSERM U1151, Institut Necker-Enfants Malades, Paris, France
| | - Mohammed Zarhrate
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 and INSERM US24/CNRS UAR3633, Paris Descartes Sorbonne Paris Cité University, Paris, France
| | - Patricia Panikulam
- Université Paris Cité, Paris, France
- Laboratory “Molecular basis of altered immune homeostasis,” INSERM UMR 1163, Imagine Institute, Paris, France
| | - Nathalie Lambert
- Study Center for Primary Immunodeficiencies, Necker-Enfants Malades University Hospital, AP-HP, Paris, France
| | - Capucine Picard
- Université Paris Cité, Paris, France
- Laboratory Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker-Enfants Malades University Hospital, AP-HP, Paris, France
- Centre de Référence des Déficits Immunitaires Héréditaires (CEREDIH), Necker-Enfants Malades University Hospital, AP-HP, Paris, France
| | - Damien Bodet
- CHU de Caen Normandie, Onco-Immunohématologie Pédiatrique, Caen, France
| | | | - Patrick Revy
- Université Paris Cité, Paris, France
- Imagine Institute, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue Contre le Cancer, Ligue 2023, INSERM UMR 1163, Paris, France
| | - Jean-Pierre de Villartay
- Université Paris Cité, Paris, France
- Imagine Institute, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue Contre le Cancer, Ligue 2023, INSERM UMR 1163, Paris, France
| | - Despina Moshous
- Université Paris Cité, Paris, France
- Imagine Institute, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue Contre le Cancer, Ligue 2023, INSERM UMR 1163, Paris, France
- Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades University Hospital, AP-HP, Paris, France
- Centre de Référence des Déficits Immunitaires Héréditaires (CEREDIH), Necker-Enfants Malades University Hospital, AP-HP, Paris, France
| |
Collapse
|
8
|
Zmajkovicova K, Nykamp K, Blair G, Yilmaz M, Walter JE. Expanding CXCR4 variant landscape in WHIM syndrome: integrating clinical and functional data for variant interpretation. Front Immunol 2024; 15:1411141. [PMID: 39040098 PMCID: PMC11260667 DOI: 10.3389/fimmu.2024.1411141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Warts, Hypogammaglobulinemia, Infections, Myelokathexis (WHIM) syndrome is a rare, combined immunodeficiency disease predominantly caused by gain-of-function variants in the CXCR4 gene that typically results in truncation of the carboxyl terminus of C-X-C chemokine receptor type 4 (CXCR4) leading to impaired leukocyte egress from bone marrow to peripheral blood. Diagnosis of WHIM syndrome continues to be challenging and is often made through clinical observations and/or genetic testing. Detection of a pathogenic CXCR4 variant in an affected individual supports the diagnosis of WHIM syndrome but relies on an appropriate annotation of disease-causing variants. Understanding the genotypic-phenotypic associations in WHIM syndrome has the potential to improve time to diagnosis and guide appropriate clinical management, resulting in a true example of precision medicine. This article provides an overview of the spectrum of CXCR4 variants in WHIM syndrome and summarizes the various lines of clinical and functional evidence that can support interpretation of newly identified variants.
Collapse
Affiliation(s)
| | | | - Grace Blair
- Division of Allergy and Immunology, Department of Medicine, Johns Hopkins All Children’s Hospital, St Petersburg, FL, United States
- Division of Allergy & Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Melis Yilmaz
- Division of Allergy and Immunology, Department of Medicine, Johns Hopkins All Children’s Hospital, St Petersburg, FL, United States
- Division of Allergy & Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Jolan E. Walter
- Division of Allergy and Immunology, Department of Medicine, Johns Hopkins All Children’s Hospital, St Petersburg, FL, United States
- Division of Allergy & Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
- Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, MA, United States
| |
Collapse
|
9
|
Rodríguez-Frade JM, González-Granado LI, Santiago CA, Mellado M. The complex nature of CXCR4 mutations in WHIM syndrome. Front Immunol 2024; 15:1406532. [PMID: 39035006 PMCID: PMC11257845 DOI: 10.3389/fimmu.2024.1406532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024] Open
Abstract
Heterozygous autosomal dominant mutations in the CXCR4 gene cause WHIM syndrome, a severe combined immunodeficiency disorder. The mutations primarily affect the C-terminal region of the CXCR4 chemokine receptor, specifically several potential phosphorylation sites critical for agonist (CXCL12)-mediated receptor internalization and desensitization. Mutant receptors have a prolonged residence time on the cell surface, leading to hyperactive signaling that is responsible for some of the symptoms of WHIM syndrome. Recent studies have shown that the situation is more complex than originally thought, as mutant WHIM receptors and CXCR4 exhibit different dynamics at the cell membrane, which also influences their respective cellular functions. This review examines the functional mechanisms of CXCR4 and the impact of WHIM mutations in both physiological and pathological conditions.
Collapse
Affiliation(s)
- José Miguel Rodríguez-Frade
- Department of Immunology and Oncology, Chemokine Signaling Group, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - Luis Ignacio González-Granado
- Department of Pediatrics, 12 de Octubre Health Research Institute (imas12), Madrid, Spain
- Department of Public Health School of Medicine, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - César A. Santiago
- X-ray Crystallography Unit, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Mario Mellado
- Department of Immunology and Oncology, Chemokine Signaling Group, Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| |
Collapse
|
10
|
Badolato R, Alsina L, Azar A, Bertrand Y, Bolyard AA, Dale D, Deyà-Martínez À, Dickerson KE, Ezra N, Hasle H, Kang HJ, Kiani-Alikhan S, Kuijpers TW, Kulagin A, Langguth D, Levin C, Neth O, Olbrich P, Peake J, Rodina Y, Rutten CE, Shcherbina A, Tarrant TK, Vossen MG, Wysocki CA, Belschner A, Bridger GJ, Chen K, Dubuc S, Hu Y, Jiang H, Li S, MacLeod R, Stewart M, Taveras AG, Yan T, Donadieu J. A phase 3 randomized trial of mavorixafor, a CXCR4 antagonist, for WHIM syndrome. Blood 2024; 144:35-45. [PMID: 38643510 PMCID: PMC11251404 DOI: 10.1182/blood.2023022658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024] Open
Abstract
ABSTRACT We investigated efficacy and safety of mavorixafor, an oral CXCR4 antagonist, in participants with warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome, a rare immunodeficiency caused by CXCR4 gain-of-function variants. This randomized (1:1), double-blind, placebo-controlled, phase 3 trial enrolled participants aged ≥12 years with WHIM syndrome and absolute neutrophil count (ANC) ≤0.4 × 103/μL. Participants received once-daily mavorixafor or placebo for 52 weeks. The primary end point was time (hours) above ANC threshold ≥0.5 × 103/μL (TATANC; over 24 hours). Secondary end points included TAT absolute lymphocyte count ≥1.0 × 103/μL (TATALC; over 24 hours); absolute changes in white blood cell (WBC), ANC, and absolute lymphocyte count (ALC) from baseline; annualized infection rate; infection duration; and total infection score (combined infection number/severity). In 31 participants (mavorixafor, n = 14; placebo, n = 17), mavorixafor least squares (LS) mean TATANC was 15.0 hours and 2.8 hours for placebo (P < .001). Mavorixafor LS mean TATALC was 15.8 hours and 4.6 hours for placebo (P < .001). Annualized infection rates were 60% lower with mavorixafor vs placebo (LS mean 1.7 vs 4.2; nominal P = .007), and total infection scores were 40% lower (7.4 [95% confidence interval [CI], 1.6-13.2] vs 12.3 [95% CI, 7.2-17.3]). Treatment with mavorixafor reduced infection frequency, severity, duration, and antibiotic use. No discontinuations occurred due to treatment-emergent adverse events (TEAEs); no related serious TEAEs were observed. Overall, mavorixafor treatment demonstrated significant increases in LS mean TATANC and TATALC, reduced infection frequency, severity/duration, and was well tolerated. The trial was registered at www.clinicaltrials.gov as #NCT03995108.
