1
|
Olbrich P, Freeman AF. STAT1 and STAT3 gain of function: clinically heterogenous immune regulatory disorders. Curr Opin Allergy Clin Immunol 2024; 24:440-447. [PMID: 39475850 DOI: 10.1097/aci.0000000000001039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
PURPOSE OF REVIEW The identification of STAT1 gain-of-function (GOF) in 2011 and STAT3 GOF in 2014 has advanced our understanding of the host immunity along the JAK/STAT pathway and allowed targeted treatment approaches. We review the clinical features and pathogenesis of STAT1 and STAT3 GOF and how this has shaped new approaches to therapy. RECENT FINDINGS STAT1 GOF, initially described in patients with chronic mucocutaneous candidiasis (CMC) and autoimmune thyroid disease, is now recognized to cause early-onset multisystem autoimmunity and a range of infections. STAT3 GOF comprises mostly lymphoproliferation and autoimmunity but also with varying severity, including some with life threatening organ dysfunction. Treatment has evolved along with the understanding of the pathogenesis, with patients now receiving JAK inhibition to block upstream of the STAT defect with good response in autoimmunity and CMC in STAT1 GOF. Blockade of IL-6 signaling has also been used in STAT3 GOF. Hematopoietic cell transplantation had initial poor outcomes, but outcomes are now improving with focus on the control of inflammation pretransplant. SUMMARY Understanding the pathogenesis of STAT1 and STAT3 GOF has allowed great recent advancements in therapy, but many questions remain as to the best approach to therapy for each patient's clinical presentation as well as the durability of these therapies.
Collapse
Affiliation(s)
- Peter Olbrich
- Sección de Infectología, Reumatología e Inmunología Pediátrica, UGC de Pediatría, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla/Universidad de Sevilla/Consejo Superior de Investigaciones Científicas, Red de Investigación Translacional en Infectología Pediátrica
- Departamento de Farmacología, Pediatría, y Radiología, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Moschese V, Montin D, Ottaviano G, Sgrulletti M, Beni A, Costagliola G, Sangerardi M, Santilli V, Miraglia Del Giudice M, Rizzo C, Martire B. Vaccines and allergy: Back to the right places. Pediatr Allergy Immunol 2024; 35:e14236. [PMID: 39244712 DOI: 10.1111/pai.14236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024]
Abstract
Hypersensitivity reactions represent one of the most common causes of hesitancy for adherence to national vaccination programs. The majority of hypersensitivity reactions after vaccination are mild, and anaphylaxis is reported to be rare, although it remains challenging to estimate the frequency attributed to each single vaccine, either because of the lower number of administered doses of less common vaccines, or the administration of simultaneous vaccine in most of the vaccination programs. Although literature remains scattered, international consensus guides clinicians in identifying patients who might need the administration of vaccines in protected environments due to demonstrated hypersensitivity to vaccine components or adjuvants. Here we provide the current guidance on hypersensitivity reactions to vaccines and on vaccination of children with allergy disorders.
Collapse
Affiliation(s)
- Viviana Moschese
- Pediatric Immunopathology and Allergology Unit, Policlinico Tor Vergata, University of Rome Tor Vergata, Rome, Italy
| | - Davide Montin
- Division of Pediatric Immunology and Rheumatology, Department of Public Health and Pediatrics, "Regina Margherita" Children Hospital, University of Turin, Turin, Italy
| | - Giorgio Ottaviano
- Department of Pediatrics, Fondazione IRCCS San Gerardo Dei Tintori, Monza, Italy
| | - Mayla Sgrulletti
- Pediatric Immunopathology and Allergology Unit, Policlinico Tor Vergata, University of Rome Tor Vergata, Rome, Italy
- PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Alessandra Beni
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giorgio Costagliola
- Section of Pediatric Hematology and Oncology, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy
| | - Maria Sangerardi
- Department of Pediatrics and Emergency, Azienda Ospedaliero Universitaria Consorziale Policlinico, Ospedale Pediatrico Giovanni XXIII, Bari, Italy
| | - Veronica Santilli
- Academic Department of Pediatrics (DPUO), Research Unit of Clinical Immunology and Vaccinology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Michele Miraglia Del Giudice
- Department of Woman, Child and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Caterina Rizzo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Baldassarre Martire
- UOC of Pediatrics and Neonatology, "Monsignor A.R. Dimiccoli" Hospital, Barletta, Italy
| |
Collapse
|
3
|
Lei WT, Lo YF, Tsumura M, Ding JY, Lo CC, Lin YN, Wang CW, Liu LH, Shih HP, Peng JJ, Wu TY, Chan YP, Kang CX, Wang SY, Kuo CY, Tu KH, Yeh CF, Hsieh YJ, Asano T, Chung WH, Okada S, Ku CL. Immunophenotyping and Therapeutic Insights from Chronic Mucocutaneous Candidiasis Cases with STAT1 Gain-of-Function Mutations. J Clin Immunol 2024; 44:184. [PMID: 39177867 DOI: 10.1007/s10875-024-01776-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/26/2024] [Indexed: 08/24/2024]
Abstract
PURPOSE Heterozygous STAT1 Gain-of-Function (GOF) mutations are the most common cause of chronic mucocutaneous candidiasis (CMC) among Inborn Errors of Immunity. Clinically, these mutations manifest as a broad spectrum of immune dysregulation, including autoimmune diseases, vascular disorders, and malignancies. The pathogenic mechanisms of immune dysregulation and its impact on immune cells are not yet fully understood. In treatment, JAK inhibitors have shown therapeutic effectiveness in some patients. METHODS We analyzed clinical presentations, cellular phenotypes, and functional impacts in five Taiwanese patients with STAT1 GOF. RESULTS We identified two novel GOF mutations in 5 patients from 2 Taiwanese families, presenting with symptoms of CMC, late-onset rosacea, and autoimmunity. The enhanced phosphorylation and delayed dephosphorylation were displayed by the patients' cells. There are alterations in both innate and adaptive immune cells, including expansion of CD38+HLADR +CD8+ T cells, a skewed activated Tfh cells toward Th1, reduction of memory, marginal zone and anergic B cells, all main functional dendritic cell lineages, and a reduction in classical monocyte. Baricitinib showed therapeutic effectiveness without side effects. CONCLUSION Our study provides the first comprehensive clinical and molecular characteristics in STAT1 GOF patient in Taiwan and highlights the dysregulated T and B cells subsets which may hinge the autoimmunity in STAT1 GOF patients. It also demonstrated the therapeutic safety and efficacy of baricitinib in pediatric patient. Further research is needed to delineate how the aberrant STAT1 signaling lead to the changes in cellular populations as well as to better link to the clinical manifestations of the disease.
Collapse
Affiliation(s)
- Wei-Te Lei
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
- Division of Immunology, Rheumatology, and Allergy, Department of Pediatrics, Hsinchu Municipal MacKay Children's Hospital, Hsinchu, Taiwan
- Department of Pediatrics, Hsinchu Municipal MacKay Children's Hospital, Hsinchu, Taiwan
| | - Yu-Fang Lo
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
| | - Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Jing-Ya Ding
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
- Center for Molecular and Clinical and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Chi Lo
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
| | - You-Ning Lin
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
- Center for Molecular and Clinical and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chuang-Wei Wang
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital (CGMH), Taipei and Keelung, Linkou, Taiwan
- Chang Gung Immunology Consortium, CGMH and Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Lu-Hang Liu
- Department of Pediatrics, Hsinchu Municipal MacKay Children's Hospital, Hsinchu, Taiwan
| | - Han-Po Shih
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
- Center for Molecular and Clinical and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jhan-Jie Peng
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
| | - Tsai-Yi Wu
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
| | - Yu-Pei Chan
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
| | - Chen-Xuan Kang
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
| | - Shang-Yu Wang
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
- Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chen-Yen Kuo
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
- Division of Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kun-Hua Tu
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chun-Fu Yeh
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Linkou Medical Centre, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ya-Ju Hsieh
- Department of Dermatology, Hsinchu Mackay Memorial Hospital, Hsinchu, Taiwan
| | - Takaki Asano
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Wen-Hung Chung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital (CGMH), Taipei and Keelung, Linkou, Taiwan
- Chang Gung Immunology Consortium, CGMH and Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Cheng-Lung Ku
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan District, Taoyuan City, 33302, Taiwan.
