1
|
Peters B, Dattner T, Schlieben LD, Sun T, Staufner C, Lenz D. Disorders of vesicular trafficking presenting with recurrent acute liver failure: NBAS, RINT1, and SCYL1 deficiency. J Inherit Metab Dis 2025; 48:e12707. [PMID: 38279772 PMCID: PMC11726157 DOI: 10.1002/jimd.12707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/28/2024]
Abstract
Among genetic disorders of vesicular trafficking, there are three causing recurrent acute liver failure (RALF): NBAS, RINT1, and SCYL1-associated disease. These three disorders are characterized by liver crises triggered by febrile infections and account for a relevant proportion of RALF causes. While the frequency and severity of liver crises in NBAS and RINT1-associated disease decrease with age, patients with SCYL1 variants present with a progressive, cholestatic course. In all three diseases, there is a multisystemic, partially overlapping phenotype with variable expression, including liver, skeletal, and nervous systems, all organ systems with high secretory activity. There are no specific biomarkers for these diseases, and whole exome sequencing should be performed in patients with RALF of unknown etiology. NBAS, SCYL1, and RINT1 are involved in antegrade and retrograde vesicular trafficking. Pathomechanisms remain unclarified, but there is evidence of a decrease in concentration and stability of the protein primarily affected by the respective gene defect and its interaction partners, potentially causing impairment of vesicular transport. The impairment of protein secretion by compromised antegrade transport provides a possible explanation for different organ manifestations such as bone alteration due to lack of collagens or diabetes mellitus when insulin secretion is affected. Dysfunction of retrograde transport impairs membrane recycling and autophagy. The impairment of vesicular trafficking results in increased endoplasmic reticulum stress, which, in hepatocytes, can progress to hepatocytolysis. While there is no curative therapy, an early and consequent implementation of an emergency protocol seems crucial for optimal therapeutic management.
Collapse
Affiliation(s)
- Bianca Peters
- Medical Faculty Heidelberg, Center for Paediatric and Adolescent Medicine, Department I, Division of Paediatric Neurology and Metabolic MedicineHeidelberg UniversityHeidelbergGermany
| | - Tal Dattner
- Medical Faculty Heidelberg, Center for Paediatric and Adolescent Medicine, Department I, Division of Paediatric Neurology and Metabolic MedicineHeidelberg UniversityHeidelbergGermany
| | - Lea D. Schlieben
- School of Medicine, Institute of Human Genetics, Klinikum rechts der IsarTechnical University of MunichMunichGermany
- Institute of NeurogenomicsComputational Health Centre, Helmholtz Zentrum MünchenNeuherbergGermany
| | - Tian Sun
- Medical Faculty Heidelberg, Center for Paediatric and Adolescent Medicine, Department I, Division of Paediatric Neurology and Metabolic MedicineHeidelberg UniversityHeidelbergGermany
| | - Christian Staufner
- Medical Faculty Heidelberg, Center for Paediatric and Adolescent Medicine, Department I, Division of Paediatric Neurology and Metabolic MedicineHeidelberg UniversityHeidelbergGermany
| | - Dominic Lenz
- Medical Faculty Heidelberg, Center for Paediatric and Adolescent Medicine, Department I, Division of Paediatric Neurology and Metabolic MedicineHeidelberg UniversityHeidelbergGermany
| |
Collapse
|
2
|
Kumar V, Kumar K, Sibal A. Fever Triggered Recurrent Acute Liver Failure due to RINT1 Deficiency. Indian J Pediatr 2024; 91:1291. [PMID: 39186236 DOI: 10.1007/s12098-024-05230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024]
Affiliation(s)
- Varun Kumar
- Department of Pediatric Gastroenterology, Indraprastha Apollo Hospital, New Delhi, 110076, India.