Collapse
Affiliation(s)
- Raffaele Badolato
- Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili, Brescia, Italy
| | - Laia Alsina
- Pediatric Allergy and Clinical Immunology Department, Clinical Immunology and Primary Immunodeficiencies Unit, Hospital Sant Joan de Déu, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Antoine Azar
- Division of Allergy and Clinical Immunology, Johns Hopkins University, Baltimore, MD
| | - Yves Bertrand
- Pediatric Hematology and Oncology Institute, Hospices Civils de Lyon and Claude Bernard University, Lyon, France
| | | | - David Dale
- University of Washington Medical Center, Seattle, WA
| | - Àngela Deyà-Martínez
- Pediatric Allergy and Clinical Immunology Department, Clinical Immunology and Primary Immunodeficiencies Unit, Hospital Sant Joan de Déu, Barcelona, Spain
- Department of Surgery and Surgical Specializations, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | | | - Navid Ezra
- California Dermatology Institute, Thousand Oaks, CA
| | - Henrik Hasle
- Department of Paediatrics, Aarhus University Hospital, Aarhus, Denmark
| | - Hyoung Jin Kang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Cancer Research Institute, Seoul National University Children’s Hospital, Seoul, South Korea
| | - Sorena Kiani-Alikhan
- Department of Immunology, Royal Free London NHS Foundation Trust, London, United Kingdom
| | - Taco W. Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Disease, Emma Children’s Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Alexander Kulagin
- RM Gorbacheva Research Institute, Pavlov University, St. Petersburg, Russia
| | - Daman Langguth
- Immunology Department, Sullivan Nicolaides Pathology Auchenflower, Wesley Medical Center, Auchenflower, QLD, Australia
| | - Carina Levin
- Pediatric Hematology Unit, Emek Medical Center, Afula, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Olaf Neth
- Paediatric Infectious Disease, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, IBiS/Universidad de Sevilla/CSIC, Red de Investigación Translacional en Infectología Pediátrica RITIP, Seville, Spain
| | - Peter Olbrich
- Paediatric Infectious Disease, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, IBiS/Universidad de Sevilla/CSIC, Red de Investigación Translacional en Infectología Pediátrica RITIP, Seville, Spain
- Departmento de Pediatría, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Jane Peake
- Queensland Children’s Hospital, South Brisbane, QLD, Australia
| | - Yulia Rodina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Caroline E. Rutten
- Department of Hematology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Anna Shcherbina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Teresa K. Tarrant
- Division of Rheumatology and Immunology, Department of Medicine, Duke University, Durham, NC
| | - Matthias G. Vossen
- Division of Infectious Diseases and Tropical Medicine, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | - Jean Donadieu
- Centre de Référence des Neutropénies Chroniques, Assistance Publique–Hôpitaux de Paris Sorbonne Université-Hôpital d’Enfants Armand-Trousseau, Paris, France
| |
Collapse
|
11
|
Geier CB. Mavorixafor: a new hope for WHIM syndrome. Blood 2024; 144:1-2. [PMID: 38963672 DOI: 10.1182/blood.2024024942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Affiliation(s)
- Christoph B Geier
- Carl von Ossietzky University Oldenburg and Medical Center University of Freiburg
| |
Collapse
|
12
|
Brenchley L, McDermott DH, Gardner PJ, Silva LM, Gao JL, Cho E, Velez D, Moutsopoulos NM, Murphy PM, Fraser D. Periodontal disease in patients with WHIM syndrome. J Clin Periodontol 2024; 51:464-473. [PMID: 38185798 PMCID: PMC11000827 DOI: 10.1111/jcpe.13940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/17/2023] [Indexed: 01/09/2024]
Abstract
AIM WHIM (warts, hypogammaglobulinaemia, infections and myelokathexis) syndrome is a rare combined primary immunodeficiency disease caused by gain-of-function (GOF) mutations in the chemokine receptor CXCR4 and includes severe neutropenia as a common feature. Neutropenia is a known risk factor for periodontitis; however, a detailed periodontal evaluation of a WHIM syndrome cohort is lacking. This study aimed to establish the evidence base for the periodontal status of patients with WHIM syndrome. MATERIALS AND METHODS Twenty-two adult WHIM syndrome patients and 22 age- and gender-matched healthy volunteers (HVs) were evaluated through a comprehensive medical and periodontal examination. A mouse model of WHIM syndrome was assessed for susceptibility to naturally progressing or inducible periodontitis. RESULTS Fourteen patients with WHIM syndrome (63.6%) and one HV (4.5%) were diagnosed with Stage III/IV periodontitis. No WHIM patient presented with the early onset, dramatic clinical phenotypes typically associated with genetic forms of neutropenia. Age, but not the specific CXCR4 mutation or absolute neutrophil count, was associated with periodontitis severity in the WHIM cohort. Mice with a Cxcr4 GOF mutation did not exhibit increased alveolar bone loss in spontaneous or ligature-induced periodontitis. CONCLUSIONS Overall, WHIM syndrome patients presented with an increased severity of periodontitis despite past and ongoing neutrophil mobilization treatments. GOF mutations in CXCR4 may be a risk factor for periodontitis in humans.
Collapse
Affiliation(s)
- Laurie Brenchley
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 2089
| | - David H. McDermott
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Pamela J. Gardner
- Office of the Clinical Director, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892
| | - Lakmali M. Silva
- Department of Oral Medicine, Immunity, and Infection. Harvard School of Dental Medicine, Boston, MA 02115
| | - Ji-Liang Gao
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Elena Cho
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Daniel Velez
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Niki M. Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 2089
| | - Philip M. Murphy
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - David Fraser
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 2089
| |
Collapse
|
13
|
Wang E, Zhao Y, Parks S, Siddiqi I. Myelokathexis in an 18-year-old male patient with severe neutropenia and lymphopenia. Am J Hematol 2024; 99:459-460. [PMID: 37740922 DOI: 10.1002/ajh.27097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/15/2023] [Accepted: 09/09/2023] [Indexed: 09/25/2023]
Affiliation(s)
- Endi Wang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Yue Zhao
- Department of Pathology, College of Basic Medical Sciences and the First Hospital, China Medical University, Shenyang, People's Republic of China
| | - Sophie Parks
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Imran Siddiqi
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
14
|
Kilich G, Perelygina L, Sullivan KE. Rubella virus chronic inflammatory disease and other unusual viral phenotypes in inborn errors of immunity. Immunol Rev 2024; 322:113-137. [PMID: 38009321 DOI: 10.1111/imr.13290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
Infectious susceptibility is a component of many inborn errors of immunity. Nevertheless, antibiotic use is often used as a surrogate in history taking for infectious susceptibility, thereby disadvantaging patients who present with viral infections as their phenotype. Further complicating clinical evaluations are unusual manifestations of viral infections which may be less familiar that the typical respiratory viral infections. This review covers several unusual viral phenotypes arising in patients with inborn errors of immunity and other settings of immune compromise. In some cases, chronic infections lead to oncogenesis or tumor-like growths and the conditions and mechanisms of viral-induced oncogenesis will be described. This review covers enterovirus, rubella, measles, papillomavirus, and parvovirus B19. It does not cover EBV and hemophagocytic lymphohistiocytosis nor lymphomagenesis related to EBV. EBV susceptibility has been recently reviewed. Our goal is to increase awareness of the unusual manifestations of viral infections in patients with IEI and to describe treatment modalities utilized in this setting. Coincidentally, each of the discussed viral infections can have a cutaneous component and figures will serve as a reminder of the physical features of these viruses. Given the high morbidity and mortality, early recognition can only improve outcomes.
Collapse
Affiliation(s)
- Gonench Kilich
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Ludmila Perelygina
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | |
Collapse
|
15
|
McDermott DH, Velez D, Cho E, Cowen EW, DiGiovanna JJ, Pastrana DV, Buck CB, Calvo KR, Gardner PJ, Rosenzweig SD, Stratton P, Merideth MA, Kim HJ, Brewer C, Katz JD, Kuhns DB, Malech HL, Follmann D, Fay MP, Murphy PM. A phase III randomized crossover trial of plerixafor versus G-CSF for treatment of WHIM syndrome. J Clin Invest 2023; 133:e164918. [PMID: 37561579 PMCID: PMC10541188 DOI: 10.1172/jci164918] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 08/08/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUNDWarts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is a primary immunodeficiency disorder caused by heterozygous gain-of-function CXCR4 mutations. Myelokathexis is a kind of neutropenia caused by neutrophil retention in bone marrow and in WHIM syndrome is associated with lymphopenia and monocytopenia. The CXCR4 antagonist plerixafor mobilizes leukocytes to the blood; however, its safety and efficacy in WHIM syndrome are undefined.METHODSIn this investigator-initiated, single-center, quadruple-masked phase III crossover trial, we compared the total infection severity score (TISS) as the primary endpoint in an intent-to-treat manner in 19 patients with WHIM who each received 12 months treatment with plerixafor and 12 months treatment with granulocyte CSF (G-CSF, the standard of care for severe congenital neutropenia). The treatment order was randomized for each patient.RESULTSPlerixafor was nonsuperior to G-CSF for TISS (P = 0.54). In exploratory endpoints, plerixafor was noninferior to G-CSF for maintaining neutrophil counts of more than 500 cells/μL (P = 0.023) and was superior to G-CSF for maintaining lymphocyte counts above 1,000 cells/μL (P < 0.0001). Complete regression of a subset of large wart areas occurred on plerixafor in 5 of 7 patients with major wart burdens at baseline. Transient rash occurred on plerixafor, and bone pain was more common on G-CSF. There were no significant differences in drug preference or quality of life or the incidence of drug failure or serious adverse events.CONCLUSIONPlerixafor was not superior to G-CSF in patients with WHIM for TISS, the primary endpoint. Together with wart regression and hematologic improvement, the infection severity results support continued study of plerixafor as a potential treatment for WHIM syndrome.TRIAL REGISTRATIONClinicaltrials.gov NCT02231879.FUNDINGThis study was funded by the Division of Intramural Research, National Institute of Allergy and Infectious Diseases.
Collapse
Affiliation(s)
- David H. McDermott
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases
| | - Daniel Velez
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases
| | - Elena Cho
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases
| | - Edward W. Cowen
- Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases
| | | | | | | | | | - Pamela J. Gardner
- Office of the Clinical Director, National Institute of Dental and Craniofacial Research
| | | | | | | | - H. Jeffrey Kim
- Otolaryngology Branch, National Institute on Deafness and other Communication Disorders, and
| | - Carmen Brewer
- Otolaryngology Branch, National Institute on Deafness and other Communication Disorders, and
| | - James D. Katz
- Rheumatology Fellowship and Training Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland, USA
| | | | | | - Dean Follmann
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Michael P. Fay
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Philip M. Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases
| |
Collapse
|
16
|
Dale DC, Bolyard AA, Makaryan V. The promise of novel treatments for severe chronic neutropenia. Expert Rev Hematol 2023; 16:1025-1033. [PMID: 37978893 DOI: 10.1080/17474086.2023.2285987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/16/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Severe chronic neutropenia, i.e. absolute neutrophil count (ANC) less than 0.5 × 109/L, is a serious health problem because it predisposes patients to recurrent bacterial infections. Management radically changed with the discovery that granulocyte colony-stimulating factor (G-CSF) could be used to effectively treat most patients; therapy required regular subcutaneous injections. In the early days of G-CSF therapy, there were concerns that it might somehow overstimulate the bone marrow and cause myelodysplasia (MDS) or acute myeloid leukemia (AML). Detailed research records from the Severe Chronic Neutropenia International Registry (SCNIR) indicate that this is a relatively low-risk event. The research records suggest that certain patient groups are primarily at risk. Presently, allogeneic hematopoietic stem cell therapy serves as an alternate form of therapy. AREAS COVERED Due to these concerns and the desire for an easy-to-take oral alternative, several new treatments are under investigation. These treatments include neutrophil elastase inhibitors, SGLT-2 inhibitors, mavorixafor - an oral CXCR4 inhibitor, gene therapy, and gene editing. EXPERT OPINION All of these alternatives to G-CSF are promising. The risks, relative benefits, and costs are yet to be determined.