- Center for Molecular and Clinical and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Division of Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
4
|
James AE, Abdalgani M, Khoury P, Freeman AF, Milner JD. T H2-driven manifestations of inborn errors of immunity. J Allergy Clin Immunol 2024; 154:245-254. [PMID: 38761995 DOI: 10.1016/j.jaci.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
Monogenic lesions in pathways critical for effector functions responsible for immune surveillance, protection against autoinflammation, and appropriate responses to allergens and microorganisms underlie the pathophysiology of inborn errors of immunity (IEI). Variants in cytokine production, cytokine signaling, epithelial barrier function, antigen presentation, receptor signaling, and cellular processes and metabolism can drive autoimmunity, immunodeficiency, and/or allergic inflammation. Identification of these variants has improved our understanding of the role that many of these proteins play in skewing toward TH2-related allergic inflammation. Early-onset or atypical atopic disease, often in conjunction with immunodeficiency and/or autoimmunity, should raise suspicion for an IEI. This becomes a diagnostic dilemma if the initial clinical presentation is solely allergic inflammation, especially when the prevalence of allergic diseases is becoming more common. Genetic sequencing is necessary for IEI diagnosis and is helpful for early recognition and implementation of targeted treatment, if available. Although genetic evaluation is not feasible for all patients with atopy, identifying atopic patients with molecular immune abnormalities may be helpful for diagnostic, therapeutic, and prognostic purposes. In this review, we focus on IEI associated with TH2-driven allergic manifestations and classify them on the basis of the affected molecular pathways and predominant clinical manifestations.
Collapse
Affiliation(s)
- Alyssa E James
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Manar Abdalgani
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - Paneez Khoury
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Alexandra F Freeman
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md.
| | - Joshua D Milner
- Columbia University Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| |
Collapse
|
5
|
Fink FM, Höpfl R, Witsch-Baumgartner M, Kropshofer G, Martin S, Fink V, Heeg M, Peters C, Zschocke J, Haas OA. Retrospective identification of the first cord blood-transplanted severe aplastic anemia in a STAT1-associated chronic mucocutaneous candidiasis family: case report, review of literature and pathophysiologic background. Front Immunol 2024; 15:1430938. [PMID: 39114664 PMCID: PMC11303233 DOI: 10.3389/fimmu.2024.1430938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/13/2024] [Indexed: 08/10/2024] Open
Abstract
Severe aplastic anemia (SAA) is a life-threatening bone marrow failure syndrome whose development can be triggered by environmental, autoimmune, and/or genetic factors. The latter comprises germ line pathogenic variants in genes that bring about habitually predisposing syndromes as well as immune deficiencies that do so only occasionally. One of these disorders is the autosomal dominant form of chronic mucocutaneous candidiasis (CMC), which is defined by germ line STAT1 gain-of-function (GOF) pathogenic variants. The resultant overexpression and constitutive activation of STAT1 dysregulate the Janus kinase/signal transducer and activator of transcription 1 (STAT) signaling pathway, which normally organizes the development and proper interaction of different components of the immunologic and hematopoietic system. Although SAA is an extremely rare complication in this disorder, it gained a more widespread interest when it became clear that the underlying causative pathomechanism may, in a similar fashion, also be instrumental in at least some of the idiopathic SAA cases. Based on these premises, we present herein what is the historically most likely first cord blood-transplanted SAA case in a CMC family with a documented STAT1 GOF pathogenic variant. In addition, we recapitulate the characteristics of the six CMC SAA cases that have been reported so far and discuss the significance of STAT1 GOF pathogenic variants and other STAT1 signaling derangements in the context of these specific types of bone marrow failure syndromes. Because a constitutively activated STAT1 signaling, be it driven by STAT1 GOF germ line pathogenic variants or any other pathogenic variant-independent events, is apparently important for initiating and maintaining the SAA disease process, we propose to acknowledge that SAA is one of the definite disease manifestations in STAT1-mutated CMC cases. For the same reason, we deem it necessary to also incorporate molecular and functional analyses of STAT1 into the diagnostic work-up of SAA cases.
Collapse
Affiliation(s)
- Franz-Martin Fink
- Department of Pediatrics, Regional Hospital, St. Johann in Tirol, Austria
| | - Reinhard Höpfl
- Department of Dermatology and Venerology, Medical University Hospital, Innsbruck, Austria
| | | | | | - Sabine Martin
- Department of Pediatrics, Regional Hospital, St. Johann in Tirol, Austria
| | - Valentin Fink
- Department of Pediatrics, Regional Hospital, St. Johann in Tirol, Austria
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christina Peters
- Stem Cell Transplantation Unit, St. Anna Children’s Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- St. Anna Children’s Cancer Research Institute (CCRI), Vienna, Austria
| | | | - Oskar A. Haas
- Central Laboratory, St. Anna Children’s Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- Ihr Labor, Medical Diagnostic Laboratories, Vienna, Austria
| |
Collapse
|
6
|
Cinicola BL, Uva A, Duse M, Zicari AM, Buonsenso D. Mucocutaneous Candidiasis: Insights Into the Diagnosis and Treatment. Pediatr Infect Dis J 2024; 43:694-703. [PMID: 38502882 PMCID: PMC11191067 DOI: 10.1097/inf.0000000000004321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/08/2024] [Indexed: 03/21/2024]
Abstract
Recent progress in the methods of genetic diagnosis of inborn errors of immunity has contributed to a better understanding of the pathogenesis of chronic mucocutaneous candidiasis (CMC) and potential therapeutic options. This review describes the latest advances in the understanding of the pathophysiology, diagnostic strategies, and management of chronic mucocutaneous candidiasis.
Collapse
Affiliation(s)
- Bianca Laura Cinicola
- From the Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Andrea Uva
- Pediatrics and Neonatology Unit, Maternal-Child Department, Santa Maria Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Marzia Duse
- From the Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Anna Maria Zicari
- From the Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Danilo Buonsenso
- Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Center for Global Health Research and Studies, Università Cattolica del Sacro Cuore, Roma, Italia
| |
Collapse
|
7
|
Jing D, Liang G, Li X. Chronic Mucocutaneous Candidiasis Due to STAT1 Gene Variant. JAMA Dermatol 2024; 160:565-566. [PMID: 38598233 DOI: 10.1001/jamadermatol.2024.0617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
This case report describes a man in his 40s who presented with a 5-month history of recurrent pruritic papular erythema with mild scaling on the face, left forearm, and groin.
