1
|
Huenuvil-Pacheco I, Jaramillo A, Abreu N, Garrido-Miranda K, Sánchez-Sanhueza G, González-Rocha G, Medina C, Montoya L, Sanhueza J, Melendrez M. Biocidal effects of organometallic materials supported on ZSM-5 Zeolite: Influence of the physicochemical and surface properties. Heliyon 2024; 10:e27182. [PMID: 38455576 PMCID: PMC10918221 DOI: 10.1016/j.heliyon.2024.e27182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024] Open
Abstract
Antifouling coatings containing biocidal agents can be used to prevent the accumulation of biotic deposits on submerged surfaces; however, several commercial biocides can negatively affect the ecosystem. In this study, various formulations of a potential biocide product comprising copper nanoparticles and capsaicin supported on zeolite ZSM-5 were analyzed to determine the influence of the concentration of each component. The incorporation of copper was evidenced by scanning electron microscopy and energy dispersive spectroscopy. Similarly, Fourier-transform infrared spectroscopy confirmed that capsaicin was supported on the zeolite surface. The presence of capsaicin on the external zeolite surface significantly reduced the surface area of the zeolite. Finally, bacterial growth inhibition analysis showed that copper nanoparticles inhibited the growth of strains Idiomarina loihiensis UCO25, Pseudoalteromonas sp. UCO92, and Halomonas boliviensis UCO24 while the organic component acted as a reinforcing biocide.
Collapse
Affiliation(s)
- I. Huenuvil-Pacheco
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 01145 Francisco Salazar, Temuco 4780000, Chile
- Department of Chemical Engineering, University of Concepción, Concepción 4070386, Chile
| | - A.F. Jaramillo
- Department of Mechanical Engineering, Universidad de La Frontera, 01145 Francisco Salazar, Temuco 4780000, Chile
- Departamento de Ingeniería Mecánica, Universidad de Córdoba, Cr 6 #76-103, Montería 230002, Colombia
| | - N.J. Abreu
- Departamento de Ingeniería Química, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, 01145 Francisco Salazar, Temuco 4780000, Chile
- Centro de Manejo de Residuos y Bioenergía, BIOREN, Universidad de La Frontera, 01145 Francisco Salazar, Temuco 4780000, Chile
| | - K. Garrido-Miranda
- Agriaquaculture Nutritional Genomic Center (CGNA), Temuco 4780000, Chile
- Núcleo de Investigación en Bioproductos y Materiales Avanzados (BIOMA), Universidad Católica de Temuco, Avenida Rudecindo Ortega 02950, Campus San Juan Pablo II, Temuco 4780000, Chile
| | - G. Sánchez-Sanhueza
- Department of Restorative Dentistry, Faculty of Dentistry, Universidad de Concepción, 1550 Roosevelt St, Concepcion 4030000, Chile
| | - G. González-Rocha
- Laboratorio de Investigación en Agentes Antibacterianos, Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción 4030000, P.O. Box C-160, Chile
| | - C. Medina
- Department of Mechanical Engineering (DIM), Faculty of Engineering, University of Concepción, Edmundo Larenas 219, Concepcion 4070409, Chile
| | - L.F. Montoya
- Department of Chemical Engineering, University of Concepción, Concepción 4070386, Chile
| | - J.P. Sanhueza
- Department of Materials Engineering (DIMAT), Faculty of Engineering, Universidad de Concepción, 315 Edmundo Larenas, Concepcion, 4070415, Chile
| | - M.F. Melendrez
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastían, Campus Las Tres Pascualas, Lientur 1457, Concepción, 4060000, Chile
| |
Collapse
|
2
|
Flores-Valenzuela J, Leal-Perez JE, Almaral-Sanchez JL, Hurtado-Macias A, Borquez-Mendivil A, Vargas-Ortiz RA, Garcia-Grajeda BA, Duran-Perez SA, Cortez-Valadez M. Structural Analysis of Cu + and Cu 2+ Ions in Zeolite as a Nanoreactor with Antibacterial Applications. ACS OMEGA 2023; 8:30563-30568. [PMID: 37636981 PMCID: PMC10448675 DOI: 10.1021/acsomega.3c03869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023]
Abstract
In this work, we report the structural analysis of Cu+ and Cu2+ ions in zeolite as a nanoreactor with antibacterial applications. A simple one-step process was implemented to obtain Cu ions in zeolite A (ZA4) by controlling the temperature in the solutions to guarantee the ions' stability. Samples were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier transform infrared (FT-IR) spectroscopy, showing the characteristic zeolite elements as well as the characteristic bands with slight modifications in the chemical environment of the zeolite nanoreactor attributed to Cu ions by FT-IR spectroscopy. In addition, a shift of the characteristic peaks of ZA4 in X-ray diffraction was observed as well as a decrease in relative peak intensity. On the other hand, the antibacterial activity of Cu ions in the zeolite nanoreactor was evaluated.