| | - Karunesh Kumar
- Department of Pediatric Gastroenterology, Indraprastha Apollo Hospital, New Delhi, 110076, India
| | - Anupam Sibal
- Department of Pediatric Gastroenterology, Indraprastha Apollo Hospital, New Delhi, 110076, India
| |
Collapse
|
3
|
Gawhale S, Tambolkar S, Tamhankar P, Tandur BS, Verma S. Hemophagocytic Lymphohistiocytosis in Association With Neuroblastoma Amplified Sequence (NBAS) Gene Variants: A Report of a Rare Case. Cureus 2024; 16:e69690. [PMID: 39429260 PMCID: PMC11489862 DOI: 10.7759/cureus.69690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/18/2024] [Indexed: 10/22/2024] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a multisystem involvement, hyperinflammatory state with rapid progression and a poor outcome. However, HLH may rarely present with signs and symptoms isolated to the central nervous system (CNS). Thus, we discuss this case, which presented with CNS symptoms and worsened over time with multisystem involvement, an inflammatory storm, and required immunomodulation. Whole exome sequencing performed on genomic DNA extracted from peripheral blood showed a novel finding that the patient was likely compound heterozygous for the following two novel variants of uncertain significance in the neuroblastoma amplified sequence (NBAS) gene (chr2:g.15461289C>T) or c.2251G>A (p.Asp751Asn) on Exon 21 and (chr2:g.15467334A>G) or c.2092T>C (p.Tyr698His) on Exon 19 (genomic coordinates in the GRCh37 format, transcript ID: NM_015909.4). The NBAS gene is needed for cytotoxic degranulation in natural killer (NK) cells and mutation of which dysregulates lytic vesicle transport, thus leading to the hyperinflammatory state. To the best of our knowledge and according to the available literature, this NBAS gene is a rarely documented cause of primary HLH.
Collapse
Affiliation(s)
- Siddhi Gawhale
- Pediatrics, Dr. D.Y. Patil Medical College, Hospital and Research Center, Dr. D.Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| | - Sampada Tambolkar
- Paediatrics, Dr. D.Y. Patil Medical College, Hospital and Research Center, Dr. D.Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| | - Parag Tamhankar
- Pediatrics, Dr. D.Y. Patil Medical College, Hospital and Research Center, Dr. D.Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| | - Balasubramanya S Tandur
- Pediatrics, Dr. D.Y. Patil Medical College, Hospital and Research Center, Dr. D.Y. Patil Vidyapeeth (Deemed to be University), Pune, IND
| | - Sarita Verma
- Pediatric Oncology, King Edward Memorial Hospital, Pune, IND
| |
Collapse
|
4
|
Diamanti A, Trovato CM, Gandullia P, Lezo A, Spagnuolo MI, Bolasco G, Capriati T, Lacitignola L, Norsa L, Francalanci P, Novelli A. Intractable diarrhea in infancy and molecular analysis: We are beyond the tip of the iceberg. Dig Liver Dis 2024; 56:607-612. [PMID: 38044226 DOI: 10.1016/j.dld.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Intractable diarrhea (ID) could be defined as a syndrome of severe chronic diarrhea associated with malnutrition not easily resolved by conventional management. AIMS To provide an overview on etiology and management of ID patients in Italy in the last 12 years. METHODS The members of Italian Society for Pediatric Gastroenterology, Hepatology and Nutrition (SIGENP) enrolled all ID patients seen between January 1, 2011 and December 31, 2022. RESULTS 69 children were enrolled (49 M, 20 F; median age at ID onset 9.5 days) from 7 tertiary care pediatric centers. Overall 62 patients had genetic diseases; 3 had infantile Inflammatory Bowel Disease and 1 autoimmune enteropathy in absence of genetic mutations; 2 undefined ID. Defects of intestinal immune-related homeostasis caused ID in 29 patients (42 %). CONCLUSION ID is a rare but challenging problem, although the potential for diagnosis has improved over time. In particular, molecular analysis allowed to identity genetic defects in 90 % of patients and to detect new genetic mutations responsible for ID. Due to both the challenging diagnosis and the treatment for many of these diseases, the close relationship between immune system and digestive tract should require a close collaboration between pediatric immunologists and gastroenterologists, to optimize epidemiologic surveillance and management of ID.
Collapse
Affiliation(s)
- A Diamanti
- Hepatology, Gastroenterology and Nutrition Unit, "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy.