Collapse
Affiliation(s)
- David C Dale
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Vahagn Makaryan
- Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
17
|
Majumdar S, Pontejo SM, Jaiswal H, Gao JL, Salancy A, Stassenko E, Yamane H, McDermott DH, Balabanian K, Bachelerie F, Murphy PM. Severe CD8+ T Lymphopenia in WHIM Syndrome Caused by Selective Sequestration in Primary Immune Organs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1913-1924. [PMID: 37133343 PMCID: PMC10247468 DOI: 10.4049/jimmunol.2200871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/10/2023] [Indexed: 05/04/2023]
Abstract
Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is an ultra-rare combined primary immunodeficiency disease caused by heterozygous gain-of-function mutations in the chemokine receptor CXCR4. WHIM patients typically present with recurrent acute infections associated with myelokathexis (severe neutropenia due to bone marrow retention of mature neutrophils). Severe lymphopenia is also common, but the only associated chronic opportunistic pathogen is human papillomavirus and mechanisms are not clearly defined. In this study, we show that WHIM mutations cause more severe CD8 than CD4 lymphopenia in WHIM patients and WHIM model mice. Mechanistic studies in mice revealed selective and WHIM allele dose-dependent accumulation of mature CD8 single-positive cells in thymus in a cell-intrinsic manner due to prolonged intrathymic residence, associated with increased CD8 single-positive thymocyte chemotactic responses in vitro toward the CXCR4 ligand CXCL12. In addition, mature WHIM CD8+ T cells preferentially home to and are retained in the bone marrow in mice in a cell-intrinsic manner. Administration of the specific CXCR4 antagonist AMD3100 (plerixafor) in mice rapidly and transiently corrected T cell lymphopenia and the CD4/CD8 ratio. After lymphocytic choriomeningitis virus infection, we found no difference in memory CD8+ T cell differentiation or viral load between wild-type and WHIM model mice. Thus, lymphopenia in WHIM syndrome may involve severe CXCR4-dependent CD8+ T cell deficiency resulting in part from sequestration in the primary lymphoid organs, thymus, and bone marrow.
Collapse
Affiliation(s)
- Shamik Majumdar
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Sergio M. Pontejo
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Hemant Jaiswal
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Ji-Liang Gao
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Abigail Salancy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Elizabeth Stassenko
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Hidehiro Yamane
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - David H. McDermott
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | - Karl Balabanian
- Université Paris-Cité, Institut de Recherche Saint-Louis, OPALE Carnot Institute, EMiLy, INSERM U1160, Paris, France
| | - Françoise Bachelerie
- Université Paris-Saclay, INSERM, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| | - Philip M. Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
18
|
Macías-Robles AP, Tlacuilo-Parra A, Asencio-Gallegos AE, de la Herrán-Arita BK, Lugo-Reyes SO. [Early detection of WHIM symdrome. A case report]. REVISTA ALERGIA MÉXICO 2023; 70:47-50. [PMID: 37566756 DOI: 10.29262/ram.v70i1.1211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/14/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND WHIM syndrome corresponds to an inborn error of innate and intrinsic immunity, characterized by: warts (Warts), Hypogammaglobulinemia, Infections and Myelocathexis, for its acronym in English. CASE REPORT 4-year-old male, with severe neutropenia and B-cell lymphopenia from birth, without severe infections or warts; the panel genetic sequencing study of primary immunodeficiencies with the CXCR4 c.1000C>T (p.Arg334*) variant, which is associated with WHIM syndrome. CONCLUSIONS The diagnosis of severe neutropenia from birth should include the search for inborn errors of immunity, through genetic sequencing studies, especially in asymptomatic or oligosymptomatic patients.
Collapse
Affiliation(s)
- Ana Paola Macías-Robles
- Médico adscrito al servicio de Alergia e Inmunología Clínica Pediátrica.
- Unidad Médica de Alta Especialidad, Hospital de Pediatría, Centro Médico Nacional de Occidente, Guadalajara, Jalisco, Mexico
| | - Alberto Tlacuilo-Parra
- División de Investigación en Salud
- Unidad Médica de Alta Especialidad, Hospital de Pediatría, Centro Médico Nacional de Occidente, Guadalajara, Jalisco, Mexico
| | - Adolfo Eduardo Asencio-Gallegos
- Residente primer año de Alergia e Inmunología Clínica Pediátrica
- Unidad Médica de Alta Especialidad, Hospital de Pediatría, Centro Médico Nacional de Occidente, Guadalajara, Jalisco, Mexico
| | - Beatriz Kazuko de la Herrán-Arita
- Médico adscrito al servicio de Hematología Pediátrica
- Unidad Médica de Alta Especialidad, Hospital de Pediatría, Centro Médico Nacional de Occidente, Guadalajara, Jalisco, Mexico
| | - Saúl O Lugo-Reyes
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Ciudad de México
| |
Collapse
|
19
|
Babcock S, Calvo KR, Hasserjian RP. Pediatric myelodysplastic syndrome. Semin Diagn Pathol 2023; 40:152-171. [PMID: 37173164 DOI: 10.1053/j.semdp.2023.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Affiliation(s)
| | - Katherine R Calvo
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
20
|
WHIM Syndrome: First Reported Case in a Patient of African Ancestry. Case Rep Hematol 2023; 2023:3888680. [PMID: 36793393 PMCID: PMC9925260 DOI: 10.1155/2023/3888680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/26/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023] Open
Abstract
Background Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is a rare, primary immunodeficiency syndrome characterized by warts, hypogammaglobulinemia, immunodeficiency, and characteristic bone marrow features of myelokathexis. The pathophysiology of WHIM syndrome is due to an autosomal dominant gain of function mutation in the CXCR4 chemokine receptor resulting in increased activity that impairs neutrophil migration from the bone marrow into the peripheral blood. This results in bone marrow distinctively crowded with mature neutrophils whose balance is shifted towards cellular senescence developing these characteristic, apoptotic nuclei termed myelokathexis. Despite the resultant severe neutropenia, the clinical syndrome is often mild and accompanied by a variety of associated abnormalities that we are just beginning to understand. Case Report. Diagnosis of WHIM syndrome is incredibly difficult due to phenotypic heterogeneity. To date, there are only about 105 documented cases in the scientific literature. Here, we describe the first case of WHIM syndrome documented in a patient of African ancestry. The patient in question was diagnosed at the age of 29 after a comprehensive work-up for incidental neutropenia discovered at a primary care appointment at our center in the United States. In hindsight, the patient had a history of recurrent infections, bronchiectasis, hearing loss, and VSD repair that could not be previously explained. Conclusions Despite the challenge of timely diagnosis and the wide spectrum of clinical features that we are still discovering, WHIM syndrome tends to be a milder immunodeficiency that is highly manageable. As presented in this case, most patients respond well to G-CSF injections and newer treatments such as small-molecule CXCR4 antagonists.
Collapse
|
21
|
Pinto MV, Neves JF. Precision medicine: The use of tailored therapy in primary immunodeficiencies. Front Immunol 2022; 13:1029560. [PMID: 36569887 PMCID: PMC9773086 DOI: 10.3389/fimmu.2022.1029560] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Primary immunodeficiencies (PID) are rare, complex diseases that can be characterised by a spectrum of phenotypes, from increased susceptibility to infections to autoimmunity, allergy, auto-inflammatory diseases and predisposition to malignancy. With the introduction of genetic testing in these patients and wider use of next-Generation sequencing techniques, a higher number of pathogenic genetic variants and conditions have been identified, allowing the development of new, targeted treatments in PID. The concept of precision medicine, that aims to tailor the medical interventions to each patient, allows to perform more precise diagnosis and more importantly the use of treatments directed to a specific defect, with the objective to cure or achieve long-term remission, minimising the number and type of side effects. This approach takes particular importance in PID, considering the nature of causative defects, disease severity, short- and long-term complications of disease but also of the available treatments, with impact in life-expectancy and quality of life. In this review we revisit how this approach can or is already being implemented in PID and provide a summary of the most relevant treatments applied to specific diseases.
Collapse
Affiliation(s)
- Marta Valente Pinto
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, CHULC-EPE, Lisbon, Portugal
- Centro de Investigação Egas Moniz (CiiEM), Instituto Universitário Egas Moniz (IUEM), Quinta da Granja, Monte da Caparica, Caparica, Portugal
| | - João Farela Neves
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, CHULC-EPE, Lisbon, Portugal
- CHRC, Comprehensive Health Research Centre, Nova Medical School, Lisbon, Portugal
| |
Collapse
|
22
|
Özcan A, Boyman O. Mechanisms regulating neutrophil responses in immunity, allergy, and autoimmunity. Allergy 2022; 77:3567-3583. [PMID: 36067034 PMCID: PMC10087481 DOI: 10.1111/all.15505] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/16/2022] [Accepted: 09/03/2022] [Indexed: 01/28/2023]
Abstract
Neutrophil granulocytes, or neutrophils, are the most abundant circulating leukocytes in humans and indispensable for antimicrobial immunity, as exemplified in patients with inborn and acquired defects of neutrophils. Neutrophils were long regarded as the foot soldiers of the immune system, solely destined to execute a set of effector functions against invading pathogens before undergoing apoptosis, the latter of which was ascribed to their short life span. This simplistic understanding of neutrophils has now been revised on the basis of insights gained from the use of mouse models and single-cell high-throughput techniques, revealing tissue- and context-specific roles of neutrophils in guiding immune responses. These studies also demonstrated that neutrophil responses were controlled by sophisticated feedback mechanisms, including directed chemotaxis of neutrophils to tissue-draining lymph nodes resulting in modulation of antimicrobial immunity and inflammation. Moreover, findings in mice and humans showed that neutrophil responses adapted to different deterministic cytokine signals, which controlled their migration and effector function as well as, notably, their biologic clock by affecting the kinetics of their aging. These mechanistic insights have important implications for health and disease in humans, particularly, in allergic diseases, such as atopic dermatitis and allergic asthma bronchiale, as well as in autoinflammatory and autoimmune diseases. Hence, our improved understanding of neutrophils sheds light on novel therapeutic avenues, focusing on molecularly defined biologic agents.