Collapse
Affiliation(s)
- J. Flores-Valenzuela
- Universidad
Autónoma de Sinaloa, Fuente de Poseidón y Prol. Ángel
Flores S/N, Los Mochis, Sinaloa 81223, México
| | - J. E. Leal-Perez
- Universidad
Autónoma de Sinaloa, Fuente de Poseidón y Prol. Ángel
Flores S/N, Los Mochis, Sinaloa 81223, México
| | - J. L. Almaral-Sanchez
- Universidad
Autónoma de Sinaloa, Fuente de Poseidón y Prol. Ángel
Flores S/N, Los Mochis, Sinaloa 81223, México
| | - A. Hurtado-Macias
- Centro
de Investigación en Materiales Avanzados, S. C., Miguel de Cervantes #120,
Complejo Industrial Chihuahua, Chihuahua, Chihuahua 31136, México
| | - A. Borquez-Mendivil
- Universidad
Autónoma de Sinaloa, Fuente de Poseidón y Prol. Ángel
Flores S/N, Los Mochis, Sinaloa 81223, México
| | - R. A. Vargas-Ortiz
- Universidad
Autónoma de Sinaloa, Fuente de Poseidón y Prol. Ángel
Flores S/N, Los Mochis, Sinaloa 81223, México
| | - B. A. Garcia-Grajeda
- Universidad
Autónoma de Sinaloa, Fuente de Poseidón y Prol. Ángel
Flores S/N, Los Mochis, Sinaloa 81223, México
| | - S. A. Duran-Perez
- Doctorado
en Biotecnología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Calzada de las Americas Norte #2771, Burócrata, Culiacán Rosales, Sinaloa 80030, México
| | - Manuel Cortez-Valadez
- Departamento
de Investigación en Física, Universidad de Sonora, Apdo. Postal 5-88, Hermosillo, Sonora 83190, México
| |
Collapse
|
3
|
Romero LM, Araya N, Palacio DA, Sánchez-Sanhueza GA, Pérez EG, Solís FJ, Meléndrez MF, Medina C. Study of the Antibacterial Capacity of a Biomaterial of Zeolites Saturated with Copper Ions (Cu 2+) and Supported with Copper Oxide (CuO) Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2140. [PMID: 37513151 PMCID: PMC10384100 DOI: 10.3390/nano13142140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
In this work, copper (II) ions were saturated and copper oxide nanoparticles (CuO NPs) were supported in natural zeolite from Chile; this was achieved by making the adsorbent material come into contact with a copper ion precursor solution and using mechanical agitation, respectively. The kinetic and physicochemical process of the adsorption of copper ions in the zeolite was studied, as well as the effect of the addition of CuO NPs on the antibacterial properties. The results showed that the saturation of copper (II) ions in the zeolite is an efficient process, obtaining a 27 g L-1 concentration of copper ions in a time of 30 min. The TEM images showed that a good dispersion of the CuO NPs was obtained via mechanical stirring. The material effectively inhibited the growth of Gram-negative and Gram-positive bacteria that have shown resistance to methicillin and carbapenem. Furthermore, the zeolite saturated with copper at the same concentration had a better bactericidal effect than the zeolite supported with CuO NPs. The results suggested that the ease of processing and low cost of copper (II) ion-saturated zeolitic material could potentially be used for dental biomedical applications, either directly or as a bactericidal additive for 3D printing filaments.
Collapse
Affiliation(s)
- Lina M Romero
- Interdisciplinary Group of Applied Nanotechnology (GINA), Hybrid Materials Laboratory (HML), Department of Materials Engineering (DIMAT), Faculty of Engineering, Universidad de Concepción, 270 Edmundo Larenas, Box 160-C, Concepcion 4070409, Chile
| | - Nicolas Araya
- Interdisciplinary Group of Applied Nanotechnology (GINA), Hybrid Materials Laboratory (HML), Department of Materials Engineering (DIMAT), Faculty of Engineering, Universidad de Concepción, 270 Edmundo Larenas, Box 160-C, Concepcion 4070409, Chile
| | - Daniel A Palacio
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, 129 Edmundo Larenas, Concepcion 4070409, Chile
| | - Gabriela A Sánchez-Sanhueza
- Department of Restorative Dentistry, Faculty of Dentistry, Universidad de Concepción, Concepcion 4070409, Chile
| | - Eduardo G Pérez
- Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, Nuevo Leon 66451, Mexico
| | - Francisco J Solís
- Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, Nuevo Leon 66451, Mexico
| | - Manuel F Meléndrez
- Interdisciplinary Group of Applied Nanotechnology (GINA), Hybrid Materials Laboratory (HML), Department of Materials Engineering (DIMAT), Faculty of Engineering, Universidad de Concepción, 270 Edmundo Larenas, Box 160-C, Concepcion 4070409, Chile
- Unidad de Desarrollo Tecnológico, 2634 Av. Cordillera, Parque Industrial Coronel, Box 4051, Concepcion 4191996, Chile
| | - Carlos Medina
- Department of Mechanical Engineering (DIM), Faculty of Engineering, Universidad de Concepción, Edmundo Larenas 270, Concepcion 4070409, Chile
| |
Collapse
|
4
|
Investigation of photocatalytic-proxone process performance in the degradation of toluene and ethyl benzene from polluted air. Sci Rep 2023; 13:4000. [PMID: 36899090 PMCID: PMC10006189 DOI: 10.1038/s41598-023-31183-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
In this study, toluene and ethylbenzene were degraded in the photocatalytic-proxone process using BiOI@NH2-MIL125(Ti)/Zeolite nanocomposite. The simultaneous presence of ozone and hydrogen peroxide is known as the proxone process. Nanocomposite Synthesis was carried out using the solvothermal method. Inlet airflow, ozone concentrations, H2O2 concentrations, relative humidity, and initial pollutants concentrations were studied. The nanocomposite was successfully synthesized based on FT-IR, BET, XRD, FESEM, EDS element mapping, UV-Vis spectra and TEM analysis. A flow rate of 0.1 L min-1, 0.3 mg min-1 of ozone, 150 ppm of hydrogen peroxide, 45% relative humidity, and 50 ppmv of pollutants were found to be optimal operating conditions. Both pollutants were degraded in excess of 95% under these conditions. For toluene and ethylbenzene, the synergistic of mechanisms effect coefficients were 1.56 and 1.76, respectively. It remained above 95% efficiency 7 times in the hybrid process and had good stability. Photocatalytic-proxone processes were evaluated for stability over 180 min. The remaining ozone levels in the process was insignificant (0.01 mg min-1). The CO2 and CO production in the photocatalytic-proxone process were 58.4, 5.7 ppm for toluene and 53.7, and 5.5 ppm for ethylbenzene respectively. Oxygen gas promoted and nitrogen gas had an inhibitory effect on the effective removal of pollutants. During the pollutants oxidation, various organic intermediates were identified.