Collapse
Affiliation(s)
- Danrui Jing
- Department of Medical Mycology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Guanzhao Liang
- Department of Medical Mycology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China
| | - Xiaofang Li
- Department of Medical Mycology, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Koh JY, Kim DR, Son S, Park H, Kim KR, Min S, Lee HS, Jhun BW, Kang ES, Jung I, Kang JM, Kim YJ, Shin EC. Ruxolitinib Improves Immune-Dysregulation Features but not Epigenetic Abnormality in a Patient with STAT1 GOF. J Clin Immunol 2024; 44:84. [PMID: 38578320 PMCID: PMC10997693 DOI: 10.1007/s10875-024-01687-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024]
Abstract
PURPOSE Patients with STAT1 gain-of-function (GOF) mutations often exhibit autoimmune features. The JAK1/2 inhibitor ruxolitinib can be administered to alleviate autoimmune symptoms; however, it is unclear how immune cells are molecularly changed by ruxolitinib treatment. Then, we aimed to investigate the trnscriptional and epigenetic status of immune cells before and after ruxolitinib treatment in a patient with STAT1 GOF. METHODS A patient with a heterozygous STAT1 GOF variant (p.Ala267Val), exhibiting autoimmune features, was treated with ruxolitinib, and peripheral blood mononuclear cells (PBMCs) were longitudinally collected. PBMCs were transcriptionally analyzed by single-cell cellular indexing of the transcriptomes and epitopes by sequencing (CITE-seq), and epigenetically analyzed by assay of transposase-accessible chromatin sequencing (ATAC-seq). RESULTS CITE-seq analysis revealed that before treatment, the patient's PBMCs exhibited aberrantly activated inflammatory features, especially IFN-related features. In particular, monocytes showed high expression levels of a subset of IFN-stimulated genes (ISGs). Ruxolitinib treatment substantially downregulated aberrantly overexpressed ISGs, and improved autoimmune features. However, epigenetic analysis demonstrated that genetic regions of ISGs-e.g., STAT1, IRF1, MX1, and OAS1-were highly accessible even after ruxolitinib treatment. When ruxolitinib was temporarily discontinued, the patient's autoimmune features were aggravated, which is in line with sustained epigenetic abnormality. CONCLUSIONS In a patient with STAT1 GOF, ruxolitinib treatment improved autoimmune features and downregulated aberrantly overexpressed ISGs, but did not correct epigenetic abnormality of ISGs.
Collapse
Affiliation(s)
- June-Young Koh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Genome Insight, Inc., Daejeon, 34051, Republic of Korea
| | - Doo Ri Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Sohee Son
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University, Seoul, 06351, Republic of Korea
| | - Hwanhee Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University, Seoul, 06351, Republic of Korea
- Department of Pediatrics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, 14584, Republic of Korea
| | - Kyung-Ran Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University, Seoul, 06351, Republic of Korea
- Department of Pediatrics, Gyeongsang National University Changwon Hospital, Gyeongsang National University College of Medicine, Changwon, 51472, Republic of Korea
| | - Sunwoo Min
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Ha Seok Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Byung Woo Jhun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Eun-Suk Kang
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Republic of Korea
| | - Inkyung Jung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Ji-Man Kang
- Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Yae-Jean Kim
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University, Seoul, 06351, Republic of Korea.
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
- The Center for Viral Immunology, Korea Virus Research Institute, Institute for Basic Science (IBS), Daejeon, 34126, Republic of Korea.
| |
Collapse
|
9
|
Liu X, Chan VSF, Smith KGC, Ming C, Or CS, Tsui FTW, Gao B, Cook MC, Liu P, Lau CS, Li PH. Recapitulating primary immunodeficiencies with expanded potential stem cells: Proof of concept with STAT1 gain of function. J Allergy Clin Immunol 2024; 153:1125-1139. [PMID: 38072195 DOI: 10.1016/j.jaci.2023.11.914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/07/2023] [Accepted: 11/17/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Inborn errors of immunity (IEI) often lack specific disease models and personalized management. Signal transducer and activator of transcription (STAT)-1 gain of function (GoF) is such example of an IEI with diverse clinical phenotype with unclear pathomechanisms and unpredictable response to therapy. Limitations in obtaining fresh samples for functional testing and research further highlights the need for patient-specific ex vivo platforms. OBJECTIVE Using STAT1-GoF as an example IEI, we investigated the potential of patient-derived expanded potential stem cells (EPSC) as an ex vivo platform for disease modeling and personalized treatment. METHODS We generated EPSC derived from individual STAT1-GoF patients. STAT1 mutations were confirmed with Sanger sequencing. Functional testing including STAT1 phosphorylation/dephosphorylation and gene expression with or without Janus activating kinase inhibitors were performed. Functional tests were repeated on EPSC lines with GoF mutations repaired by CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) editing. RESULTS EPSC were successfully reprogrammed from STAT1-GoF patients and expressed the same pluripotent makers as controls, with distinct morphologic differences. Patient-derived EPSC recapitulated the functional abnormalities of index STAT1-GoF patients with STAT1 hyperphosphorylation and increased expression of STAT1 and its downstream genes (IRF1, APOL6, and OAS1) after IFN-γ stimulation. Addition of ruxolitinib and baricitinib inhibited STAT1 hyperactivation in STAT1-GoF EPSC in a dose-dependent manner, which was not observed with tofacitinib. Corrected STAT1 phosphorylation and downstream gene expression were observed among repaired STAT1-GoF EPSC cell lines. CONCLUSION This proof-of-concept study demonstrates the potential of our patient-derived EPSC platform to model STAT1-GoF. We propose this platform when researching, recapitulating, and repairing other IEI in the future.
Collapse
Affiliation(s)
- Xueyan Liu
- Centre for Translational Stem Cell Biology, University of Hong Kong, Hong Kong SAR, China; Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong SAR, China
| | - Vera S F Chan
- Centre for Translational Stem Cell Biology, University of Hong Kong, Hong Kong SAR, China; Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong SAR, China
| | - Kenneth G C Smith
- Centre for Translational Stem Cell Biology, University of Hong Kong, Hong Kong SAR, China; Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Chang Ming
- Centre for Translational Stem Cell Biology, University of Hong Kong, Hong Kong SAR, China; School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Chung Sze Or
- Centre for Translational Stem Cell Biology, University of Hong Kong, Hong Kong SAR, China; Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong SAR, China
| | - Faria T W Tsui
- Centre for Translational Stem Cell Biology, University of Hong Kong, Hong Kong SAR, China; Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong SAR, China
| | - Bo Gao
- Centre for Translational Stem Cell Biology, University of Hong Kong, Hong Kong SAR, China; School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Matthew C Cook
- Centre for Translational Stem Cell Biology, University of Hong Kong, Hong Kong SAR, China; Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Pentao Liu
- Centre for Translational Stem Cell Biology, University of Hong Kong, Hong Kong SAR, China; School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Chak Sing Lau
- Centre for Translational Stem Cell Biology, University of Hong Kong, Hong Kong SAR, China; Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong SAR, China
| | - Philip Hei Li
- Centre for Translational Stem Cell Biology, University of Hong Kong, Hong Kong SAR, China; Division of Rheumatology and Clinical Immunology, Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
10
|
Asano T, Noma K, Mizoguchi Y, Karakawa S, Okada S. Human STAT1 gain of function with chronic mucocutaneous candidiasis: A comprehensive review for strengthening the connection between bedside observations and laboratory research. Immunol Rev 2024; 322:81-97. [PMID: 38084635 DOI: 10.1111/imr.13300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 03/20/2024]
Abstract
Germline human heterozygous STAT1 gain-of-function (GOF) variants were first discovered a common cause of chronic mucocutaneous candidiasis (CMC) in 2011. Since then, numerous STAT1 GOF variants have been identified. A variety of clinical phenotypes, including fungal, viral, and bacterial infections, endocrine disorders, autoimmunity, malignancy, and aneurysms, have recently been revealed for STAT1 GOF variants, which has led to the expansion of the clinical spectrum associated with STAT1 GOF. Among this broad range of complications, it has been determined that invasive infections, aneurysms, and malignancies are poor prognostic factors for STAT1 GOF. The effectiveness of JAK inhibitors as a therapeutic option has been established, although further investigation of their long-term utility and side effects is needed. In contrast to the advancements in treatment options, the precise molecular mechanism underlying STAT1 GOF remains undetermined. Two primary hypotheses for this mechanism involve impaired STAT1 dephosphorylation and increased STAT1 protein levels, both of which are still controversial. A precise understanding of the molecular mechanism is essential for not only advancing diagnostics but also developing therapeutic interventions. Here, we provide a comprehensive review of STAT1 GOF with the aim of establishing a stronger connection between bedside observations and laboratory research.