| | - C M Trovato
- Hepatology, Gastroenterology and Nutrition Unit, "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy
| | - P Gandullia
- Pediatric Gastroenterology and Endoscopy, IRCCS G. Gaslini Institute, via Gerolamo Gaslini 5, Genoa, Italy
| | - A Lezo
- Dietetics and Clinical Nutrition Unit, Children's Hospital Regina Margherita, Città della Salute e della Scienza Torino, Turin, Italy
| | - M I Spagnuolo
- Department of Translation Medical Science, Pediatric Section, University Federico II, Naples, Italy
| | - G Bolasco
- Hepatology, Gastroenterology and Nutrition Unit, "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy
| | - T Capriati
- Hepatology, Gastroenterology and Nutrition Unit, "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy
| | - L Lacitignola
- Department NEUROFARBA, University of Florence. Meyer Children's Hospital, viale Gaetano Pieraccini 24, Florence, Italy
| | - L Norsa
- Regional Health Care and Social Agency Papa Giovanni XXIII, The Netherlands
| | - P Francalanci
- Hepatology, Gastroenterology and Nutrition Unit, "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy
| | - A Novelli
- Hepatology, Gastroenterology and Nutrition Unit, "Bambino Gesù" Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
5
|
Yang Y, Fei X, Lei F, Wang L, Yu X, Tang Y. Autoimmune hemolytic anemia and thrombocytopenia in a Chinese patient with heterozygous NBAS mutations: Case report. Medicine (Baltimore) 2024; 103:e36975. [PMID: 38517998 PMCID: PMC10956969 DOI: 10.1097/md.0000000000036975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/22/2023] [Indexed: 03/24/2024] Open
Abstract
RATIONALE Neuroblastoma amplified sequence (NBAS)-associated disease is an autosomal recessive disorder and a broad spectrum of clinical symptoms has been reported. However, autoimmune mediated hemolytic anemia (AIHA) is rarely reported in NBAS disease. PATIENT CONCERNS A now 21-year-old male harbors heterozygous variants of c.6840G>A and c.335 + 1G>A and was found had retarded growth, hypogammaglobulinemia, B lymphopenia, optic atrophy, horizontal nystagmus, slight splenomegaly and hepatomegaly since childhood. This case had normal hemoglobin level and platelet count in his childhood. He developed AIHA first in his adulthood and then thrombocytopenia during the treatment of AIHA. The mechanism underlying a case with pronounced hypogammaglobulinemia and B lymphopenia is elusive. In addition to biallelic NBAS mutations, a germline mutation in the ANKRD26 (c.2356C>T) gene was also detected. So either autoimmune or ANKRD26 mutation-mediated thrombocytopenia is possible in this case. INTERVENTION AND OUTCOME He was initially managed with steroid and intermittent intravenous immunoglobulin supplement. After treatment, he responded well with a normalization of hemoglobin and serum bilirubin. But the patient subsequently experienced severe thrombocytopenia in addition to AIHA. He was then given daily avatrombopag in addition to steroid escalation. He responded again to new treatment, with the hemoglobin levels and platelet counts went back to the normal ranges. Now he was on de-escalated weekly avatrombopag and low-dose steroids maintenance. CONCLUSION The phenotype of this case indicates that c.335 + 1G>A NBAS variant is probably a pathogenic one and c.2356C>T ANKRD26 variant is improbably a pathogenic one. AIHA may respond well to steroid even when happened in patients with NBAS disease.
Collapse
Affiliation(s)
- Yuanlin Yang
- Department of Hematology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiaoming Fei
- Department of Hematology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Fang Lei
- Department of Hematology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lixia Wang
- Department of Hematology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xianqiu Yu
- Department of Hematology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yu Tang
- Department of Rheumatology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
6
|
Hammann N, Lenz D, Baric I, Crushell E, Vici CD, Distelmaier F, Feillet F, Freisinger P, Hempel M, Khoreva AL, Laass MW, Lacassie Y, Lainka E, Larson-Nath C, Li Z, Lipiński P, Lurz E, Mégarbané A, Nobre S, Olivieri G, Peters B, Prontera P, Schlieben LD, Seroogy CM, Sobacchi C, Suzuki S, Tran C, Vockley J, Wang JS, Wagner M, Prokisch H, Garbade SF, Kölker S, Hoffmann GF, Staufner C. Impact of genetic and non-genetic factors on phenotypic diversity in NBAS-associated disease. Mol Genet Metab 2024; 141:108118. [PMID: 38244286 DOI: 10.1016/j.ymgme.2023.108118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 01/22/2024]
Abstract
Biallelic pathogenic variants in neuroblastoma-amplified sequence (NBAS) cause a pleiotropic multisystem disorder. Three clinical subgroups have been defined correlating with the localisation of pathogenic variants in the NBAS gene: variants affecting the C-terminal region of NBAS result in SOPH syndrome (short stature, optic atrophy, Pelger-Huët anomaly), variants affecting the Sec 39 domain are associated with infantile liver failure syndrome type 2 (ILFS2) and variants affecting the ß-propeller domain give rise to a combined phenotype. However, there is still unexplained phenotypic diversity across the three subgroups, challenging the current concept of genotype-phenotype correlations in NBAS-associated disease. Therefore, besides examining the genetic influence, we aim to elucidate the potential impact of pre-symptomatic diagnosis, emergency management and other modifying variables on the clinical phenotype. We investigated genotype-phenotype correlations in individuals sharing the same genotypes (n = 30 individuals), and in those sharing the same missense variants with a loss-of-function variant in trans (n = 38 individuals). Effects of a pre-symptomatic diagnosis and emergency management on the severity of acute liver failure (ALF) episodes also were analysed, comparing liver function tests (ALAT, ASAT, INR) and mortality. A strong genotype-phenotype correlation was demonstrated in individuals sharing the same genotype; this was especially true for the ILFS2 subgroup. Genotype-phenotype correlation in patients sharing only one missense variant was still high, though at a lower level. Pre-symptomatic diagnosis in combination with an emergency management protocol leads to a trend of reduced severity of ALF. High genetic impact on clinical phenotype in NBAS-associated disease facilitates monitoring and management of affected patients sharing the same genotype. Pre-symptomatic diagnosis and an emergency management protocol do not prevent ALF but may reduce its clinical severity.