Collapse
|
5
|
Haghbin M, Malekshah RE, Sobhani M, Izadi Z, Haghshenas B, Ghasemi M, Kalani BS, Samadian H. Fabrication and characterization of Persian gum-based hydrogel loaded with gentamicin-loaded natural zeolite: An in vitro and in silico study. Int J Biol Macromol 2023; 235:123766. [PMID: 36841390 DOI: 10.1016/j.ijbiomac.2023.123766] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 02/27/2023]
Abstract
The main purpose of this study is to synthesize and characterize Persian gum-based hydrogel composited with gentamicin (Gen)-loaded natural zeolite (Clinoptilolite) and to evaluate its biological properties. Clinoptilolite (CLN) was decorated with Gen, and the conjugation was confirmed using computational and experimental assessments. The Monte Carlo adsorption locator module was used to reveal the physicochemical nature of the adsorption processes of Gen on CLN and ALG and gum on Gen@ CLN in Materials Studio 2017 software. Based on the high negative results, the adsorption process was found to be endothermic in all studied cases, and the interaction energies were in the range of physisorption for Gen on CLN and ALG and gum on Gen@CLN. Dynamic light scattering (DLS) and zeta potential analysis showed that the size of pristine CLN was around 2959 nm and the conjugation decreased the size significantly to approximately 932 nm. The hydrogel characterizations showed that the Gen-decorated CLNs are homogenously dispersed into the hydrogel matrix, and the resultant hydrogels have a porous structure with interconnected pores. The release kinetics evaluation showed that around 80 % of Gen was released from the nanocomposite drug during the first 10 h. In vitro studies revealed hemocompatibility and cytocompatibility of the nanocomposite. Microbial assessments indicated dose-dependent antibacterial activity of the hydrogel against gram (+) and gram (-) bacteria. The results showed that the fabricated hydrogel nanocomposite exhibits favorable physicochemical and biological properties.
Collapse
Affiliation(s)
- Mohana Haghbin
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Mahsa Sobhani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Babak Haghshenas
- Regenerative Medicine Research Center (RMRC), Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 67146, Iran
| | - Maryam Ghasemi
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Behrooz Sadeghi Kalani
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Hadi Samadian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
6
|
Mehralipour J, Jonidi Jafari A, Gholami M, Esrafili A, Kermani M. Photocatalytic-Proxone Process Application in the Degradation of Toluene-Diisocyante, and Methylene Diphenyl Diisocyanate from polluted air. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
7
|
Facile synthesis of hexagonal-shaped CuO NPs from Cu(II)-Schiff base complex for enhanced visible-light-driven degradation of dyes and antimicrobial studies. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Mehralipour J, Jafari AJ, Gholami M, Esrafili A, Kermani M. Synthesis of BiOI@NH 2-MIL125(Ti)/Zeolite as a novel MOF and advanced hybrid oxidation process application in benzene removal from polluted air stream. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:937-952. [PMID: 36406604 PMCID: PMC9672198 DOI: 10.1007/s40201-022-00837-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
One of the popular process in volatile organic compounds removal in gas phase is advanced oxidation process. We in this research, synthesized BiOI@NH2-MIL125(Ti)/Zeolite nanocomposite as a novel nanocomposite to degradation of benzene in hybrid advanced oxidation process. The nanocomposite synthesized via solvothermal method. The effect of airflow, ozone gas concentration, hydrogen peroxide concentration, relative humidity and initial benzene concentration are the main parameters in the UV/O3/H2O2/ nanocomposite hybrid process that were studied. The characterization by XRD, FT-IR, FESEM, EDS element mapping, TEM, BET, and UV-vis spectra indicated that nanocomposite were well synthesized. Optimal operating conditions of the process were determined at air flow of 0.1 l/min, ozone concentration of 0.3 mg/min, hydrogen peroxide concentration of 150 ppm, relative humidity of 45 ± 3% and benzene concentration of 50 ppmv. Under these conditions, more than 99% of benzene was degraded. The synergistic effect coefficient of the mechanisms is 1.53. The nanocomposite had good stability in the hybrid process and remained above 99% efficiency up to 5 times. The ozone concentration residual the system was reported to be negligible (0.013 mg/min). The CO and CO2 emissions in the hybrid process was higher than other processes, which indicates better mineralization in the hybrid process. Formaldehyde, octane, noonan, phenol, decanoic acid were reported as the main by-products. The results indicated that UV/O3/H2O2/ nanocomposite hybrid process has fantastic efficiency in the degradation of benzene as one of the indicators of VOCs.