Collapse
Affiliation(s)
- Alaz Özcan
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, Zurich, Switzerland.,Faculty of Medicine, University of Zurich, Zurich, Switzerland.,Faculty of Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
23
|
Geier CB, Ellison M, Cruz R, Pawar S, Leiss-Piller A, Zmajkovicova K, McNulty SM, Yilmaz M, Evans MO, Gordon S, Ujhazi B, Wiest I, Abolhassani H, Aghamohammadi A, Barmettler S, Bhar S, Bondarenko A, Bolyard AA, Buchbinder D, Cada M, Cavieres M, Connelly JA, Dale DC, Deordieva E, Dorsey MJ, Drysdale SB, Ehl S, Elfeky R, Fioredda F, Firkin F, Förster-Waldl E, Geng B, Goda V, Gonzalez-Granado L, Grunebaum E, Grzesk E, Henrickson SE, Hilfanova A, Hiwatari M, Imai C, Ip W, Jyonouchi S, Kanegane H, Kawahara Y, Khojah AM, Kim VHD, Kojić M, Kołtan S, Krivan G, Langguth D, Lau YL, Leung D, Miano M, Mersyanova I, Mousallem T, Muskat M, Naoum FA, Noronha SA, Ouederni M, Ozono S, Richmond GW, Sakovich I, Salzer U, Schuetz C, Seeborg FO, Sharapova SO, Sockel K, Volokha A, von Bonin M, Warnatz K, Wegehaupt O, Weinberg GA, Wong KJ, Worth A, Yu H, Zharankova Y, Zhao X, Devlin L, Badarau A, Csomos K, Keszei M, Pereira J, Taveras AG, Beaussant-Cohen SL, Ong MS, Shcherbina A, Walter JE. Disease Progression of WHIM Syndrome in an International Cohort of 66 Pediatric and Adult Patients. J Clin Immunol 2022; 42:1748-1765. [PMID: 35947323 PMCID: PMC9700649 DOI: 10.1007/s10875-022-01312-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/17/2022] [Indexed: 11/26/2022]
Abstract
Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome (WS) is a combined immunodeficiency caused by gain-of-function mutations in the C-X-C chemokine receptor type 4 (CXCR4) gene. We characterize a unique international cohort of 66 patients, including 57 (86%) cases previously unreported, with variable clinical phenotypes. Of 17 distinct CXCR4 genetic variants within our cohort, 11 were novel pathogenic variants affecting 15 individuals (23%). All variants affect the same CXCR4 region and impair CXCR4 internalization resulting in hyperactive signaling. The median age of diagnosis in our cohort (5.5 years) indicates WHIM syndrome can commonly present in childhood, although some patients are not diagnosed until adulthood. The prevalence and mean age of recognition and/or onset of clinical manifestations within our cohort were infections 88%/1.6 years, neutropenia 98%/3.8 years, lymphopenia 88%/5.0 years, and warts 40%/12.1 years. However, we report greater prevalence and variety of autoimmune complications of WHIM syndrome (21.2%) than reported previously. Patients with versus without family history of WHIM syndrome were diagnosed earlier (22%, average age 1.3 years versus 78%, average age 5 years, respectively). Patients with a family history of WHIM syndrome also received earlier treatment, experienced less hospitalization, and had less end-organ damage. This observation reinforces previous reports that early treatment for WHIM syndrome improves outcomes. Only one patient died; death was attributed to complications of hematopoietic stem cell transplantation. The variable expressivity of WHIM syndrome in pediatric patients delays their diagnosis and therapy. Early-onset bacterial infections with severe neutropenia and/or lymphopenia should prompt genetic testing for WHIM syndrome, even in the absence of warts.
Collapse
Affiliation(s)
- Christoph B Geier
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center University of Freiburg Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maryssa Ellison
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, University of South Florida, St. Petersburg, FL, USA
| | - Rachel Cruz
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, University of South Florida, St. Petersburg, FL, USA
- Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Sumit Pawar
- X4 Pharmaceuticals (Austria) GmbH, Vienna, Austria
| | | | | | - Shannon M McNulty
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melis Yilmaz
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, University of South Florida, St. Petersburg, FL, USA
| | | | - Sumai Gordon
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, University of South Florida, St. Petersburg, FL, USA
| | - Boglarka Ujhazi
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, University of South Florida, St. Petersburg, FL, USA
| | - Ivana Wiest
- X4 Pharmaceuticals (Austria) GmbH, Vienna, Austria
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Barmettler
- Allergy and Clinical Immunology Unit, Division of Rheumatology, Allergy & Immunology, Massachusetts General Hospital, Boston, MA, USA
| | - Saleh Bhar
- Department of Pediatrics, Section of Hematology/Oncology and Critical Care Medicine, Bone Marrow Transplantation, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
| | | | - Audrey Anna Bolyard
- Severe Chronic Neutropenia International Registry, University of Washington, Seattle, WA, USA
| | - David Buchbinder
- Division of Hematology, CHOC Children's Hospital, Orange, CA, USA
| | - Michaela Cada
- Division of Hematology and Oncology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Mirta Cavieres
- Hematology Unit, Dr Luis Calvo Mackenna Children's Hospital, Santiago, Chile
| | | | - David C Dale
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Ekaterina Deordieva
- Immunology, the Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Morna J Dorsey
- Division of Allergy, Immunology and Blood and Marrow Transplantation, Department of Pediatrics, UCSF Benioff Children's Hospital, San Francisco, CA, USA
| | - Simon B Drysdale
- Paediatric Infectious Diseases Research Group, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center University of Freiburg Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Reem Elfeky
- Department of Clinical Immunology, Royal Free Hospital, London, UK
| | | | - Frank Firkin
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Vic, Fitzroy, Australia
- Department of Clinical Haematology, St Vincent's Hospital, Vic, Fitzroy, Australia
| | - Elizabeth Förster-Waldl
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- Division of Neonatology, Pediatric Intensive Care & Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- Center for Congenital Immunodeficiencies, Medical University of Vienna & Jeffrey Modell Diagnostic and Research Center, Vienna, Austria
| | - Bob Geng
- Divisions of Adult and Pediatric Allergy and Immunology, University of California, San Diego, CA, USA
| | - Vera Goda
- Department for Pediatric Hematology and Hemopoietic Stem Cell Transplantation, Central Hospital of Southern Pest - National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Luis Gonzalez-Granado
- Immunodeficiencies Unit, Department of Pediatrics, University Hospital 12 de Octubre, Research Institute Hospital 12 Octubre, Madrid, Spain
| | - Eyal Grunebaum
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- Division of Immunology and Allergy, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elzbieta Grzesk
- Department of Pediatrics, Hematology and Oncology Collegium Medicum, Bydgoszcz Nicolaus Copernicus University, Torun, Poland
| | - Sarah E Henrickson
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anna Hilfanova
- Shupyk National Medical Academy of Postgraduate Education, Kyiv, Ukraine
| | - Mitsuteru Hiwatari
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chihaya Imai
- Department of Pediatrics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Pediatrics, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Winnie Ip
- Great Ormond Street Hospital for Children, London, UK
| | - Soma Jyonouchi
- Division of Allergy and Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuta Kawahara
- Department of Pediatrics, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Amer M Khojah
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Vy Hong-Diep Kim
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
- Division of Immunology and Allergy, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Marina Kojić
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Sylwia Kołtan
- Department of Pediatrics, Hematology and Oncology Collegium Medicum, Bydgoszcz Nicolaus Copernicus University, Torun, Poland
| | - Gergely Krivan
- Department for Pediatric Hematology and Hemopoietic Stem Cell Transplantation, Central Hospital of Southern Pest - National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Daman Langguth
- Department of Immunology, Sullivan and Nicolaides Pathology, Brisbane, Australia
| | - Yu-Lung Lau
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Hong Kong, China
| | - Daniel Leung
- Department of Paediatrics and Adolescent Medicine, University of Hong Kong, Hong Kong, China
| | - Maurizio Miano
- Haematology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Irina Mersyanova
- Immunology, the Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Talal Mousallem
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Duke University Medical Center, Durham, NC, USA
| | - Mica Muskat
- Department of Pediatrics, University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Flavio A Naoum
- Academia de Ciência e Tecnologia, Sao Jose do Rio Preto, Brazil
| | - Suzie A Noronha
- Department of Pediatrics, Division of Hematology-Oncology, University of Rochester Medical Center, Rochester, NY, USA
| | - Monia Ouederni
- Faculty of Médecine, University Tunis El Manar, Tunis, Tunisia
- Department of Pediatrics: Immuno-Hematology and Stem Cell Transplantation, Bone Marrow Transplantation Center of Tunisia, Tunis, Tunisia
| | - Shuichi Ozono
- Department of Pediatrics, Kurume University School of Medicine, 67 Asahi-machi, Kurume, Fukuoka, Japan
| | - G Wendell Richmond
- Section of Allergy and Immunology, Rush University Medical Center, Chicago, IL, USA
| | - Inga Sakovich
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Ulrich Salzer
- Department of Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Catharina Schuetz
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Filiz Odabasi Seeborg
- Department of Pediatrics, Section of Immunology, Allergy and Rheumatology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Svetlana O Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Katja Sockel
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Alla Volokha
- Shupyk National Medical Academy of Postgraduate Education, Kyiv, Ukraine
| | - Malte von Bonin
- Medizinische Klinik und Poliklinik I, Universitätsklinikum Dresden, Dresden, Germany
| | - Klaus Warnatz
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center University of Freiburg Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Oliver Wegehaupt
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center University of Freiburg Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Geoffrey A Weinberg
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, University of Rochester Golisano Children's Hospital, Rochester, NY, USA
| | - Ke-Juin Wong
- Sabah Women and Children's Hospital, Sabah, Malaysia
| | - Austen Worth
- Great Ormond Street Hospital for Children, London, UK
| | - Huang Yu
- National Clinical Research Center for Child Health and disorders, Children Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Yulia Zharankova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Xiaodong Zhao
- National Clinical Research Center for Child Health and disorders, Children Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China
| | - Lisa Devlin
- Belfast Health and Social Care Trust, Belfast, Northern Ireland, UK
- Regional Immunology Service, Belfast Health and Social Care Trust, Belfast, Northern Ireland, UK
| | | | - Krisztian Csomos
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, University of South Florida, St. Petersburg, FL, USA
| | - Marton Keszei
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Joao Pereira
- Department of Immunobiology, Yale University School of Medicine, Yale University, New Haven, CT, USA
| | | | | | - Mei-Sing Ong
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Anna Shcherbina
- Immunology, the Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Jolan E Walter
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, University of South Florida, St. Petersburg, FL, USA.
- Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, MA, USA.
| |
Collapse
|
24
|
Zmajkovicova K, Pawar S, Maier-Munsa S, Maierhofer B, Wiest I, Skerlj R, Taveras AG, Badarau A. Genotype–phenotype correlations in WHIM syndrome: a systematic characterization of CXCR4WHIM variants. Genes Immun 2022; 23:196-204. [PMID: 36089616 PMCID: PMC9519442 DOI: 10.1038/s41435-022-00181-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 12/05/2022]
Abstract
Warts, hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome is a rare primary immunodeficiency predominantly caused by heterozygous gain-of-function mutations in CXCR4 C-terminus. We assessed genotype–phenotype correlations for known pathogenic CXCR4 variants and in vitro response of each variant to mavorixafor, an investigational CXCR4 antagonist. We used cell-based assays to analyze CXCL12-induced receptor trafficking and downstream signaling of 14 pathogenic CXCR4 variants previously identified in patients with WHIM syndrome. All CXCR4 variants displayed impaired receptor trafficking, hyperactive downstream signaling, and enhanced chemotaxis in response to CXCL12. Mavorixafor inhibited CXCL12-dependent signaling and hyperactivation in cells harboring CXCR4WHIM mutations. A strong correlation was found between CXCR4 internalization defect and severity of blood leukocytopenias and infection susceptibility, and between AKT activation and immunoglobulin A level and CD4+ T-cell counts. This study is the first to show WHIM syndrome clinical phenotype variability as a function of both CXCR4WHIM genotype diversity and associated functional dysregulation. Our findings suggest that CXCR4 internalization may be used to assess the pathogenicity of CXCR4 variants in vitro and also as a potential WHIM-related disease biomarker. The investigational CXCR4 antagonist mavorixafor inhibited CXCL12-dependent signaling in all tested CXCR4-variant cell lines at clinically relevant concentrations.
Collapse
|
25
|
Akar-Ghibril N. Defects of the Innate Immune System and Related Immune Deficiencies. Clin Rev Allergy Immunol 2022; 63:36-54. [PMID: 34417936 DOI: 10.1007/s12016-021-08885-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2021] [Indexed: 01/12/2023]
Abstract
The innate immune system is the host's first line of defense against pathogens. Toll-like receptors (TLRs) are pattern recognition receptors that mediate recognition of pathogen-associated molecular patterns. TLRs also activate signaling transduction pathways involved in host defense, inflammation, development, and the production of inflammatory cytokines. Innate immunodeficiencies associated with defective TLR signaling include mutations in NEMO, IKBA, MyD88, and IRAK4. Other innate immune defects have been associated with susceptibility to herpes simplex encephalitis, viral infections, and mycobacterial disease, as well as chronic mucocutaneous candidiasis and epidermodysplasia verruciformis. Phagocytes and natural killer cells are essential members of the innate immune system and defects in number and/or function of these cells can lead to recurrent infections. Complement is another important part of the innate immune system. Complement deficiencies can lead to increased susceptibility to infections, autoimmunity, or impaired immune complex clearance. The innate immune system must work to quickly recognize and eliminate pathogens as well as coordinate an immune response and engage the adaptive immune system. Defects of the innate immune system can lead to failure to quickly identify pathogens and activate the immune response, resulting in susceptibility to severe or recurrent infections.
Collapse
Affiliation(s)
- Nicole Akar-Ghibril
- Division of Pediatric Immunology, Allergy, and Rheumatology, Joe DiMaggio Children's Hospital, 1311 N 35th Ave, Suite 220, 33021, Hollywood, FL, USA. .,Department of Pediatrics, Florida Atlantic University Charles E. Schmidt College of Medicine, Boca Raton, FL, USA.
| |
Collapse
|
26
|
Walkovich K, Grunebaum E. A Sherlock Approach to a Kindred With a Variable Immunohematologic Phenotype. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1714-1722. [PMID: 35470097 DOI: 10.1016/j.jaip.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Given the ubiquity of leukopenia and sinopulmonary infections in childhood, differentiating patients with inborn errors of immunity (IEI) from otherwise healthy patients can be challenging. The diagnostic complexity is further exacerbated in disorders with wide phenotypic variability such as warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome. However, using a Sherlock approach with careful attention to details in the patient's medical history and physical examination coupled with a comprehensive family history can heighten the index of suspicion for underlying IEI. Subsequent iterative and deductive reasoning incorporating results from laboratory interrogation, response (or lack thereof) to standard therapy, and emergence of new symptoms can further aid in a timely diagnosis of IEI. Herein, we detail a WHIM syndrome kindred with marked phenotype variability, identified after the presentation of a child with intermittent neutropenia and sinopulmonary infections. The complexity of this kindred highlights the utility of an interspecialty, collaborative Sherlock approach to diagnosis, and care. In addition, the genetic underpinnings, diagnostic approaches, clinical features, supportive care options, and management of WHIM syndrome are reviewed.
Collapse
Affiliation(s)
- Kelly Walkovich
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, C.S. Mott Children's Hospital, University of Michigan, Ann Arbor, Mich.
| | - Eyal Grunebaum
- Division of Immunology and Allergy, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Yilmaz M, Potts DE, Geier C, Walter JE. Can we identify WHIM in infancy? Opportunities with the public newborn screening process. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:215-221. [PMID: 36210583 DOI: 10.1002/ajmg.c.32002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Newborn screening (NBS) for severe combined immunodeficiency (SCID) utilizing T-cell receptor excision circles (TRECs) has been implemented in all 50 states as of December 2018 and has been transformative for the clinical care of SCID patients. Though having high sensitivity for SCID, NBS-SCID has low specificity, therefore is able to detect other causes of lymphopenia in newborns including many inborn errors of immunity (IEIs). In a recent study, three of six newborns later diagnosed with Warts, Hypogammaglobulinemia, Infections, and Myelokathexis (WHIM) syndrome were found to have a low TRECs and lymphopenia at birth. This presents an opportunity to increase the detection and diagnosis of WHIM syndrome by NBS-SCID with immunological follow-up along with a combination of flow cytometry for immune cell subsets, absolute neutrophil count, and genetic testing, extending beyond the conventional bone marrow studies. Coupled with emerging technologies such as next-generation sequencing, transcriptomics and proteomics, dried blood spots used in NBS-SCID will promote earlier detection, diagnosis, and therefore treatment of IEIs such as WHIM syndrome.
Collapse
Affiliation(s)
- Melis Yilmaz
- Division of Allergy and Immunology, Department of Pediatrics and Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins All Children's Hospital, St Petersburg, Florida, USA
| | - David Evan Potts
- Division of Allergy and Immunology, Department of Pediatrics and Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins All Children's Hospital, St Petersburg, Florida, USA
| | - Christoph Geier
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), University Medical Center Freiburg, Freiburg, Germany
| | - Jolan E Walter
- Division of Allergy and Immunology, Department of Pediatrics and Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins All Children's Hospital, St Petersburg, Florida, USA
- Division of Allergy and Immunology, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Ma X, Wang Y, Wu P, Kang M, Hong Y, Xue Y, Chen C, Li H, Fang Y. Case Report: A Novel CXCR4 Mutation in a Chinese Child With Kawasaki Disease Causing WHIM Syndrome. Front Immunol 2022; 13:857527. [PMID: 35493524 PMCID: PMC9043559 DOI: 10.3389/fimmu.2022.857527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/22/2022] [Indexed: 11/24/2022] Open
Abstract
WHIM syndrome, an extremely rare congenital disease with combined immunodeficiency, is mainly caused by heterozygous gain-of-function mutation in the CXCR4 gene. There have been no previous case reports of WHIM syndrome with Kawasaki disease. We herein report a case of a boy who developed Kawasaki disease at the age of 1 year. After treatment, the number of neutrophils in his peripheral blood decreased continuously. His medical history revealed that he had been suffering from leukopenia, neutropenia and low immunoglobulin since birth, and his neutrophils could return to the normal level in the presence of infection or inflammation. Clinical targeted gene sequencing of 91 genes associated with granulocyte-related disease revealed that the patient had a novel heterozygous NM_003467; c.1032_1033delTG;p.(E345Vfs*12) variant in exon 2 of CXCR4 gene. Family verification analysis by Sanger sequencing showed that his father also had heterozygous variation at this site, while other family members did not. The computer prediction software indicated that the variation had a high pathogenicity. The computational structure analysis of the mutant revealed significant structural and functional changes in the CXCR4 protein. It should be noted that when unexplained persistent neutropenia with low immunoglobulin occurs after birth, especially when there is a family history of neutropenia, immunodeficiency should be investigated with genetic testing.
Collapse
Affiliation(s)
- Xiaopeng Ma
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Yaping Wang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Peng Wu
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Meiyun Kang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Yue Hong
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Yao Xue
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Chuqin Chen
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Huimin Li
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| | - Yongjun Fang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Key Laboratory of Hematology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
29
|
Doria M, Moscato GMF, Di Cesare S, Di Matteo G, Sgrulletti M, Bachelerie F, Marin-Esteban V, Moschese V. Case Report: Altered NK Cell Compartment and Reduced CXCR4 Chemotactic Response of B Lymphocytes in an Immunodeficient Patient With HPV-Related Disease. Front Immunol 2022; 13:799564. [PMID: 35154113 PMCID: PMC8825485 DOI: 10.3389/fimmu.2022.799564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
The study of inborn errors of immunity (IEI) provides unique opportunities to elucidate the microbiome and pathogenic mechanisms related to severe viral infection. Several immunological and genetic anomalies may contribute to the susceptibility to develop Human Papillomavirus (HPV) pathogenesis. They include different acquired immunodeficiencies, EVER1-2 or CIB1 mutations underlying epidermodysplasia verruciformis (EV) syndrome and multiple IEI. Whereas EV syndrome patients are specifically unable to control infections with beta HPV, individuals with IEI show broader infectious and immune phenotypes. The WHIM (warts, hypogammaglobulinemia, infection, and myelokathexis) syndrome caused by gain-of-CXCR4-function mutation manifests by HPV-induced extensive cutaneous warts but also anogenital lesions that eventually progress to dysplasia. Here we report alterations of B and NK cells in a female patient suffering from cutaneous and mucosal HPV-induced lesions due to an as-yet unidentified genetic defect. Despite no detected mutations in CXCR4, B but not NK cells displayed a defective CXCR4-dependent chemotactic response toward CXCL12. In addition, NK cells showed an abnormal distribution with an expanded CD56bright cell subset and defective cytotoxicity of CD56dim cells. Our observations extend the clinical and immunological spectrum of IEI associated with selective susceptibility toward HPV pathogenesis, thus providing new insight on the immune control of HPV infection and potential host susceptibility factors.