Collapse
Affiliation(s)
- Nicole Hammann
- Heidelberg University, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Dominic Lenz
- Heidelberg University, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Ivo Baric
- Department of Paediatrics, University Hospital Center Zagreb, University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Ellen Crushell
- National Centre for Inherited Metabolic Disorders, Childrens Health Ireland, Temple Street, Dublin 1, Ireland
| | - Carlo Dionisi Vici
- Division of Metabolism, Bambino Gesù Children's Research Hospital, Rome, Italy
| | - Felix Distelmaier
- Department of General Paediatrics, Neonatology and Paediatric Cardiology, University Children's Hospital, Heinrich-Heine-University, Düsseldorf, Germany
| | - Francois Feillet
- Department of Paediatrics, Hôpital d'Enfants Brabois, CHU Nancy, Vandoeuvre les Nancy, France
| | | | - Maja Hempel
- Institute of Human Genetics, Heidelberg University Hospital, Heidelberg, Germany
| | - Anna L Khoreva
- Dmitry Rogachev National Research Center for Pediatric Hematology, Oncology, Immunology Moscow, Russia
| | - Martin W Laass
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Yves Lacassie
- Department of Pediatrics, Division of Genetics, LSU Health Sciences Center and Children's Hospital, New Orleans, Louisiana, USA
| | - Elke Lainka
- Pediatrics II, Department for Pediatric Nephrology, Gastroenterology, Endocrinology and Transplant Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Catherine Larson-Nath
- Pediatric Gastroenterology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Zhongdie Li
- Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Patryk Lipiński
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| | - Eberhard Lurz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - André Mégarbané
- Department of Human Genetics Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon; Institut Jérôme Lejeune, Paris, France
| | - Susana Nobre
- Pediatric Hepatology and Liver Transplantation Unit, Pediatric Department, Coimbra Hospital and Universitary Centre, Coimbra, Portugal
| | - Giorgia Olivieri
- Division of Metabolism, Bambino Gesù Children's Research Hospital, Rome, Italy
| | - Bianca Peters
- Heidelberg University, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Paolo Prontera
- Medical Genetics Unit, Maternal-Infantile Department, Hospital and University of Perugia, Perugia, Italy
| | - Lea D Schlieben
- School of Medicine, Institute of Human Genetics, Technische Universität München, Munich, Germany; Department Computational Health, Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Christine M Seroogy
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, University of Wisconsin-Madison, USA
| | - Cristina Sobacchi
- Humanitas Research Hospital IRCCS, Rozzano, Italy; Institute for Genetic and Biomedical Research-National Research Council, Milan Unit, Milan, Italy
| | - Shigeru Suzuki
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan
| | - Christel Tran
- Division of Genetic Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jerry Vockley
- University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Jian-She Wang
- Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Matias Wagner
- School of Medicine, Institute of Human Genetics, Technische Universität München, Munich, Germany; Department Computational Health, Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Holger Prokisch
- School of Medicine, Institute of Human Genetics, Technische Universität München, Munich, Germany; Department Computational Health, Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Sven F Garbade
- Heidelberg University, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Stefan Kölker
- Heidelberg University, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Georg F Hoffmann
- Heidelberg University, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Christian Staufner
- Heidelberg University, Medical Faculty Heidelberg, Center for Pediatric and Adolescent Medicine, Department I, Division of Pediatric Neurology and Metabolic Medicine, Heidelberg, Germany.