Collapse
Affiliation(s)
- Takaki Asano
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
- Department of Genetics and Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Kosuke Noma
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| | - Yoko Mizoguchi
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| | - Shuhei Karakawa
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| |
Collapse
|
11
|
Fischer M, Olbrich P, Hadjadj J, Aumann V, Bakhtiar S, Barlogis V, von Bismarck P, Bloomfield M, Booth C, Buddingh EP, Cagdas D, Castelle M, Chan AY, Chandrakasan S, Chetty K, Cougoul P, Crickx E, Dara J, Deyà-Martínez A, Farmand S, Formankova R, Gennery AR, Gonzalez-Granado LI, Hagin D, Hanitsch LG, Hanzlikovà J, Hauck F, Ivorra-Cortés J, Kisand K, Kiykim A, Körholz J, Leahy TR, van Montfrans J, Nademi Z, Nelken B, Parikh S, Plado S, Ramakers J, Redlich A, Rieux-Laucat F, Rivière JG, Rodina Y, Júnior PR, Salou S, Schuetz C, Shcherbina A, Slatter MA, Touzot F, Unal E, Lankester AC, Burns S, Seppänen MRJ, Neth O, Albert MH, Ehl S, Neven B, Speckmann C. JAK inhibitor treatment for inborn errors of JAK/STAT signaling: An ESID/EBMT-IEWP retrospective study. J Allergy Clin Immunol 2024; 153:275-286.e18. [PMID: 37935260 DOI: 10.1016/j.jaci.2023.10.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Inborn errors of immunity (IEI) with dysregulated JAK/STAT signaling present with variable manifestations of immune dysregulation and infections. Hematopoietic stem cell transplantation (HSCT) is potentially curative, but initially reported outcomes were poor. JAK inhibitors (JAKi) offer a targeted treatment option that may be an alternative or bridge to HSCT. However, data on their current use, treatment efficacy and adverse events are limited. OBJECTIVE We evaluated the current off-label JAKi treatment experience for JAK/STAT inborn errors of immunity (IEI) among European Society for Immunodeficiencies (ESID)/European Society for Blood and Marrow Transplantation (EBMT) Inborn Errors Working Party (IEWP) centers. METHODS We conducted a multicenter retrospective study on patients with a genetic disorder of hyperactive JAK/STAT signaling who received JAKi treatment for at least 3 months. RESULTS Sixty-nine patients (72% children) were evaluated (45 STAT1 gain of function [GOF], 21 STAT3-GOF, 1 STAT5B-GOF, 1 suppressor of cytokine signaling 1 [aka SOCS1] loss of function, 1 JAK1-GOF). Ruxolitinib was the predominantly prescribed JAKi (80%). Overall, treatment resulted in improvement (partial or complete remission) of clinical symptoms in 87% of STAT1-GOF and in 90% of STAT3-GOF patients. We documented highly heterogeneous dosing and monitoring regimens. The response rate and time to response varied across different diseases and manifestations. Adverse events including infection and weight gain were frequent (38% of patients) but were mild (grade I-II) and transient in most patients. At last follow-up, 52 (74%) of 69 patients were still receiving JAKi treatment, and 11 patients eventually underwent HSCT after receipt of previous JAKi bridging therapy, with 91% overall survival. CONCLUSIONS Our study suggests that JAKi may be highly effective to treat symptomatic JAK/STAT IEI patients. Prospective studies to define optimal JAKi dosing for the variable clinical presentations and age ranges should be pursued.
Collapse
Affiliation(s)
- Marco Fischer
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Immunology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland; Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Peter Olbrich
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, IBiS/ Universidad de Sevilla/CSIC, Red de Investigación Traslacional en Infectología Pediátrica RITIP, Seville, Spain; Departamento de Pediatría, Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - Jérôme Hadjadj
- Sorbonne University, Department of Internal Medicine, APHP, Saint-Antoine Hospital, F-75012 Paris, France
| | - Volker Aumann
- Pediatric Oncology Department, Otto von Guericke University Children's Hospital Magdeburg, Magdeburg, Germany
| | - Shahrzad Bakhtiar
- Division for Stem Cell Transplantation, Immunology and Intensive Care Medicine, Department for Children and Adolescents Medicine, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Vincent Barlogis
- Pediatric Hematology Unit, Latimone University Hospital, Marseille, France
| | - Philipp von Bismarck
- Clinic for General Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Markéta Bloomfield
- Department of Immunology, 2nd Faculty of Medicine, Charles University in Prague and University Hospital in Motol, 1st Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Claire Booth
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital London, London, England, United Kingdom
| | - Emmeline P Buddingh
- Willem-Alexander Children's Hospital, Department of Pediatrics, Pediatric Stem cell Transplantation program, Leiden University Medical Center, Leiden, The Netherlands
| | - Deniz Cagdas
- Department of Pediatric Immunology, Hacettepe University Medical School, Ankara, Turkey
| | - Martin Castelle
- Immuno-hematology and Rheumatology Unit, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, INSERM 1163, Institut Imagine, Paris, Île-de-France, France
| | - Alice Y Chan
- Division of Allergy, Immunology, Bone Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, Calif
| | - Shanmuganathan Chandrakasan
- Aflac Cancer and Blood Disorder Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Ga
| | - Kritika Chetty
- Department of Paediatric Immunology and Gene Therapy, Great Ormond Street Hospital London, London, England, United Kingdom
| | - Pierre Cougoul
- Oncopole, Institut Universitaire du cancer de toulouse, Toulouse, France
| | - Etienne Crickx
- Internal Medicine Department, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Jasmeen Dara
- Division of Allergy, Immunology, Bone Marrow Transplantation, Department of Pediatrics, University of California, San Francisco, Calif
| | - Angela Deyà-Martínez
- Clinical Immunology and Primary Immunodeficiencies Unit, Pediatric Allergy and Clinical Immunology Department, Hospital Sant Joan de Déu, Barcelona, Spain; Universitat de Barcelona Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Susan Farmand
- Division of Pediatric Stem Cell Transplantation and Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Renata Formankova
- Department of Paediatric Haematology and Oncology, Motol University Hospital and 2nd Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Andrew R Gennery
- Children's Hematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, England, United Kingdom
| | - Luis Ignacio Gonzalez-Granado
- Primary Immunodeficiencies Unit, Department of Pediatrics, Hospital 12 Octubre Research Institute, Hospital 12 Octubre (i+12) Complutense University School of Medicine, Madrid, Spain
| | - David Hagin
- Allergy and Clinical Immunology Unit, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Leif Gunnar Hanitsch
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin and the Berlin Institute of Health (BIH), BIH Center for Regenerative Therapies, Berlin, Germany
| | - Jana Hanzlikovà
- Department of Immunology and Allergology, Faculty of Medicine and Faculty Hospital, Pilsen, Czech Republic
| | - Fabian Hauck
- Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - José Ivorra-Cortés
- Rheumatology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Ayca Kiykim
- Istanbul University-Cerrahpasa, Pediatric Immunology and Allergy, Istanbul, Turkey
| | - Julia Körholz
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Timothy Ronan Leahy
- Children's Health Ireland, Crumlin, Dublin, Ireland; University of Dublin, Trinity College, Dublin, Ireland
| | - Joris van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, Wilhelmina's Children Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Zohreh Nademi
- Children's Hematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, England, United Kingdom
| | - Brigitte Nelken
- Pediatric Hematology Unit, Centre Hospitalier Universitaire Regional de Lille, Lille, France
| | - Suhag Parikh
- Aflac Cancer and Blood Disorder Center, Department of Pediatrics, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, Ga
| | - Silvi Plado
- Department of Pediatrics, Tallinn Children's Hospital, Tallinn, Estonia
| | - Jan Ramakers
- Department of Pediatrics. Hospital Universitari Son Espases, Palma, Spain; Multidisciplinary Group for Research in Pediatrics, Hospital Universtari Son Espases, Balearic Island Health Research Institute (IdISBa), Palma, Spain
| | - Antje Redlich
- Pediatric Oncology Department, Otto von Guericke University Children's Hospital Magdeburg, Magdeburg, Germany
| | - Frédéric Rieux-Laucat
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Institut Imagine, INSERM, UMR 1163, Paris, France