Collapse
Affiliation(s)
- Margherita Doria
- Research Unit of Primary Immunodeficiency, Bambino Gesù Children's Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Giusella M F Moscato
- Infectious Diseases Unit, Policlinico Tor Vergata, University of Tor Vergata, Rome, Italy
| | - Silvia Di Cesare
- Research Unit of Primary Immunodeficiency, Bambino Gesù Children's Hospital, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Gigliola Di Matteo
- Department of Medicine of Systems, University of Tor Vergata, Rome, Italy
| | - Mayla Sgrulletti
- Pediatric Immunopathology and Allergology Unit, Policlinico Tor Vergata, University of Tor Vergata, Rome, Italy.,PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Françoise Bachelerie
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Clamart, France
| | - Viviana Marin-Esteban
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Clamart, France
| | - Viviana Moschese
- Pediatric Immunopathology and Allergology Unit, Policlinico Tor Vergata, University of Tor Vergata, Rome, Italy
| |
Collapse
|
30
|
Genome-wide association study on 13,167 individuals identifies regulators of blood CD34+ cell levels. Blood 2022; 139:1659-1669. [PMID: 35007327 DOI: 10.1182/blood.2021013220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/11/2021] [Indexed: 11/20/2022] Open
Abstract
Stem cell transplantation is a cornerstone in the treatment of blood malignancies. The most common method to harvest stem cells for transplantation is by leukapheresis, requiring mobilization of CD34+ hematopoietic stem and progenitor cells (HSPC) from the bone marrow into the blood. Identifying the genetic factors that control blood CD34+ cell levels could expose new drug targets for HSPC mobilization. Here, we report the first large-scale genome-wide association study on blood CD34+ cell levels. Across 13,167 individuals, we identify 9 significant and 2 suggestive associations, accounted for by 8 loci (PPM1H, CXCR4, ENO1-RERE, ITGA9, ARHGAP45, CEBPA, TERT and MYC). Notably, 4 of the identified associations map to CXCR4, demonstrating that bona fide regulators of blood CD34+ cell levels can be identified through genetic variation. Further, the most significant association maps to PPM1H, encoding a serine/threonine phosphatase never previously implicated in HSPC biology. PPM1H is expressed in HSPCs, and the allele that confers higher blood CD34+ cell levels downregulates PPM1H. Through functional fine-mapping, we find that this downregulation is caused by the variant rs772557-A, which abrogates a MYB transcription factor binding site in PPM1H intron 1 that is active in specific HSPC subpopulations, including hematopoietic stem cells, and interacts with the promoter by chromatin looping. Furthermore, PPM1H knockdown increases the proportion of CD34+ and CD34+90+ cells in cord blood assays. Our results provide first large-scale analysis of the genetic architecture of blood CD34+ cell levels, and warrant further investigation of PPM1H as a potential inhibition target for stem cell mobilization.
Collapse
|
31
|
Luo J, De Pascali F, Richmond GW, Khojah AM, Benovic JL. Characterization of a new WHIM syndrome mutant reveals mechanistic differences in regulation of the chemokine receptor CXCR4. J Biol Chem 2021; 298:101551. [PMID: 34973340 PMCID: PMC8802859 DOI: 10.1016/j.jbc.2021.101551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/28/2022] Open
Abstract
WHIM syndrome is a rare immunodeficiency disorder that is characterized by warts, hypogammaglobulinemia, infections, and myelokathexis. While several gain-of-function mutations that lead to C-terminal truncations, frame shifts and point mutations in the chemokine receptor CXCR4 have been identified in WHIM syndrome patients, the functional effect of these mutations are not fully understood. Here, we report on a new WHIM syndrome mutation that results in a frame shift within the codon for Ser339 (S339fs5) and compare the properties of S339fs5 with wild-type CXCR4 and a previously identified WHIM syndrome mutant, R334X. The S339fs5 and R334X mutants exhibited significantly increased signaling compared to wild-type CXCR4 including agonist-promoted calcium flux and extracellular-signal-regulated kinase activation. This increase is at least partially due to a significant decrease in agonist-promoted phosphorylation, β-arrestin binding, and endocytosis of S339fs5 and R334X compared with wild-type CXCR4. Interestingly, there were also significant differences in receptor degradation, with S339fs5 having a very high basal level of degradation compared with that of R334X and wild-type CXCR4. In contrast to wild-type CXCR4, both R334X and S339fs5 were largely insensitive to CXCL12-promoted degradation. Moreover, while basal and agonist-promoted degradation of wild-type CXCR4 was effectively inhibited by the CXCR4 antagonist TE-14016, this had no effect on the degradation of the WHIM mutants. Taken together, these studies identify a new WHIM syndrome mutant, CXCR4-S339fs5, which promotes enhanced signaling, reduced phosphorylation, β-arrestin binding and endocytosis, and a very high basal rate of degradation that is not protected by antagonist treatment.
Collapse
Affiliation(s)
- Jiansong Luo
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 233 S. 10(th) Street, Philadelphia, PA 19107
| | - Francesco De Pascali
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 233 S. 10(th) Street, Philadelphia, PA 19107
| | - G Wendell Richmond
- Section of Allergy and Immunology, Department of Medicine, Rush University Medical Center, 1725 W. Harrison St. Chicago, IL. 60612
| | - Amer M Khojah
- Allergy, Immunology and Rheumatology, Ann & Robert Lurie Children's Hospital of Chicago, 225 E. Chicago, IL. 60611
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 233 S. 10(th) Street, Philadelphia, PA 19107.
| |
Collapse
|
32
|
Walkovich K. Understanding neutropenia secondary to intrinsic or iatrogenic immune dysregulation. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2021; 2021:504-513. [PMID: 34889406 PMCID: PMC8791120 DOI: 10.1182/hematology.2021000285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
As a key member of the innate and adaptive immune response, neutrophils provide insights into the hematopoietic and inflammatory manifestations of inborn errors of immunity (IEI) and the consequences of immunotherapy. The facile recognition of IEI presenting with neutropenia provides an avenue for hematologists to facilitate early diagnosis and expedite biologically rationale care. Moreover, enhancing the understanding of the molecular mechanisms driving neutropenia in IEI-decreased bone marrow reserves, diminished egress from the bone marrow, and decreased survival-offers an opportunity to further dissect the pathophysiology driving neutropenia secondary to iatrogenic immune dysregulation, eg, immune checkpoint inhibitors and chimeric antigen receptor T-cell therapy.
Collapse
Affiliation(s)
- Kelly Walkovich
- Department of Pediatrics, University of Michigan, Ann Arbor, MI
- Correspondence Kelly Walkovich, Department of Pediatrics, University of Michigan, 1540 E Medical Center Dr, Ann Arbor, MI 48109; e-mail:
| |
Collapse
|
33
|
Miyazawa H, Wada T. Reversion Mosaicism in Primary Immunodeficiency Diseases. Front Immunol 2021; 12:783022. [PMID: 34868061 PMCID: PMC8635092 DOI: 10.3389/fimmu.2021.783022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Reversion mosaicism has been reported in an increasing number of genetic disorders including primary immunodeficiency diseases. Several mechanisms can mediate somatic reversion of inherited mutations. Back mutations restore wild-type sequences, whereas second-site mutations result in compensatory changes. In addition, intragenic recombination, chromosomal deletions, and copy-neutral loss of heterozygosity have been demonstrated in mosaic individuals. Revertant cells that have regained wild-type function may be associated with milder disease phenotypes in some immunodeficient patients with reversion mosaicism. Revertant cells can also be responsible for immune dysregulation. Studies identifying a large variety of genetic changes in the same individual further support a frequent occurrence of reversion mosaicism in primary immunodeficiency diseases. This phenomenon also provides unique opportunities to evaluate the biological effects of restored gene expression in different cell lineages. In this paper, we review the recent findings of reversion mosaicism in primary immunodeficiency diseases and discuss its clinical implications.
Collapse
Affiliation(s)
- Hanae Miyazawa
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Taizo Wada
- Department of Pediatrics, School of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
34
|
Akahane D, Otsuki S, Hasegwa D, Watanabe H, Gotoh A. Dexamethasone Treatment for COVID-19-Related Lung Injury in an Adult with WHIM Syndrome. J Clin Immunol 2021; 42:270-273. [PMID: 34853993 PMCID: PMC8635474 DOI: 10.1007/s10875-021-01185-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 11/22/2021] [Indexed: 12/15/2022]
Affiliation(s)
- Daigo Akahane
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan.
| | - Shunsuke Otsuki
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Daisuke Hasegwa
- Department of Pediatrics, St. Luke's International Hospital, Tokyo, Japan
| | - Hidehiro Watanabe
- Department of Infection Prevention and Control, Tokyo Medical University Hospital, Tokyo, Japan
| | - Akihiko Gotoh
- Department of Hematology, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| |
Collapse
|
35
|
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France.,Howard Hughes Medical Institute, Rockefeller University, New York, NY, USA
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,University of Paris, Imagine Institute, Paris, France
| |
Collapse
|
36
|
Bidkhori HR, Bahrami AR, Farshchian M, Heirani-Tabasi A, Mirahmadi M, Hasanzadeh H, Ahmadiankia N, Faridhosseini R, Dastpak M, Shabgah AG, Matin MM. Mesenchymal Stem/Stromal Cells Overexpressing CXCR4 R334X Revealed Enhanced Migration: A Lesson Learned from the Pathogenesis of WHIM Syndrome. Cell Transplant 2021; 30:9636897211054498. [PMID: 34807749 PMCID: PMC8647223 DOI: 10.1177/09636897211054498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
C-X-C chemokine receptor type 4 (CXCR4), initially recognized as a co-receptor
for HIV, contributes to several disorders, including the WHIM (Warts,
Hypogammaglobulinemia, Infections, and Myelokathexis) syndrome. CXCR4 binds to
its ligand SDF-1 to make an axis involved in the homing property of stem cells.
This study aimed to employ WHIM syndrome pathogenesis as an inspirational
approach to reinforce cell therapies. Wild type and WHIM-type variants of the
CXCR4 gene were chemically synthesized and cloned in the
pCDH-513B-1 lentiviral vector. Molecular cloning of the synthetic genes was
confirmed by DNA sequencing, and expression of both types of CXCR4 at the
protein level was confirmed by western blotting in HEK293T cells. Human
adipose-derived mesenchymal stem cells (Ad-MSCs) were isolated, characterized,
and subjected to lentiviral transduction with Wild type and WHIM-type variants
of CXCR4. The presence of copGFP-positive MSCs confirmed the
high efficiency of transduction. The migration ability of both groups of
transduced cells was then assessed by transwell migration assay in the presence
or absence of a CXCR4-blocking agent. Our qRT-PCR results showed overexpression
of CXCR4 at mRNA level in both groups of transduced MSCs, and
expression of WHIM-type CXCR4 was significantly higher than
Wild type CXCR4 (P<0.05). Our results
indicated that the migration of genetically modified MSCs expressing WHIM-type
CXCR4 had significantly enhanced towards SDF1 in comparison with Wild type CXCR4
(P<0.05), while it was reduced after treatment with
CXCR4 antagonist. These data suggest that overexpression of WHIM-type CXCR4
could lead to enhanced and sustained expression of CXCR4 on human MSCs, which
would increase their homing capability; hence it might be an appropriate
strategy to improve the efficiency of cell-based therapies.