| |
Collapse
|
7
|
Peters B, Wiemers F, Lenz D, Kölker S, Hoffmann GF, Köhler S, Staufner C. Pregnancy, delivery, and postpartum period in infantile liver failure syndrome type 2 due to variants in NBAS. JIMD Rep 2023; 64:246-251. [PMID: 37151364 PMCID: PMC10159861 DOI: 10.1002/jmd2.12362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/13/2023] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Biallelic pathogenic variants in the neuroblastoma amplified sequence (NBAS) gene affecting the Sec39 domain are associated with a predominant hepatic phenotype named infantile liver failure syndrome type 2 (ILFS2). Individuals are at risk of developing life-threatening acute liver failure episodes, most likely triggered by febrile infections. Pregnancy, delivery, and the postpartum period are well known triggers of decompensation in different inherited metabolic diseases and therefore entail a potential risk also for individuals with ILFS2. We studied pregnancy, birth, and postpartum period in a woman with ILFS2 (homozygous for the NBAS variant c.2708 T > G, p.(Leu903Arg)). During two pregnancies there were no complications associated with the underlying genetic condition. Two healthy boys were born by cesarean section. To reduce the risk of fever and febrile infections, we avoided prolonged labor, epidural analgesia, and breastfeeding. Maternal body temperature and liver function were closely monitored. In case of elevated body temperature, antipyretic treatment (acetaminophen, metamizole) was given without delay. Alanine and aspartate aminotransferases as well as liver function remained normal throughout the observation period. Hence, pregnancy and childbirth are feasible in women with ILFS2 under careful monitoring.
Collapse
Affiliation(s)
- Bianca Peters
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineUniversity of HeidelbergHeidelbergGermany
| | - Felix Wiemers
- Center of Obstetrics and GynecologyUniversity of MarburgMarburgGermany
| | - Dominic Lenz
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineUniversity of HeidelbergHeidelbergGermany
| | - Stefan Kölker
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineUniversity of HeidelbergHeidelbergGermany
| | - Georg F. Hoffmann
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineUniversity of HeidelbergHeidelbergGermany
| | - Siegmund Köhler
- Center of Obstetrics and GynecologyUniversity of MarburgMarburgGermany
| | - Christian Staufner
- Division of Pediatric Neurology and Metabolic Medicine, Center for Child and Adolescent MedicineUniversity of HeidelbergHeidelbergGermany
| |
Collapse
|
8
|
Ji J, Yang M, Jia J, Wu Q, Cong R, Cui H, Zhu B, Chu X. A novel variant in NBAS identified from an infant with fever-triggered recurrent acute liver failure disrupts the function of the gene. Hum Genome Var 2023; 10:13. [PMID: 37055399 PMCID: PMC10102179 DOI: 10.1038/s41439-023-00241-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 04/15/2023] Open
Abstract
Mutations in the neuroblastoma amplified sequence (NBAS) gene correlate with infantile acute liver failure (ALF). Herein, we identified a novel NBAS mutation in a female infant diagnosed with recurrent ALF. Whole-exome and Sanger sequencing revealed that the proband carried a compound heterozygous mutation (c.938_939delGC and c.1342 T > C in NBAS). NBAS c.938_939delGC was presumed to encode a truncated protein without normal function, whereas NBAS c.1342 T > C encoded NBAS harboring the conserved Cys448 residue mutated to Arg448 (p.C448R). The proportion of CD4 + T cells decreased in the patient's peripheral CD45 + cells, whereas that of CD8 + T cells increased. Moreover, upon transfecting the same amount of DNA expression vector (ectopic expression) encoding wild-type NBAS and p.C448R NBAS, the group transfected with the p.C448R NBAS-expressing vector expressed less NBAS mRNA and protein. Furthermore, ectopic expression of the same amount of p.C448R NBAS protein as the wild-type resulted in more intracellular reactive oxygen species and the induction of apoptosis and expression of marker proteins correlating with endoplasmic reticulum stress in more cultured cells. This study indicated that p.C448R NBAS has a function different from that of wild-type NBAS and that the p.C448R NBAS mutation potentially affects T-cell function and correlates with ALF.