Collapse
Affiliation(s)
- Jamal Mehralipour
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Air Pollution Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Jonidi Jafari
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Gholami
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Esrafili
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Kermani
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Yang N, Gou L, Bai Z, Cheng F, Guo M, Zhang M. A Simple and Mild Synthesis of Zeolite Y from Bauxite Tailings for Lead Adsorption: Reusable, Efficient and Highly Selective. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02377-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Methacrylate-Based Polymeric Sorbents for Recovery of Metals from Aqueous Solutions. METALS 2022. [DOI: 10.3390/met12050814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The industrialization and urbanization expansion have increased the demand for precious and rare earth elements (REEs). In addition, environmental concerns regarding the toxic effects of heavy metals on living organisms imposed an urgent need for efficient methods for their removal from wastewaters and aqueous solutions. The most efficient technique for metal ions removal from wastewaters is adsorption due to its reversibility and high efficiency. Numerous adsorbents were mentioned as possible metal ions adsorbents in the literature. Chelating polymer ligands (CPLs) with adaptable surface chemistry, high affinity towards targeted metal ions, high capacity, fast kinetics, chemically stable, and reusable are especially attractive. This review is focused on methacrylate-based magnetic and non-magnetic porous sorbents. Special attention was devoted to amino-modified glycidyl methacrylate (GMA) copolymers. Main adsorption parameters, kinetic models, adsorption isotherms, thermodynamics of the adsorption process, as well as regeneration of the polymeric sorbents were discussed.
Collapse
|
11
|
Spectral, Structural, and Antibacterial Study of Copper(II) Complex with N2O2 Donor Schiff Base Ligand and Its Usage in Preparation of CuO Nanoparticles. J CHEM-NY 2022. [DOI: 10.1155/2022/8913874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A new Schiff base complex, Cu(H2L)2 (H3L: 6,6
-((1E,1
E)-((azanediylbis(ethane-2,1-diyl))bis(azanylylidene))bis(methanylylidene))bis(2-methoxyphenol)), through the reaction of ligand H3L with Cu(NO3)2 3H2O, in the ratio of 2 : 1 in methanol solvent was prepared. The obtained ligand (H3L) was characterized by FT-IR, 13C NMR, 1H NMR and elemental analyses. Then its copper(II) complex was prepared and characterized by FT-IR spectroscopy, thermal studies, elemental analyses and single crystal X-ray diffraction. The X-ray crystallography revealed that the two H3L ligands in bidentate fashion coordinated to one copper center for producing Cu(H2L)2 complex. We used copper(II) Schiff base complex, Cu(H2L)2, for the preparation of CuO nanoparticles via solid-state thermal decomposition. The crystalline structure of the product was studied by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM). XRD indicated that the new product was copper oxide. SEM image showed that the size of CuO nanoparticles was between 46 and 53 nm, and they had uniform shape. The antibacterial properties of the complex and ligand were also investigated. The results revealed that Schiff base complex showed higher biological activity than Schiff base ligand.
Collapse
|
12
|
García AC, Moral-Vico J, Abo Markeb A, Sánchez A. Conversion of Carbon Dioxide into Methanol Using Cu-Zn Nanostructured Materials as Catalysts. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:999. [PMID: 35335812 PMCID: PMC8950516 DOI: 10.3390/nano12060999] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/16/2022]
Abstract
Nowadays, there is a growing awareness of the great environmental impact caused by the enormous amounts of carbon dioxide emitted. Several alternatives exist to solve this problem, and one of them is the hydrogenation of carbon dioxide into methanol by using nanomaterials as catalysts. The aim of this alternative is to produce a value-added chemical, such as methanol, which is a cheaply available feedstock. The development of improved materials for this conversion reaction and a deeper study of the existing ones are important for obtaining higher efficiencies in terms of yield, conversion, and methanol selectivity, in addition to allowing milder reaction conditions in terms of pressure and temperature. In this work, the performance of copper, zinc, and zinc oxide nanoparticles in supported and unsupported bimetallic systems is evaluated in order to establish a comparison among the different materials according to their efficiency. For that, a packed bed reactor operating with a continuous gas flow is used. The obtained results indicate that the use of bimetallic systems combined with porous supports, such as zeolite and activated carbon, is beneficial, thus improving the performance of unsupported materials by four times.