| | - Jacques G Rivière
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Yulia Rodina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
| | - Pérsio Roxo Júnior
- Division of Pediatric Immunology and Allergy, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Sarah Salou
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Catharina Schuetz
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anna Shcherbina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow, Russia
| | - Mary A Slatter
- Children's Hematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, England, United Kingdom
| | - Fabien Touzot
- Department of Pediatrics, CHU Ste-Justine, Université de Montréal, Montreal, Canada
| | - Ekrem Unal
- Department of Pediatric Hematology and Oncology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Arjan C Lankester
- Willem-Alexander Children's Hospital, Department of Pediatrics, Pediatric Stem cell Transplantation program, Leiden University Medical Center, Leiden, The Netherlands
| | - Siobhan Burns
- Institute of Immunity and Transplantation, University College London, London, England, United Kingdom
| | - Mikko R J Seppänen
- The Rare Disease and Pediatric Research Centers, Hospital for Children and Adolescents and Adult Immunodeficiency Unit, Inflammation Center, University of Helsinki and HUS Helsinki, University Hospital, Helsinki, Finland
| | - Olaf Neth
- Pediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, IBiS/ Universidad de Sevilla/CSIC, Red de Investigación Traslacional en Infectología Pediátrica RITIP, Seville, Spain
| | - Michael H Albert
- Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bénédicte Neven
- Immuno-hematology and Rheumatology Unit, Necker Children's Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, INSERM 1163, Institut Imagine, Paris, Île-de-France, France
| | - Carsten Speckmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
12
|
Oprea Y, Kody S, Shakshouk H, Greiling TM, Anstey KM, Ortega-Loayza AG. What can inherited immunodeficiencies reveal about pyoderma gangrenosum? Exp Dermatol 2024; 33:e14954. [PMID: 37846943 PMCID: PMC10841371 DOI: 10.1111/exd.14954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/14/2023] [Accepted: 10/05/2023] [Indexed: 10/18/2023]
Abstract
Pyoderma gangrenosum (PG) is a rare ulcerative neutrophilic dermatosis that is occasionally associated with primary immunodeficiency. Though contributions from dysregulation of the innate immune system, neutrophil dysfunction and genetic predisposition have been postulated, the precise pathogenesis of PG has not yet been elucidated. This article reviews reported cases of coexisting PG and primary immunodeficiency in order to gain insight into the complex pathophysiology of PG. Our findings suggest that variations in genes such as RAG1, ITGB2, IRF2BP2 and NFκB1 might play a role in genetically predisposing patients to develop PG. These studies support the feasibility of the role of somatic gene variation in the pathogenesis of PG which warrants further exploration to guide targeted therapeutics.
Collapse
Affiliation(s)
- Yasmine Oprea
- Albert Einstein College of Medicine, Bronx, New York, USA
| | - Shannon Kody
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Hadir Shakshouk
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
- Department of Dermatology and Andrology, Alexandria Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Teri M Greiling
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Karen M Anstey
- Department of Medicine, Section of Allergy and Clinical Immunology, Oregon Health & Science University, Portland, Oregon, USA
| | - Alex G. Ortega-Loayza
- Department of Dermatology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
13
|
Kaneko S, Sakura F, Tanita K, Shimbo A, Nambu R, Yoshida M, Umetsu S, Inui A, Okada C, Tsumura M, Yamada M, Suzuki H, Kosaki K, Ohara O, Shimizu M, Morio T, Okada S, Kanegane H. Janus kinase inhibitors ameliorate clinical symptoms in patients with STAT3 gain-of-function. IMMUNOTHERAPY ADVANCES 2023; 3:ltad027. [PMID: 38549698 PMCID: PMC10977912 DOI: 10.1093/immadv/ltad027] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/23/2023] [Indexed: 11/06/2024] Open
Abstract
Germline gain-of-function (GOF) variants in the signal transducer and activator of transcription 3 (STAT3) gene is an inborn error of immunity presenting with autoimmunity and lymphoproliferation. Symptoms can vary widely, and no effective treatment has been established. This study investigated the efficacy of Janus kinase (JAK) inhibitors (JAKi) in patients with STAT3-GOF. Four patients were enrolled and their clinical symptoms before and after the initiation of treatment with JAKi were described. A cell stimulation assay was performed using Epstein-Barr virus transformed lymphoid cell lines (EBV-LCLs) that were derived from the patients with STAT3-GOF. The patients presented with various symptoms, and these symptoms mostly improved after the initiation of JAKi treatment. Upon interleukin-6 stimulation, the EBV-LCLs of patients showed enhanced STAT3 phosphorylation compared with those of the EBV-LCLs of healthy controls. In conclusion, four Japanese patients with STAT3-GOF were successfully treated with JAKi. JAKi ameliorated various symptoms and therefore, the use of JAKi could be an effective treatment option for patients with STAT3-GOF.
Collapse
Affiliation(s)
- Shuya Kaneko
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Fumiaki Sakura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kay Tanita
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Asami Shimbo
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Ryusuke Nambu
- Division of Gastroenterology and Hepatology, Saitama Children’s Medical Center, Saitama, Japan
| | - Masashi Yoshida
- Division of Gastroenterology and Hepatology, Saitama Children’s Medical Center, Saitama, Japan
| | - Shuichiro Umetsu
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohama-shi Tobu Hospital, Kanagawa, Japan
| | - Ayano Inui
- Department of Pediatric Hepatology and Gastroenterology, Saiseikai Yokohama-shi Tobu Hospital, Kanagawa, Japan
| | - Chizuru Okada
- Hiroshima Chuodori Children Clinic, Hiroshima, Japan
| | - Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Mamiko Yamada
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Osamu Ohara
- Department of Technology Development, Kazusa DNA Research Institute, Chiba, Japan
| | - Masaki Shimizu
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hirokazu Kanegane
- Department of Child Health and Development, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
14
|
Pilania RK, Goyal T, Singh S. Editorial: Advances in therapeutic strategies of inborn errors of immunity. Front Immunol 2023; 14:1328846. [PMID: 38022641 PMCID: PMC10666772 DOI: 10.3389/fimmu.2023.1328846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Rakesh Kumar Pilania
- Pediatric Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Taru Goyal
- Pediatric Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Surjit Singh
- Pediatric Allergy Immunology Unit, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
15
|
Bagri NK, Chew C, Ramanan AV. Scope of JAK Inhibitors in Children: Recent Evidence and Way Forward. Paediatr Drugs 2023; 25:635-647. [PMID: 37775678 DOI: 10.1007/s40272-023-00594-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 10/01/2023]
Abstract
Over the last decade, there has been an increase in the use of targeted therapy using small molecules such as Janus kinase (JAK) inhibitors. Since the introduction of ruxolitinib, the first non-selective JAK inhibitor approved for use in myelofibrosis, many other JAK inhibitors have been tried in a wide spectrum of immune-mediated disorders. Although various trials have shown the promising efficacy of JAK inhibitors in immune-mediated inflammatory disorders (IMIDs), there is a growing concern over the major cardiovascular events and malignancies associated with the use of these molecules in older adults, particularly those over 65 years of age. In this review, we aim to discuss the immunology of the JAK-STAT pathway, the scope of use of JAK inhibitors, and their safety in paediatric practice. Here, we discuss high-quality evidence favouring the use of JAK inhibitors in children with juvenile idiopathic arthritis (JIA) who are refractory to one or more conventional/biological disease-modifying drugs, demonstrated in two randomised controlled trials (RCTs). In addition to JIA, there are reports favouring the role of JAK inhibitors in other IMIDs such as systemic-onset JIA and interferonopathies. Thus far, the existing literature suggests an acceptable safety profile for JAK inhibitors in children. With the expanding scope of JAK inhibitors in a wide range of IMIDs in children, there is a significant need for long-term close vigilance for any potential harm.