Collapse
Affiliation(s)
- Hamid Reza Bidkhori
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran.,Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Reza Bahrami
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Moein Farshchian
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Asieh Heirani-Tabasi
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Mahdi Mirahmadi
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Halimeh Hasanzadeh
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | | | - Reza Faridhosseini
- Department of Immunology, Mashhad Universityof Medical Sciences, Mashhad, Iran
| | - Mahtab Dastpak
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | | | - Maryam M Matin
- Stem Cells and Regenerative Medicine Research Group, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Mashhad, Iran.,Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.,Novel Diagnostics and Therapeutics Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
37
|
Multicenter Experience of Hematopoietic Stem Cell Transplantation in WHIM Syndrome. J Clin Immunol 2021; 42:171-182. [PMID: 34697698 PMCID: PMC8821066 DOI: 10.1007/s10875-021-01155-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/11/2021] [Indexed: 11/01/2022]
Abstract
PURPOSE WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome is a rare disease, caused by CXCR4 gene mutations, which incorporates features of combined immunodeficiency, congenital neutropenia, and a predisposition to human papillomavirus infection. Established conventional treatment for WHIM syndrome does not fully prevent infectious complications in these patients. Only single case reports of hematopoietic stem cell transplantation (HSCT) efficacy in WHIM have been published. METHODS To summarize current information on HSCT efficacy in disease treatment, seven pediatric patients with WHIM syndrome who underwent allogeneic HSCT were identified in five centers worldwide. RESULTS All patients presented early after birth with neutropenia. Two of seven patients exhibited severe disease complications: poorly controlled autoimmunity (arthritis and anemia) in one and progressive myelofibrosis with recurrent infections in the other. The remaining patients received HSCT to correct milder disease symptoms (recurrent respiratory infections, progressing thrombocytopenia) and/or to preclude severe disease course in older age. All seven patients engrafted but one developed graft rejection and died of infectious complications after third HSCT. Three other patients experienced severe viral infections after HSCT (including post-transplant lymphoproliferative disease in one) which completely resolved with therapy. At last follow-up (median 6.7 years), all six surviving patients were alive with full donor chimerism. One patient 1.4 years after HSCT had moderate thrombocytopenia and delayed immune recovery; the others had adequate immune recovery and were free of prior disease symptoms. CONCLUSION HSCT in WHIM syndrome corrects neutropenia and immunodeficiency, and leads to resolution of autoimmunity and recurrent infections, including warts.
Collapse
|
38
|
Synthesis and Anti-HIV Activity of a Novel Series of Isoquinoline-Based CXCR4 Antagonists. Molecules 2021; 26:molecules26206297. [PMID: 34684878 PMCID: PMC8539250 DOI: 10.3390/molecules26206297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/26/2022] Open
Abstract
An expansion of the structure–activity relationship study of CXCR4 antagonists led to the synthesis of a series of isoquinolines, bearing a tetrahydroquinoline or a 3-methylpyridinyl moiety as head group. All compounds were investigated for CXCR4 affinity and antagonism in competition binding and calcium mobilization assays, respectively. In addition, the anti-HIV activity of all analogues was determined. All compounds showed excellent activity, with compound 24c being the most promising one, since it displayed consistently low nanomolar activity in the various assays.
Collapse
|
39
|
Rydzynska Z, Pawlik B, Krzyzanowski D, Mlynarski W, Madzio J. Neutrophil Elastase Defects in Congenital Neutropenia. Front Immunol 2021; 12:653932. [PMID: 33968054 PMCID: PMC8100030 DOI: 10.3389/fimmu.2021.653932] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/06/2021] [Indexed: 12/21/2022] Open
Abstract
Severe congenital neutropenia (SCN) is a rare hematological condition with heterogenous genetic background. Neutrophil elastase (NE) encoded by ELANE gene is mutated in over half of the SCN cases. The role of NE defects in myelocytes maturation arrest in bone marrow is widely investigated; however, the mechanism underlying this phenomenon has still remained unclear. In this review, we sum up the studies exploring mechanisms of neutrophil deficiency, biological role of NE in neutrophil and the effects of ELANE mutation and neutropenia pathogenesis. We also explain the hypotheses presented so far and summarize options of neutropenia therapy.
Collapse
Affiliation(s)
- Zuzanna Rydzynska
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Bartlomiej Pawlik
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Damian Krzyzanowski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland.,Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Joanna Madzio
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
40
|
Richardson BE. Initial Experience Treating HPV-Related Laryngeal Diseases with Oral Brincidofovir: A Pilot Study. Ann Otol Rhinol Laryngol 2021; 130:1383-1391. [PMID: 33834883 DOI: 10.1177/00034894211007227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To determine if brincidofovir, an oral analog of cidofovir that achieves high tissue levels of the active metabolite with low systemic toxicity, has an observable effect on HPV-related disease of the larynx. METHODS Two patients with laryngeal recurrent respiratory papillomatosis (one each of genotypes 6 and 11) and 1 with recurring aryepiglottic fold carcinoma in situ (genotype 16) received oral brincidofovir according to protocol. Close-range videoendoscopic examinations were done during and after the study period to observe disease behavior in the absence of other interventions, and after subsequent surgical intervention. Disease character and magnitude of recurrence for each patient were compared to their patterns prior to brincidofovir. RESULTS Brincidofovir reduced papilloma burden in 1 patient and markedly attenuated the rate and magnitude of recurrence in both. After surgical intervention, Patient 1 remains disease-free at 10 years (7 years from last intervention) and Patient 2 has no symptoms at 8 years. Patient 3 with recurring carcinoma in situ has required less frequent resections and specimens show reduced degrees of dysplasia present only in islands amid normal mucosa at 8 years (currently no evidence of disease at 21 months from last intervention). CONCLUSION Brincidofovir appears to attenuate HPV disease of the larynx in this small pilot study, though further investigation is required because of the highly variable nature of the disease and potential confounding factors.
Collapse
|
41
|
Opdenakker G, Van Damme J. Interferons and other cytokines, genetics and beyond in COVID-19 and autoimmunity. Cytokine Growth Factor Rev 2021; 58:134-140. [PMID: 33563543 PMCID: PMC7845543 DOI: 10.1016/j.cytogfr.2021.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 12/11/2022]
Abstract
Interferons are the best antiviral agents in vitro against SARS-CoV-2 so far and genetic defects in their signaling cascade or neutralization of alfa-interferons by autoantibodies come with more severe COVID-19. However, there is more, as the SARS-CoV-2 dysregulates not only innate immune mechanisms but also T and B cell repertoires. Most genetic, hematological and immunological studies in COVID-19 are at present phenomenological. However, these and antecedent studies contain the seed grains to resolve many unanswered questions and a whole range of testable hypotheses. What are the links, if existing, between genetics and the occurrence of interferon-neutralizing antibodies? Are NAGGED (neutralizing and generated by gene defect) antibodies involved or not? Is the autoimmune process cause or consequence of virus infection? What are the roles played by cytokine posttranslational modifications, such as proteolysis, glycosylation, citrullination and others? How is systemic autoimmunity linked with type 1 interferons? These questions place cytokines and growth factors at pole positions as keys to unlock basic mechanisms of infection and (auto)immunity. Related to cytokine research, (1) COVID-19 patients develop neutralizing autoantibodies, mainly against alpha interferons and it is not yet established whether this is the consequence or cause of virus replication. (2) The glycosylation of recombinant interferon-beta protects against breaking tolerance and the development of neutralizing antibodies. (3) SARS-CoV-2 induces severe inflammation and release of extracellular proteases leading to remnant epitopes, e.g. of cytokines. (4) In the rare event of homozygous cytokine gene segment deletions, observed neutralizing antibodies may be named NAGGED antibodies. (5) Severe cytolysis releases intracellular content into the extracellular milieu and leads to regulated degradation of intracellular proteins and selection of antibody repertoires, similar to those observed in patients with systemic lupus erythematosus. (6) Systematic studies of novel autoimmune diseases on single cytokines will complement the present picture about interferons. (7) Interferon neutralization in COVID-19 constitutes a preamble of more studies about cytokine-regulated proteolysis in the control of autoimmunity. Here we reformulate these seven conjectures into testable questions for future research.
Collapse
Affiliation(s)
- Ghislain Opdenakker
- Laboratory of Immunobiology and Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, KU Leuven, Belgium.
| | - Jo Van Damme
- Laboratory of Immunobiology and Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, KU Leuven, Belgium
| |
Collapse
|
42
|
Wang L, Xiong Q, Li P, Chen G, Tariq N, Wu C. The negative charge of the 343 site is essential for maintaining physiological functions of CXCR4. BMC Mol Cell Biol 2021; 22:8. [PMID: 33485325 PMCID: PMC7825245 DOI: 10.1186/s12860-021-00347-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Warts, hypogammaglobulinemia, recurrent bacterial infections and myelokathexis (WHIM) syndrome is a primary immunodeficiency disease (PID) usually caused by autosomal dominant mutations in the chemokine receptor CXCR4 gene. To date, a total of nine different mutations including eight truncation mutations and one missense mutation (E343K, CXCR4E343K) distributed in the C-terminus of CXCR4 have been identified in humans. Studies have clarified that the loss of phosphorylation sites in the C-terminus of truncated CXCR4 impairs the desensitization process, enhances the activation of G-protein, prolongs downstream signaling pathways and introduces over immune responses, thereby causing WHIM syndrome. So far, there is only one reported case of WHIM syndrome with a missense mutation, CXCR4E343K, which has a full length of C-terminus with entire phosphorylation sites, no change in all potential phosphorylation sites. The mechanism of the missense mutation (CXCR4E343K) causing WHIM syndrome is unknown. This study aimed to characterize the effect of mutation at the 343 site of CXCR4 causing the replacement of arginine/E with glutamic acid/K on the receptor signal transduction, and elucidate the mechanism underling CXCR4E343K causing WHIM in the reported family. RESULTS We completed a series of mutagenesis to generate different mutations at the 343 site of CXCR4 tail, and established a series of HeLa cell lines stably expressing CXCR4WT or CXCR4E343D (glutamic acid/E replaced with aspartic acid/D) or CXCR4E343K (glutamic acid/E replaced with lysine/K) or CXCR4E343R (glutamic acid/E replaced with arginine/R) or CXCR4E343A (glutamic acid/E replaced with alanine/A) and then systematically analyzed functions of the CXCR4 mutants above. Results showed that the cells overexpressing of CXCR4E343D had no functional changes with comparison that of wild type CXCR4. However, the cells overexpressing of CXCR4E343K or CXCR4E343R or CXCR4E343A had enhanced cell migration, prolonged the phosphorylation of ERK1/2, p38, JNK1/2/3, aggravated activation of PI3K/AKT/NF-κB signal pathway, introduced higher expression of TNFa and IL6, suggesting over immune response occurred in CXCR4 mutants with charge change at the 343 site of receptor tail, as a result, causing WHIM syndrome. Biochemical analysis of those mutations at the 343 site of CXCR4 above shows that CXCR4 mutants with no matter positive or neutral charge have aberrant signal pathways downstream of activated mutated CXCR4, only CXVR4 with negative charge residues at the site shows normal signal pathway post activation with stromal-derived factor (SDF1, also known as CXCL12). CONCLUSION Taken together, our results demonstrated that the negative charge at the 343 site of CXCR4 plays an essential role in regulating the down-stream signal transduction of CXCR4 for physiological events, and residue charge changes, no matter positive or neutral introduce aberrant activities and functions of CXCR4, thus consequently lead to WHIM syndrome.