Collapse
Affiliation(s)
- Anna Carrasco García
- Departament of Chemical, Biological and Environmental Engineering, Escola d’Enginyeria, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain; (A.C.G.); (A.A.M.); (A.S.)
| | - Javier Moral-Vico
- Departament of Chemical, Biological and Environmental Engineering, Escola d’Enginyeria, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain; (A.C.G.); (A.A.M.); (A.S.)
| | - Ahmad Abo Markeb
- Departament of Chemical, Biological and Environmental Engineering, Escola d’Enginyeria, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain; (A.C.G.); (A.A.M.); (A.S.)
- Departament of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Antoni Sánchez
- Departament of Chemical, Biological and Environmental Engineering, Escola d’Enginyeria, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain; (A.C.G.); (A.A.M.); (A.S.)
| |
Collapse
|
13
|
Limlamthong M, Yip ACK. Recent advances in zeolite-encapsulated metal catalysts: A suitable catalyst design for catalytic biomass conversion. BIORESOURCE TECHNOLOGY 2020; 297:122488. [PMID: 31796381 DOI: 10.1016/j.biortech.2019.122488] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Metal clusters and nanoparticles, which have been used to tune the acidity of zeolite support, are beneficial for promoting the catalytic performance of various reaction processes, including biomass conversion. However, catalytic instabilities resulting from metal coalescence, sintering and leaching are major problems that need to be resolved. Therefore, metal encapsulation within the zeolite structure has been proposed as a feasible solution for this issue, particularly for biomass conversions that require high temperatures. In this current review, recent developments in metal confinement techniques are described along with experimental examples of biomass upgrading reactions. The present and future perspectives of zeolite-encapsulated metal catalysts in biomass conversions are also given.
Collapse
Affiliation(s)
- Mutjalin Limlamthong
- Department of Chemical and Process Engineering, The University of Canterbury, Christchurch 8041, New Zealand
| | - Alex C K Yip
- Department of Chemical and Process Engineering, The University of Canterbury, Christchurch 8041, New Zealand.
| |
Collapse
|
14
|
Vergara-Figueroa J, Alejandro-Martín S, Pesenti H, Cerda F, Fernández-Pérez A, Gacitúa W. Obtaining Nanoparticles of Chilean Natural Zeolite and its Ion Exchange with Copper Salt (Cu 2+) for Antibacterial Applications. MATERIALS 2019; 12:ma12132202. [PMID: 31323906 PMCID: PMC6651861 DOI: 10.3390/ma12132202] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 11/24/2022]
Abstract
This article describes the production of nanoparticles of Chilean natural zeolite, using three size reduction methods: Ball mill, microgrinding, and microfluidization. Morphological characterization of samples indicated an average diameter of 37.2 ± 15.8 nm of the zeolite particles. The size reduction and chemical treatments did not affect the morphology or integrity of the zeolite. An increase of the zeolite samples’ Si/Al ratio was observed after the acid treatment and was confirmed by SEM-EDX analysis. Moreover, the effectiveness of the copper salt ion exchange (Cu2+) to the zeolite nanoparticles was analyzed by SEM-EDX. XRD analysis indicated that clinoptilolite and mordenite are the main phases of Chilean natural zeolite, and the crystalline structure was not affected by the modification processes. The FTIR characterization showed the presence of chemical bonds of copper with the zeolite nanoparticle framework. The ion-exchanged zeolite nanoparticles were evaluated for antibacterial behavior by the disc diffusion method. Additionally, the minimum inhibitory concentration and minimum bactericidal concentration were obtained. Microbiological assays with copper-exchanged nanozeolites showed an antimicrobial activity with a bactericidal effect against Escherichia coli and Staphylococcus aureus, which are the primary pathogens of food and are also resistant to multiple drugs. In this study, a new application for natural nanozeolites is demonstrated, as the incorporated copper ions (Cu2+) in nanozeolites registered a productive antibacterial activity.
Collapse
Affiliation(s)
- Judith Vergara-Figueroa
- Centro de Biomateriales y Nanotecnología, Universidad del Bío-Bío, Concepción 4030000, Chile.