Collapse
Affiliation(s)
- Juhua Ji
- Department of Pediatrics, The Second Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, China
| | - Mingming Yang
- Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, 226001, Nantong, Jiangsu, China
| | - JunJun Jia
- Qinshen Traditional Chinese Medicine (TCM) Outpatient Department, 20052, Shanghai, China
| | - Qi Wu
- Department of Emergency, The Second Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, China
| | - Ruochen Cong
- Department of Radiology, The Second Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, China
| | - Hengxiang Cui
- Medical Research Center, The Second Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, China.
| | - Baofeng Zhu
- Department of Emergency, The Second Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, China.
| | - Xin Chu
- Department of Emergency, The Second Affiliated Hospital of Nantong University, 226001, Nantong, Jiangsu, China.
| |
Collapse
|
9
|
Modulation of NBAS-Related Functions in the Early Response to SARS-CoV-2 Infection. Int J Mol Sci 2023; 24:ijms24032634. [PMID: 36768954 PMCID: PMC9916797 DOI: 10.3390/ijms24032634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Upon infection, severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is predicted to interact with diverse cellular functions, such as the nonsense-mediated decay (NMD) pathway, as suggested by the identification of the core NMD factor upframeshift-1 (UPF1) in the SARS-CoV-2 interactome, and the retrograde transport from the Golgi to the endoplasmic reticulum (ER) through the endoplasmic reticulum-Golgi intermediate compartment (ERGIC), where coronavirus assembly occurs. Here, we investigated the expression and localization of the neuroblastoma-amplified sequence (NBAS) protein, a UPF1 partner for the NMD at the ER, participating also in retrograde transport, and of its functional partners, at early time points after SARS-CoV-2 infection of the human lung epithelial cell line Calu3. We found a significant decrease of DExH-Box Helicase 34 (DHX34), suppressor with morphogenetic effect on genitalia 5 (SMG5), and SMG7 expression at 6 h post-infection, followed by a significant increase of these genes and also UPF1 and UPF2 at 9 h post-infection. Conversely, NBAS and other genes coding for NMD factors were not modulated. Known NMD substrates related to cell stress (Growth Arrest Specific 5, GAS5; transducin beta-like 2, TBL2; and DNA damage-inducible transcript 3, DDIT3) were increased in infected cells, possibly as a result of alterations in the NMD pathway and of a direct effect of the infection. We also found that the expression of unconventional SNARE in the ER 1, USE1 (p31) and Zeste White 10 homolog, ZW10, partners of NBAS in the retrograde transport function, significantly increased over time in infected cells. Co-localization of NBAS and UPF1 proteins did not change within 24 h of infection nor did it differ in infected versus non-infected cells at 1 and 24 h after infection; similarly, the co-localization of NBAS and p31 proteins was not altered by infection in this short time frame. Finally, both NBAS and UPF1 were found to co-localize with SARS-CoV-2 S and N proteins. Overall, these data are preliminary evidence of an interaction between NBAS and NBAS-related functions and SARS-CoV-2 in infected cells, deserving further investigation.
Collapse
|
10
|
Bi X, Zhang Q, Chen L, Liu D, Li Y, Zhao X, Zhang Y, Zhang L, Liu J, Wu C, Li Z, Zhao Y, Ma H, Huang G, Liu X, Wang QF, Zhang R. NBAS, a gene involved in cytotoxic degranulation, is recurrently mutated in pediatric hemophagocytic lymphohistiocytosis. J Hematol Oncol 2022; 15:101. [PMID: 35902954 PMCID: PMC9331571 DOI: 10.1186/s13045-022-01318-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH), particularly primary HLH (pHLH), is a rare, life-threatening disease. Germline genetic deficiency of 12 known HLH genes impairs cytotoxic degranulation in natural killer (NK) cells or cytotoxic T lymphocytes (CTLs) and contributes to pHLH development. However, no pathogenic mutations in these HLH genes are found in nearly 10% of HLH patients, despite a strong suspicion of pHLH, suggesting that the underlying genetic basis of HLH is still unclear. To discover novel susceptibility genes, we first selected 13 children with ppHLH (presumed primary HLH patients in the absence of detectable known HLH gene variants) and their parents for initial screening. Whole-genome sequencing (WGS) in one trio and whole-exome sequencing (WES) in twelve trios revealed that two ppHLH patients carried biallelic NBAS variants, a gene that is involved in Golgi-to-endoplasmic reticulum (ER) retrograde transport upstream of the degranulation pathway. Additionally, two candidate genes, RAB9B and KLC3, showed a direct relationship with known HLH genes in protein-protein interaction (PPI) network analysis. We analyzed NBAS, RAB9B, KLC3 and known HLH genes in an independent validation cohort of 224 pediatric HLH patients. Only biallelic NBAS variants were identified in three patients who harbored no pathogenic variants in any of the known HLH genes. Functionally, impaired NK-cell cytotoxicity and degranulation were revealed in both NBAS biallelic variant patients and in an NBAS-deficient NK-cell line. Knockdown of NBAS in an NK-cell line (IMC-1) using short hairpin RNA (shRNA) resulted in loss of lytic granule polarization and a decreased number of cytotoxic vesicles near the Golgi apparatus. According to our findings, NBAS is the second most frequently mutated gene (2.11%) in our HLH cohort after PRF1. NBAS deficiency may contribute to the development of HLH via a dysregulated lytic vesicle transport pathway.