Collapse
Affiliation(s)
- Liqing Wang
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Qiuhong Xiong
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Ping Li
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Guangxin Chen
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Nayab Tariq
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China. .,Key laboratory of Medical Molecular Biology of Shanxi Province, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
43
|
Abstract
PURPOSE T cell receptor excision circle (TREC) quantification is a recent addition to newborn screening (NBS) programs and is intended to identify infants with severe combined immunodeficiencies (SCID). However, other primary immunodeficiency diseases (PID) have also been identified as the result of TREC screening. We recently reported a newborn with a low TREC level on day 1 of life who was diagnosed with WHIM (warts, hypogammaglobulinemia, infections, myelokathexis) syndrome, a non-SCID primary immunodeficiency caused by mutations in the chemokine receptor CXCR4. METHODS We have now retrospectively reviewed the birth and clinical histories of all known WHIM infants born after the implementation of NBS for SCID. RESULTS We identified six infants with confirmed WHIM syndrome who also had TREC quantification on NBS. Three of the six WHIM infants had low TREC levels on NBS. All six patients were lymphopenic but only one infant had a T cell count below 1,500 cells/μL. The most common clinical manifestation was viral bronchiolitis requiring hospitalization. One infant died of complications related to Tetralogy of Fallot, a known WHIM phenotype. CONCLUSION The results suggest that WHIM syndrome should be considered in the differential diagnosis of newborns with low NBS TREC levels. TRIAL REGISTRATION Not applicable.
Collapse
|
44
|
The G Protein-Coupled Receptor Kinases (GRKs) in Chemokine Receptor-Mediated Immune Cell Migration: From Molecular Cues to Physiopathology. Cells 2021; 10:cells10010075. [PMID: 33466410 PMCID: PMC7824814 DOI: 10.3390/cells10010075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/18/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Although G protein-coupled receptor kinases (GRKs) have long been known to regulate G protein-coupled receptor (GPCR) desensitization, their more recently characterized functions as scaffolds and signalling adapters underscore that this small family of proteins governs a larger array of physiological functions than originally suspected. This review explores how GRKs contribute to the complex signalling networks involved in the migration of immune cells along chemokine gradients sensed by cell surface GPCRs. We outline emerging evidence indicating that the coordinated docking of several GRKs on an active chemokine receptor determines a specific receptor phosphorylation barcode that will translate into distinct signalling and migration outcomes. The guidance cues for neutrophil migration are emphasized based on several alterations affecting GRKs or GPCRs reported to be involved in pathological conditions.
Collapse
|
45
|
Dale DC, Firkin F, Bolyard AA, Kelley M, Makaryan V, Gorelick KJ, Ebrahim T, Garg V, Tang W, Jiang H, Skerlj R, Beaussant Cohen S. Results of a phase 2 trial of an oral CXCR4 antagonist, mavorixafor, for treatment of WHIM syndrome. Blood 2020; 136:2994-3003. [PMID: 32870250 PMCID: PMC7770568 DOI: 10.1182/blood.2020007197] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/16/2020] [Indexed: 12/16/2022] Open
Abstract
Warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome is a rare primary immunodeficiency caused by gain-of-function mutations in the CXCR4 gene. We report the safety, tolerability, pharmacokinetics, pharmacodynamics, and preliminary efficacy of mavorixafor from a phase 2 open-label dose-escalation and extension study in 8 adult patients with genetically confirmed WHIM syndrome. Mavorixafor is an oral small molecule selective antagonist of the CXCR4 receptor that increases mobilization and trafficking of white blood cells from the bone marrow. Patients received escalating doses of mavorixafor, up to 400 mg once daily. Five patients continued on the extension study for up to 28.6 months. Mavorixafor was well tolerated with no treatment-related serious adverse events. At a median follow-up of 16.5 months, we observed dose-dependent increases in absolute neutrophil count (ANC) and absolute lymphocyte count (ALC). At doses ≥300 mg/d, ANC was maintained at >500 cells per microliter for a median of 12.6 hours, and ALC was maintained at >1000 cells per microliter for up to 16.9 hours. Continued follow-up on the extension study resulted in a yearly infection rate that decreased from 4.63 events (95% confidence interval, 3.3-6.3) in the 12 months prior to the trial to 2.27 events (95% confidence interval, 1.4-3.5) for patients on effective doses. We observed an average 75% reduction in the number of cutaneous warts. This study demonstrates that mavorixafor, 400 mg once daily, mobilizes neutrophil and lymphocytes in adult patients with WHIM syndrome and provides preliminary evidence of clinical benefit for patients on long-term therapy. The trial was registered at www.clinicaltrials.gov as #NCT03005327.
Collapse
Affiliation(s)
- David C Dale
- Department of Medicine, University of Washington, Seattle, WA
| | - Frank Firkin
- Department of Medicine and
- University of Washington, Severe Chronic Neutropenia International Registry, Seattle, WA; and
| | - Audrey Anna Bolyard
- University of Washington, Severe Chronic Neutropenia International Registry, Seattle, WA; and
| | - Merideth Kelley
- Department of Medicine, University of Washington, Seattle, WA
| | - Vahagn Makaryan
- Department of Medicine, University of Washington, Seattle, WA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Novel drug for WHIM. Blood 2020; 136:2968-2969. [PMID: 33367549 DOI: 10.1182/blood.2020008848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
47
|
Bonagura VR, Casanova JL. Past, Present, and Future of The Journal of Clinical Immunology, the International Journal of Inborn Errors of Immunity. J Clin Immunol 2020; 40:955-957. [PMID: 32924073 DOI: 10.1007/s10875-020-00845-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Vincent R Bonagura
- Laboratory of Host Defense, The Feinstein Institute for Medical Research , Manhasset, NY, USA.
- Division of Allergy and Immunology, Departments of Pediatrics and Internal Medicine, Great Neck, NY, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
- Steven and Alexandra Cohen Children's Medical Center of New York, Great Neck, NY, USA.
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- University of Paris, Imagine Institute, Paris, France
- Pediatric Hematology and Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| |
Collapse
|
48
|
Incomplete Presentation of WHIM Syndrome: The Diagnostic Role of Dysmorphic Neutrophils in Bone Marrow. J Pediatr Hematol Oncol 2020; 42:449-450. [PMID: 32769560 DOI: 10.1097/mph.0000000000001894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Aberrant CXCR4 Signaling at Crossroad of WHIM Syndrome and Waldenstrom's Macroglobulinemia. Int J Mol Sci 2020; 21:ijms21165696. [PMID: 32784523 PMCID: PMC7460815 DOI: 10.3390/ijms21165696] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Given its pleiotropic functions, including its prominent role in inflammation, immune responses and cancer, the C-X-C chemokine receptor type 4 (CXCR4) has gained significant attention in recent years and has become a relevant target in drug development. Although the signaling properties of CXCR4 have been extensively studied, several aspects deserve deeper investigations. Mutations in the C-term tail of the CXCR4 gene cause WHIM syndrome, a rare congenital immunodeficiency associated by chronic leukopenia. Similar mutations have also been recently identified in 30% of patients affected by Waldenstrom’s macroglobulinaemia, a B-cell neoplasia with bone marrow accumulation of malignant cells. An ample body of work has been generated to define the impact of WHIM mutations on CXCR4 signaling properties and evaluate their role on pathogenesis, diagnosis, and response to therapy, although the identity of disease-causing signaling pathways and their relevance for disease development in different genetic variants are still open questions. This review discusses the current knowledge on biochemical properties of CXCR4 mutations to identify their prototypic signaling profile potentially useful to highlighting novel opportunities for therapeutic intervention.
Collapse
|
50
|
Sacco KA, Stack M, Notarangelo LD. Targeted pharmacologic immunomodulation for inborn errors of immunity. Br J Clin Pharmacol 2020; 88:2500-2508. [PMID: 32738057 DOI: 10.1111/bcp.14509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/16/2022] Open
Abstract
Inborn errors of immunity consist of over 400 known single gene disorders that may manifest with infection susceptibility, autoimmunity, autoinflammation, hypersensitivity and cancer predisposition. Most patients are treated symptomatically with immunoglobulin replacement, prophylactic antimicrobials or broad immunosuppression pertaining to their disease phenotype. Other than haematopoietic stem cell transplantation, the aforementioned treatments do little to alter disease morbidity or mortality. Further, many patients may not be transplant candidates. In this review, we describe monogenic disorders affecting leucocyte migration, disorders of immune synapse formation and dysregulation of immune cell signal transduction. We highlight the use of off-label small molecules and biologics mechanistically targeted to altered disease pathophysiology of such diseases.
Collapse
Affiliation(s)
- Keith A Sacco
- Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, NIH, Maryland, USA
| | - Michael Stack
- Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, NIH, Maryland, USA
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute for Allergy and Infectious Diseases, NIH, Maryland, USA
| |
Collapse
|