- Departamento de Ingeniería en Maderas, Facultad de Ingeniería, Universidad del Bío-Bío, Concepción 4030000, Chile.
| | - Serguei Alejandro-Martín
- Departamento de Ingeniería en Maderas, Facultad de Ingeniería, Universidad del Bío-Bío, Concepción 4030000, Chile
- Nanomaterials and Catalysts for Sustainable Processes Group (NanoCatpPS), Concepción 4030000, Chile
| | - Héctor Pesenti
- Departamento de Procesos Industriales, Universidad Católica de Temuco, Temuco 4780000, Chile
| | - Fabiola Cerda
- Departamento de Ingeniería en Alimentos, Universidad del Bío-Bío, Chillán 3780000, Chile
| | - Arturo Fernández-Pérez
- Departamento de Física, Facultad de Ciencias, Universidad del Bío-Bío, Concepción 4030000, Chile
| | - William Gacitúa
- Centro de Biomateriales y Nanotecnología, Universidad del Bío-Bío, Concepción 4030000, Chile
- Departamento de Ingeniería en Maderas, Facultad de Ingeniería, Universidad del Bío-Bío, Concepción 4030000, Chile
| |
Collapse
|
15
|
Raiza AJ, Pandian K, Kumar RG. Biosynthesis of Copper Nanoparticles Supported on Zeolite Y and its Application in Catalytic C-N Cross Coupling Reactions between Amines and Aryl halides. ChemistrySelect 2019. [DOI: 10.1002/slct.201804003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Anasdass Jaculin Raiza
- Department of Inorganic Chemistry; University of Madras Guindy Campus, Chennai-; 600 025 Tamil Nadu India
| | - Kannaiyan Pandian
- Department of Inorganic Chemistry; University of Madras Guindy Campus, Chennai-; 600 025 Tamil Nadu India
| | - Rajendran Ganesh Kumar
- PG & Research Department of Chemistry; Pachaiyappa's College, Chennai-; 600 030, Tamil Nadu India
| |
Collapse
|
16
|
Mallakpour S, Mansourzadeh S. Sonochemical synthesis of PVA/PVP blend nanocomposite containing modified CuO nanoparticles with vitamin B 1 and their antibacterial activity against Staphylococcus aureus and Escherichia coli. ULTRASONICS SONOCHEMISTRY 2018; 43:91-100. [PMID: 29555293 DOI: 10.1016/j.ultsonch.2017.12.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 12/30/2017] [Accepted: 12/31/2017] [Indexed: 05/21/2023]
Abstract
The aim of this paper was to blend the polymers, poly(N-vinyl-2-pyrrolidone) (PVP) and poly(vinyl alcohol) (PVA) to produce a novel composite materials possessing the benefits of both. CuO nanoparticles (NPs) were used as a suitable filler to fabricate the blend nanocomposites (NCs) with desired properties. First, the surface of NPs, was modified with vitamin B1 (VB1) as a bio-safe coupling agent. Then, the blend NCs with various ratios of modified CuO (3, 5, and 7 wt%) were fabricated under ultrasonic irradiations followed by casting/solvent evaporation method. These processes are fast and green way to disperse the NPs sufficiently. Several techniques were applied for the characterization of the obtained NCs. morphology examination demonstrated the morphology of NCs and compatibility of NPs with the blend polymer. EDX results indicated the weight and atomic percentage of the achieved materials. TGA analysis verified that the NCs show higher thermal properties than the neat blend polymer. Also embedding the modified NPs into the blend polymer had effected on optical absorbance of the obtained NCs. The contact angle measurements confirmed that the hydrophilicity decreased for different proportions of the modified NPs loaded in the blend polymer. Finally, NCs show better bactericidal effects against gram-positive than gram-negative bacteria.
Collapse
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran; Research Institute for Nanotechnology and Advanced Materials, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran.
| | - Soheila Mansourzadeh
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran
| |
Collapse
|
17
|
Sharma M, Das B, Sharma M, Deka BK, Park YB, Bhargava SK, Bania KK. Pd/Cu-Oxide Nanoconjugate at Zeolite-Y Crystallite Crafting the Mesoporous Channels for Selective Oxidation of Benzyl-Alcohols. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35453-35462. [PMID: 28933824 DOI: 10.1021/acsami.7b11086] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Solid-state grinding of palladium and copper salts allowed the growth of palladium/copper oxide interface at the zeolite-Y surface. The hybrid nanostructured material was used as reusable heterogeneous catalyst for selective oxidation of various benzyl alcohols. The large surface area provided by the zeolite-Y matrix highly influenced the catalytic activity, as well as the recyclability of the synthesized catalyst. Impregnation of PdO-CuO nanoparticles on zeolite crystallite leads to the generation of mesoporous channel that probably prevented the leaching of the metal-oxide nanoparticles and endorsed high mass transfer. Formation of mesoporous channel at the external surface of zeolite-Y was evident from transmission electron microscopy and surface area analysis. PdO-CuO nanoparticles were found to be within the range of 2-5 nm. The surface area of PdO-CuO-Y catalyst was found to be much lower than parent zeolite-Y. The decrease in surface area as well as the presence of hysteresis loop in the N2-adsoprtion isotherm further suggested successful encapsulation of PdO-CuO nanoparticles via the mesoporous channel formation. The high positive shifting in binding energy in both Pd and Cu was attributed to the influence of zeolite-Y framework on lattice contraction of metal oxides via confinement effect. PdO-CuO-Y catalyst was found to oxidize benzyl alcohol with 99% selectivity. On subjecting to microwave irradiation the same oxidation reaction was found to occur at ambient condition giving same conversion and selectivity.