Collapse
Affiliation(s)
- Xiaoman Bi
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,China National Center for Bioinformation, Beijing, 100045, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan Medical University, Haikou, 571199, China
| | - Qing Zhang
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Lei Chen
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,China National Center for Bioinformation, Beijing, 100045, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,China National Center for Bioinformation, Beijing, 100045, China
| | - Yueying Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,China National Center for Bioinformation, Beijing, 100045, China
| | - Xiaoxi Zhao
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Ya Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,China National Center for Bioinformation, Beijing, 100045, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liping Zhang
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Jingkun Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,China National Center for Bioinformation, Beijing, 100045, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaoyi Wu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.,China National Center for Bioinformation, Beijing, 100045, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhigang Li
- Hematologic Disease Laboratory, Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yunze Zhao
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Honghao Ma
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Gang Huang
- Divisions of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Xin Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China. .,China National Center for Bioinformation, Beijing, 100045, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qian-Fei Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China. .,China National Center for Bioinformation, Beijing, 100045, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Rui Zhang
- Hematology Center, Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
11
|
Albar RF, Alsulimani EF, Alsalmi KA, Alnamlah A, Alhuzali A, Aljehani S. Natural Killer Cell Deficiency in Neuroblastoma Amplified Sequence Gene Mutation. Cureus 2021; 13:e19270. [PMID: 34881125 PMCID: PMC8643616 DOI: 10.7759/cureus.19270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 12/16/2022] Open
Abstract
Natural killer cell deficiency (NKD) occurs when decreased levels of such cells lead to major immunological deficiency in the patient. NK cells participate in tumor cell surveillance, viral infections, and immunoregulation in the body. We report a case of a nine-year-old female child, a known case of neuroblastoma amplified sequence (NBAS) gene mutation in the variant c.2819A>C (p. His940Pro), which causes infantile liver failure syndrome type 2 (ILFS2). The patient had been treated at four years of age for a three-day history of vesicular skin rashes in the L2 dermatome of the left leg, with pain and without swelling or redness, ear discharge, low appetite, and decreased activity. Also, she had already had multiple admissions due to different types of infections like viral hepatitis, urinary tract infection, Salmonella bacteremia, gastroenteritis, recurrent hepatitis, follicular tonsilitis, pneumonia, mastoiditis, and varicella-zoster infection. Flow cytometry revealed low levels of CD56+ and CD16+ (2%). Recently, she has shown improvement by gaining weight and appetite following interferon-beta 1a injection.
Collapse
Affiliation(s)
- Rawia F Albar
- Pediatrics, King Abdulaziz Medical City, Jeddah, SAU
| | - Enad F Alsulimani
- Pediatrics, King Saud Bin Abdulaziz University for Health Sciences College of Medicine, Jeddah, SAU
| | - Khalid A Alsalmi
- Pediatrics, King Saud Bin Abdulaziz University for Health Sciences College of Medicine, Jeddah, SAU
| | - Abdulrahman Alnamlah
- Pediatrics, King Saud Bin Abdulaziz University for Health Sciences College of Medicine, Jeddah, SAU
| | - Abdullah Alhuzali
- Pediatrics, King Saud Bin Abdulaziz University for Health Sciences College of Medicine, Jeddah, SAU
| | - Saif Aljehani
- Pediatrics, King Saud Bin Abdulaziz University for Health Sciences College of Medicine, Jeddah, SAU
| |
Collapse
|