Collapse
Affiliation(s)
- Narendra Kumar Bagri
- Division of Pediatric Rheumatology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India
| | - Christine Chew
- Department of Paediatric Rheumatology, Bristol Royal Hospital for Children, Upper Maudlin Street, Bristol, UK
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol, BS8 1TD, UK
| | - A V Ramanan
- Department of Paediatric Rheumatology, Bristol Royal Hospital for Children, Upper Maudlin Street, Bristol, UK.
- Translational Health Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
16
|
Gagne S, Sivaraman V, Akoghlanian S. Interferonopathies masquerading as non-Mendelian autoimmune diseases: pattern recognition for early diagnosis. Front Pediatr 2023; 11:1169638. [PMID: 37622085 PMCID: PMC10445166 DOI: 10.3389/fped.2023.1169638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/05/2023] [Indexed: 08/26/2023] Open
Abstract
Type I interferonopathies are a broad category of conditions associated with increased type I interferon gene expression and include monogenic autoinflammatory diseases and non-Mendelian autoimmune diseases such as dermatomyositis and systemic lupus erythematosus. While a wide range of clinical presentations among type I interferonopathies exists, these conditions often share several clinical manifestations and implications for treatment. Presenting symptoms may mimic non-Mendelian autoimmune diseases, including vasculitis and systemic lupus erythematosus, leading to delayed or missed diagnosis. This review aims to raise awareness about the varied presentations of monogenic interferonopathies to provide early recognition and appropriate treatment to prevent irreversible damage and improve quality of life and outcomes in this unique patient population.
Collapse
Affiliation(s)
- Samuel Gagne
- Division of Pediatric Rheumatology, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Vidya Sivaraman
- Division of Pediatric Rheumatology, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Shoghik Akoghlanian
- Division of Pediatric Rheumatology, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
17
|
Olbrich P, Cortés JI, Neth O, Blanco-Lobo P. STAT1 Gain-of-Function and Hidradenitis Suppurativa Successfully Managed with Baricitinib. J Clin Immunol 2023; 43:898-901. [PMID: 36881346 PMCID: PMC9990553 DOI: 10.1007/s10875-023-01454-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023]
Affiliation(s)
- Peter Olbrich
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, IBiS/Universidad de Sevilla/CSIC, Red de Investigación Translacional en Infectología Pediátrica RITIP, Av Manuel Siurot S/N, 41013, Seville, Spain
- Departamento de Farmacología, Pediatría y Radiología. Facultad de Medicina, Universidad de Sevilla, Seville, Spain
| | - José Ivorra Cortés
- Servicio de Reumatología, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Olaf Neth
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, IBiS/Universidad de Sevilla/CSIC, Red de Investigación Translacional en Infectología Pediátrica RITIP, Av Manuel Siurot S/N, 41013, Seville, Spain.
| | - Pilar Blanco-Lobo
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, IBiS/Universidad de Sevilla/CSIC, Red de Investigación Translacional en Infectología Pediátrica RITIP, Av Manuel Siurot S/N, 41013, Seville, Spain
| |
Collapse
|
18
|
Tangye SG, Puel A. The Th17/IL-17 Axis and Host Defense Against Fungal Infections. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1624-1634. [PMID: 37116791 DOI: 10.1016/j.jaip.2023.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/30/2023]
Abstract
Chronic mucocutaneous candidiasis (CMC) was recognized as a primary immunodeficiency in the early 1970s. However, for almost 40 years, its genetic etiology remained unknown. The progressive molecular and cellular description of inborn errors of immunity (IEI) with syndromic CMC pointed toward a possible role of IL-17-mediated immunity in protecting against fungal infection and CMC. Since 2011, novel IEI affecting either the response to or production of IL-17A and/or IL-17F (IL-17A/F) in patients with isolated or syndromic CMC provided formal proof of the pivotal role of the IL-17 axis in mucocutaneous immunity to Candida spp, and, to a lesser extent, to Staphylococcus aureus in humans. In contrast, IL-17-mediated immunity seems largely redundant against other common microbes in humans. In this review, we outline the current knowledge of IEI associated with impaired IL-17A/F-mediated immunity, highlighting our current understanding of the role of IL-17A/F in human immunity.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; School of Clinical Medicine, UNSW Faculty of Medicine & Health, Darlinghurst, NSW, Australia.
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, University of Paris, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, the Rockefeller University, New York, NY, USA
| |
Collapse
|
19
|
Aluri J, Schmitt EG, Du M, Cooper MA. STAT1 Gain-of-Function Leading to Clinical Behçet's Syndrome. J Clin Immunol 2023:10.1007/s10875-023-01515-6. [PMID: 37188830 DOI: 10.1007/s10875-023-01515-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Affiliation(s)
- Jahnavi Aluri
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave, Box 8208, St. Louis, MO, 63110, USA
| | - Erica G Schmitt
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave, Box 8208, St. Louis, MO, 63110, USA
| | - Matthew Du
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave, Box 8208, St. Louis, MO, 63110, USA
| | - Megan A Cooper
- Department of Pediatrics, Division of Rheumatology/Immunology, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave, Box 8208, St. Louis, MO, 63110, USA.
| |
Collapse
|
20
|
Inborn Errors of Immunity Causing Pediatric Susceptibility to Fungal Diseases. J Fungi (Basel) 2023; 9:jof9020149. [PMID: 36836264 PMCID: PMC9964687 DOI: 10.3390/jof9020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/24/2023] Open
Abstract
Inborn errors of immunity are a heterogeneous group of genetically determined disorders that compromise the immune system, predisposing patients to infections, autoinflammatory/autoimmunity syndromes, atopy/allergies, lymphoproliferative disorders, and/or malignancies. An emerging manifestation is susceptibility to fungal disease, caused by yeasts or moulds, in a superficial or invasive fashion. In this review, we describe recent advances in the field of inborn errors of immunity associated with increased susceptibility to fungal disease.