Collapse
Affiliation(s)
- Mukesh Sharma
- Department of Chemical Sciences, Tezpur University , Tezpur, Assam, India , 784028
| | - Biraj Das
- Department of Chemical Sciences, Tezpur University , Tezpur, Assam, India , 784028
| | - Mitu Sharma
- Department of Chemical Sciences, Tezpur University , Tezpur, Assam, India , 784028
| | - Biplab K Deka
- School of Mechanical, Aerospace and Nuclear Engineering, Ulsan National Institute of Science and Technology , Ulsan, Republic of Korea , 44919
| | - Young-Bin Park
- School of Mechanical, Aerospace and Nuclear Engineering, Ulsan National Institute of Science and Technology , Ulsan, Republic of Korea , 44919
| | - Suresh K Bhargava
- School of Sciences, RMIT University , Melbourne, Victoria 3000, Australia
| | - Kusum K Bania
- Department of Chemical Sciences, Tezpur University , Tezpur, Assam, India , 784028
- School of Sciences, RMIT University , Melbourne, Victoria 3000, Australia
| |
Collapse
|
18
|
Mallakpour S, Mansourzadeh S. Application of CuO nanoparticles modified with vitamin B1
for the production of poly(vinyl alcohol)/CuO nanocomposite films with enhanced optical, thermal and mechanical properties. POLYM ADVAN TECHNOL 2017. [DOI: 10.1002/pat.4068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shadpour Mallakpour
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry; Isfahan University of Technology; Isfahan 84156-83111 Iran
- Nanotechnology and Advanced Materials Institute; Isfahan University of Technology; Isfahan 84156-83111 Iran
| | - Soheila Mansourzadeh
- Organic Polymer Chemistry Research Laboratory, Department of Chemistry; Isfahan University of Technology; Isfahan 84156-83111 Iran
| |
Collapse
|
19
|
Đolić MB, Rajaković-Ognjanović VN, Štrbac SB, Dimitrijević SI, Mitrić MN, Onjia AE, Rajaković LV. Natural sorbents modified by divalent Cu 2+- and Zn 2+- ions and their corresponding antimicrobial activity. N Biotechnol 2017; 39:150-159. [PMID: 28263898 DOI: 10.1016/j.nbt.2017.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 02/23/2017] [Accepted: 03/01/2017] [Indexed: 12/27/2022]
Abstract
The objective of this study was to investigate the modification of materials used in wastewater treatment for possible antimicrobial application(s). Granulated activated carbon (GAC) and natural clinoptilolite (CLI) were activated using Cu2+- and Zn2+- ions and the disinfection ability of the resulting materials was tested. Studies of the sorption and desorption kinetics were performed in order to determine and clarify the antimicrobial activity of the metal-activated sorbents. The exact sorption capacities of the selected sorbents, GAC and CLI, activated through use of Cu2+- ions, were 15.90 and 3.60mg/g, respectively, while for the materials activated by Zn2+- ions, the corresponding capacities were 14.00 and 4.72mg/g,. The desorption rates were 2 and 3 orders of magnitude lower than their sorption efficacy for the Cu2+-, and Zn2+-activated sorbents, respectively. The intermediate sorption capacity and low desorption rate indicated that the overall antimicrobial activity of the metal-modified sorbents was a result of metal ions immobilized onto surface sites. The effect of antimicrobial activity of free ions desorbed from the metal-activated surface may thus be disregarded. The antimicrobial activities of Cu/GAC, Zn/GAC, Cu/CLI and Zn/CLI were also tested against Escherichia coli, Staphylococcus aureus, and Candida albicans. After 15min exposure, the highest levels of cell inactivation were obtained through the Cu/CLI and the Cu/GAC against E. coli, 100.0 and 98.24%, respectively. However, for S. aureus and yeast cell inactivation, all Cu2+- and Zn2+-activated sorbents proved to be unsatisfactory. A characterization of the sorbents was performed by X-ray diffraction (XRD), X-ray photo electron spectroscopy (XPS), and field emission scanning electron microscopy (FE-SEM). A concentration of the adsorbed and released ions was determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and mass spectrometry (ICP-MS). The results showed that the antimicrobial performance of the activated sorbents depended on the surface characteristics of the material, which itself designates the distribution and the bioavailability of the activating agent.