Collapse
|
21
|
Borgström EW, Edvinsson M, Pérez LP, Norlin AC, Enoksson SL, Hansen S, Fasth A, Friman V, Kämpe O, Månsson R, Estupiñán HY, Wang Q, Ziyang T, Lakshmikanth T, Smith CIE, Brodin P, Bergman P. Three Adult Cases of STAT1 Gain-of-Function with Chronic Mucocutaneous Candidiasis Treated with JAK Inhibitors. J Clin Immunol 2023; 43:136-150. [PMID: 36050429 PMCID: PMC9840596 DOI: 10.1007/s10875-022-01351-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/08/2022] [Indexed: 01/21/2023]
Abstract
PURPOSE The aim of this study was to characterize clinical effects and biomarkers in three patients with chronic mucocutaneous candidiasis (CMC) caused by gain-of-function (GOF) mutations in the STAT1 gene during treatment with Janus kinase (JAK) inhibitors. METHODS Mass cytometry (CyTOF) was used to characterize mononuclear leukocyte populations and Olink assay to quantify 265 plasma proteins. Flow-cytometric Assay for Specific Cell-mediated Immune-response in Activated whole blood (FASCIA) was used to quantify the reactivity against Candida albicans. RESULTS Overall, JAK inhibitors improved clinical symptoms of CMC, but caused side effects in two patients. Absolute numbers of neutrophils, T cells, B cells, and NK cells were sustained during baricitinib treatment. Detailed analysis of cellular subsets, using CyTOF, revealed increased expression of CD45, CD52, and CD99 in NK cells, reflecting a more functional phenotype. Conversely, monocytes and eosinophils downregulated CD16, consistent with reduced inflammation. Moreover, T and B cells showed increased expression of activation markers during treatment. In one patient with a remarkable clinical effect of baricitinib treatment, the immune response to C. albicans increased after 7 weeks of treatment. Alterations in plasma biomarkers involved downregulation of cellular markers CXCL10, annexin A1, granzyme B, granzyme H, and oncostatin M, whereas FGF21 was the only upregulated marker after 7 weeks. After 3 months, IFN-ɣ and CXCL10 were downregulated. CONCLUSIONS The clinical effect of JAK inhibitor treatment of CMC is promising. Several biological variables were altered during baricitinib treatment demonstrating that lymphocytes, NK cells, monocytes, and eosinophils were affected. In parallel, cellular reactivity against C. albicans was enhanced.
Collapse
Affiliation(s)
- Emilie W. Borgström
- Department of Laboratory Medicine, Clinical Microbiology, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Marie Edvinsson
- grid.412354.50000 0001 2351 3333Department of Medical Sciences, Section of Infectious Diseases, Uppsala University Hospital, Uppsala, Sweden
| | - Lucía P. Pérez
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna C. Norlin
- grid.24381.3c0000 0000 9241 5705Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Sara L. Enoksson
- grid.24381.3c0000 0000 9241 5705Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Susanne Hansen
- grid.24381.3c0000 0000 9241 5705Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anders Fasth
- grid.8761.80000 0000 9919 9582Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Vanda Friman
- grid.8761.80000 0000 9919 9582Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Olle Kämpe
- grid.4714.60000 0004 1937 0626Experimental Endocrinology, Department of Medicine, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Robert Månsson
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hernando Y. Estupiñán
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden ,grid.411595.d0000 0001 2105 7207Departamento de Ciencias Básicas, Universidad Industrial de Santander, 680002 Bucaramanga, Colombia
| | - Qing Wang
- grid.4714.60000 0004 1937 0626Department of Laboratory Medicine, Biomolecular and Cellular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tan Ziyang
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Tadepally Lakshmikanth
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
| | - Carl Inge E. Smith
- grid.24381.3c0000 0000 9241 5705Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden ,Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Stockholm, Sweden
| | - Petter Brodin
- grid.4714.60000 0004 1937 0626Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden ,grid.7445.20000 0001 2113 8111Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Peter Bergman
- Department of Laboratory Medicine, Clinical Microbiology, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
22
|
Staels F, Roosens W, Giovannozzi S, Moens L, Bogaert J, Iglesias-Herrero C, Gijsbers R, Bossuyt X, Frans G, Liston A, Humblet-Baron S, Meyts I, Van Aelst L, Schrijvers R. Case report: Myocarditis in congenital STAT1 gain-of function. Front Immunol 2023; 14:1095595. [PMID: 37020552 PMCID: PMC10067556 DOI: 10.3389/fimmu.2023.1095595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Autosomal dominant Signal transducer and activator of transcription 1 (STAT1) gain-of-function (GOF) mutations result in an inborn error of immunity characterized by chronic mucocutaneous candidiasis, recurrent viral and bacterial infections, and diverse autoimmune manifestations. Current treatment consists of chronic antifungal therapy, antibiotics for concomitant infections, and immunosuppressive therapy in case of autoimmune diseases. More recently, treatment with Janus kinases 1 and 2 (JAK1/2) inhibitors have shown promising yet variable results. We describe a STAT1 GOF patient with an incidental finding of elevated cardiac troponins, leading to a diagnosis of a longstanding, slowly progressive idiopathic myocarditis, attributed to STAT1 GOF. Treatment with a JAK-inhibitor (baricitinib) mitigated cardiac inflammation on MRI but was unable to alter fibrosis, possibly due to the diagnostic and therapeutic delay, which finally led to fatal arrhythmia. Our case illustrates that myocarditis could be part of the heterogeneous disease spectrum of STAT1 GOF. Given the insidious presentation in our case, a low threshold for cardiac evaluation in STAT1 GOF patients seems warranted.
Collapse
Affiliation(s)
- Frederik Staels
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
| | - Willem Roosens
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Simone Giovannozzi
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Molecular Virology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Leen Moens
- Department of Microbiology, Immunology and Transplantation, Laboratory of Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
| | - Jan Bogaert
- Department of Imaging and Pathology, Translational MRI, KU Leuven, Leuven, Belgium
| | - Cecilia Iglesias-Herrero
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Molecular Virology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Rik Gijsbers
- Department of Pharmaceutical and Pharmacological Sciences, Laboratory of Molecular Virology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Xavier Bossuyt
- Department of Microbiology, Immunology and Transplantation, Experimental Laboratory Immunology, KU Leuven, Leuven, Belgium
| | - Glynis Frans
- Department of Microbiology, Immunology and Transplantation, Experimental Laboratory Immunology, KU Leuven, Leuven, Belgium
| | - Adrian Liston
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
- Laboratory of Lymphocyte Signaling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Stephanie Humblet-Baron
- Department of Microbiology, Immunology and Transplantation, Laboratory of Adaptive Immunology, KU Leuven, Leuven, Belgium
| | - Isabelle Meyts
- Department of Microbiology, Immunology and Transplantation, Laboratory of Inborn Errors of Immunity, KU Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Lucas Van Aelst
- Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Rik Schrijvers
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
- *Correspondence: Rik Schrijvers,
| |
Collapse
|
23
|
Pinto MV, Neves JF. Precision medicine: The use of tailored therapy in primary immunodeficiencies. Front Immunol 2022; 13:1029560. [PMID: 36569887 PMCID: PMC9773086 DOI: 10.3389/fimmu.2022.1029560] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Primary immunodeficiencies (PID) are rare, complex diseases that can be characterised by a spectrum of phenotypes, from increased susceptibility to infections to autoimmunity, allergy, auto-inflammatory diseases and predisposition to malignancy. With the introduction of genetic testing in these patients and wider use of next-Generation sequencing techniques, a higher number of pathogenic genetic variants and conditions have been identified, allowing the development of new, targeted treatments in PID. The concept of precision medicine, that aims to tailor the medical interventions to each patient, allows to perform more precise diagnosis and more importantly the use of treatments directed to a specific defect, with the objective to cure or achieve long-term remission, minimising the number and type of side effects. This approach takes particular importance in PID, considering the nature of causative defects, disease severity, short- and long-term complications of disease but also of the available treatments, with impact in life-expectancy and quality of life. In this review we revisit how this approach can or is already being implemented in PID and provide a summary of the most relevant treatments applied to specific diseases.
Collapse
Affiliation(s)
- Marta Valente Pinto
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, CHULC-EPE, Lisbon, Portugal
- Centro de Investigação Egas Moniz (CiiEM), Instituto Universitário Egas Moniz (IUEM), Quinta da Granja, Monte da Caparica, Caparica, Portugal
| | - João Farela Neves
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, CHULC-EPE, Lisbon, Portugal
- CHRC, Comprehensive Health Research Centre, Nova Medical School, Lisbon, Portugal
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW This review provides readers with examples of refractory infections due to inborn errors of immunity, highlighting how they may be successfully treated by deducing and targeting the underlying immunodeficiency. RECENT FINDINGS The use of host-directed immunotherapy to treat infectious disease in inborn errors of immunity is currently limited but growing. Different strategies include depleting the cellular reservoir for pathogens with restricted cell-tropism; augmenting the diminished effector response; and restoring molecular equipoise. The immunotherapies illustrated are existing drugs that have been re-purposed and rationally used, depending on the molecular or cellular impact of the mutation. As more biologic response modifiers and molecular targeted therapies are developed for other indications, they open the avenues for their use in inborn errors of immunity. Conversely, as more molecular pathways underlying defective immune responses and refractory infections are elucidated, they lend themselves to tractability with these emerging therapies. SUMMARY Infections that fail appropriate antimicrobial therapy are a harbinger of underlying inborn errors of immunity. Dissecting the mechanism by which the immune system fails provides opportunities to target the host response and make it succeed.
Collapse
|
25
|
Hernandez JD, Hsieh EW. A great disturbance in the force: IL-2 receptor defects disrupt immune homeostasis. Curr Opin Pediatr 2022; 34:580-588. [PMID: 36165614 PMCID: PMC9633542 DOI: 10.1097/mop.0000000000001181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW The current review highlights how inborn errors of immunity (IEI) due to IL-2 receptor (IL-2R) subunit defects may result in children presenting with a wide variety of infectious and inflammatory presentations beyond typical X-linked severe combined immune deficiency (X-SCID) associated with IL-2Rγ. RECENT FINDINGS Newborn screening has made diagnosis of typical SCID presenting with severe infections less common. Instead, infants are typically diagnosed in the first days of life when they appear healthy. Although earlier diagnosis has improved clinical outcomes for X-SCID, atypical SCID or other IEI not detected on newborn screening may present with more limited infectious presentations and/or profound immune dysregulation. Early management to prevent/control infections and reduce inflammatory complications is important for optimal outcomes of definitive therapies. Hematopoietic stem cell transplant (HSCT) is curative for IL-2Rα, IL-2Rβ, and IL-2Rγ defects, but gene therapy may yield comparable results for X-SCID. SUMMARY Defects in IL-2R subunits present with infectious and inflammatory phenotypes that should raise clinician's concern for IEI. Immunophenotyping may support the suspicion for diagnosis, but ultimately genetic studies will confirm the diagnosis and enable family counseling. Management of infectious and inflammatory complications will determine the success of gene therapy or HSCT.
Collapse
Affiliation(s)
- Joseph D. Hernandez
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, School of Medicine, Stanford University, Lucile Packard Children’s Hospital
| | - Elena W.Y. Hsieh
- Department of Pediatrics, Section of Allergy and Immunology, School of Medicine, University of Colorado, Children’s Hospital Colorado
- Department of Immunology and Microbiology, School of Medicine, University of Colorado
| |
Collapse
|
26
|
He K, Xu S, Shen L, Chen X, Xia Q, Qian Y. Ruxolitinib as Adjunctive Therapy for Hemophagocytic LymPhohistiocytosis after Liver Transplantation: A Case Report and Literature Review. J Clin Med 2022; 11:6308. [PMID: 36362534 PMCID: PMC9656798 DOI: 10.3390/jcm11216308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 12/18/2023] Open
Abstract
Hemophagocytic lymphohistiocytosis (HLH) is a rare but potentially fatal hyperinflammatory disorder characterized by dysfunctional cytotoxic T and natural killer cells. Liver transplantation is a predisposing factor for HLH. High mortality rates were reported in 40 cases of HLH following liver transplantation in adults and children. Herein, we describe a case of adult HLH triggered by cytomegalovirus (CMV) infection shortly after liver transplantation. The patient was successfully treated with ruxolitinib combined with a modified HLH-2004 treatment strategy. Our case is the first to report the successful use of ruxolitinib with a modified HLH-2004 strategy to treat HLH in a solid organ transplantation recipient.
Collapse
Affiliation(s)
- Kang He
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai 200127, China
- Shanghai Institute of Transplantation, Shanghai 200127, China
| | - Shanshan Xu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai 200127, China
- Shanghai Institute of Transplantation, Shanghai 200127, China
| | - Lijing Shen
- Department of Hematology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaosong Chen
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai 200127, China
- Shanghai Institute of Transplantation, Shanghai 200127, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai 200127, China
- Shanghai Institute of Transplantation, Shanghai 200127, China
| | - Yongbing Qian
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Shanghai Engineering Research Center of Transplantation and Immunology, Shanghai 200127, China
- Shanghai Institute of Transplantation, Shanghai 200127, China
| |
Collapse
|
27
|
Mauracher AA, Henrickson SE. Leveraging Systems Immunology to Optimize Diagnosis and Treatment of Inborn Errors of Immunity. FRONTIERS IN SYSTEMS BIOLOGY 2022; 2:910243. [PMID: 37670772 PMCID: PMC10477056 DOI: 10.3389/fsysb.2022.910243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Inborn errors of immunity (IEI) are monogenic disorders that can cause diverse symptoms, including recurrent infections, autoimmunity and malignancy. While many factors have contributed, the increased availability of next-generation sequencing has been central in the remarkable increase in identification of novel monogenic IEI over the past years. Throughout this phase of disease discovery, it has also become evident that a given gene variant does not always yield a consistent phenotype, while variants in seemingly disparate genes can lead to similar clinical presentations. Thus, it is increasingly clear that the clinical phenotype of an IEI patient is not defined by genetics alone, but is also impacted by a myriad of factors. Accordingly, we need methods to amplify our current diagnostic algorithms to better understand mechanisms underlying the variability in our patients and to optimize treatment. In this review, we will explore how systems immunology can contribute to optimizing both diagnosis and treatment of IEI patients by focusing on identifying and quantifying key dysregulated pathways. To improve mechanistic understanding in IEI we must deeply evaluate our rare IEI patients using multimodal strategies, allowing both the quantification of altered immune cell subsets and their functional evaluation. By studying representative controls and patients, we can identify causative pathways underlying immune cell dysfunction and move towards functional diagnosis. Attaining this deeper understanding of IEI will require a stepwise strategy. First, we need to broadly apply these methods to IEI patients to identify patterns of dysfunction. Next, using multimodal data analysis, we can identify key dysregulated pathways. Then, we must develop a core group of simple, effective functional tests that target those pathways to increase efficiency of initial diagnostic investigations, provide evidence for therapeutic selection and contribute to the mechanistic evaluation of genetic results. This core group of simple, effective functional tests, targeting key pathways, can then be equitably provided to our rare patients. Systems biology is thus poised to reframe IEI diagnosis and therapy, fostering research today that will provide streamlined diagnosis and treatment choices for our rare and complex patients in the future, as well as providing a better understanding of basic immunology.
Collapse
Affiliation(s)
- Andrea A. Mauracher
- Division of Allergy and Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sarah E. Henrickson
- Division of Allergy and Immunology, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|