Collapse
Affiliation(s)
- Maja B Đolić
- Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia.
| | | | - Svetlana B Štrbac
- ICTM-Institute of Electrochemistry, University of Belgrade, Njegoševa 12, 11001 Belgrade, Serbia
| | - Suzana I Dimitrijević
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Miodrag N Mitrić
- Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia
| | - Antonije E Onjia
- Vinča Institute of Nuclear Sciences, University of Belgrade, P. O. Box 522, 11001 Belgrade, Serbia
| | - Ljubinka V Rajaković
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| |
Collapse
|
20
|
Synthesis and Investigation of Antimicrobial Activity of Cu2O Nanoparticles/Zeolite. ACTA ACUST UNITED AC 2017. [DOI: 10.1155/2017/7056864] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cuprous oxide (Cu2O) nanoparticles in zeolite A were synthesized by two steps: (i) ion-exchange of copper ions into the zeolite and (ii) reduction of copper ions in cages of the zeolite by hydrazine hydrate in base medium. The Cu2O nanoparticles/zeolite product was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and energy-dispersive X-ray spectroscopy (EDX). The particle size of Cu2O nanoparticles was of 40 nm. The antibacterial activity of the as-synthesized Cu2O nanoparticles/zeolite against Escherichia coli was also investigated. Cu2O NPs/zeolite product can be favorably produced on large scale for water treatment and agricultural application as antimicrobial agent.
Collapse
|
21
|
Investigation of thermal, mechanical behavior, and contact angle measurements of poly(vinyl chloride) based nanocomposite films containing coated CuO nanoparticles with thiamine. Polym Bull (Berl) 2016. [DOI: 10.1007/s00289-016-1891-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Effect of zinc oxide amounts on the properties and antibacterial activities of zeolite/zinc oxide nanocomposite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:505-511. [PMID: 27524047 DOI: 10.1016/j.msec.2016.06.028] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/05/2016] [Accepted: 06/07/2016] [Indexed: 11/22/2022]
Abstract
Nanocomposites of zinc oxide loaded on a zeolite (Zeolite/ZnO NCs) were prepared using co-precipitation method. The ratio effect of ZnO wt.% to the Zeolite on the antibacterial activities was investigated. Various techniques were used for the nanocomposite characterization, including UV-vis, FTIR, XRD, EDX, FESEM and TEM. XRD patterns showed that ZnO peak intensity increased while the intensities of Zeolite peaks decreased. TEM images indicated a good distribution of ZnO-NPs onto the Zeolite framework and the cubic structure of the zeolite was maintained. The average particle size of ZnO-nanoparticles loaded on the surface of the Zeolite was in the range of 1-10nm. Moreover, Zeolite/ZnO NCs showed noticeable antibacterial activities against the tested bacteria; Gram- positive and Gram- negative bacteria, under normal light. The efficiency of the antibacterial increased with increasing the wt.% from 3 to 8 of ZnO NPs, and it reached 87% against Escherichia coli E266.
Collapse
|
23
|
Li YL, Deletic A, McCarthy DT. Removal of E. coli from urban stormwater using antimicrobial-modified filter media. JOURNAL OF HAZARDOUS MATERIALS 2014; 271:73-81. [PMID: 24607527 DOI: 10.1016/j.jhazmat.2014.01.057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/15/2014] [Accepted: 01/26/2014] [Indexed: 06/03/2023]
Abstract
Stormwater filters featuring traditional sand filter media cannot reliably treat indicator bacteria for stormwater harvesting. In this work, copper-modified zeolite and granular activated carbon (GAC) were prepared through Cu(2+) impregnation and in situ Cu(OH)2 precipitation. Their antibacterial properties and stability in natural stormwater were studied in gravity-fed columns for 24 weeks, under typical stormwater operational conditions. 11 types of other filter media, prepared using zinc, iron, titanium and quaternary ammonium salts as antibacterial agents, were tested in parallel by way of comparison. Cu(2+)-immobilised zeolite and Cu(OH)2-coated GAC yielded an estimated 2-log reduction of E. coli within 40 min with the presence of other native microbial communities in natural stormwater. Even at high flow velocity (effective contact time of 4.5 min), both media demonstrated 0.8 log removal. Both media and Cu(2+)-treated GAC showed effective inactivation of the removed E. coli during dry periods. Copper leaching from Cu(OH)2-coated GAC was found to be below the NHMRC specified drinking water standard, while that from Cu(2+)-immobilised zeolite varied with the salinity in stormwater. These findings could provide useful information for further development of passive stormwater harvesting systems.
Collapse
Affiliation(s)
- Ya L Li
- Environmental and Public Health Microbiology Lab (EPHM LAB), Monash Water for Liveability, Department of Civil Engineering, Monash University, Melbourne, Vic 3800, Australia; CRC for Water Sensitive Cities, Melbourne, Vic 3800, Australia.
| | - Ana Deletic
- Environmental and Public Health Microbiology Lab (EPHM LAB), Monash Water for Liveability, Department of Civil Engineering, Monash University, Melbourne, Vic 3800, Australia; CRC for Water Sensitive Cities, Melbourne, Vic 3800, Australia.
| | - David T McCarthy
- Environmental and Public Health Microbiology Lab (EPHM LAB), Monash Water for Liveability, Department of Civil Engineering, Monash University, Melbourne, Vic 3800, Australia; CRC for Water Sensitive Cities, Melbourne, Vic 3800, Australia.
| |
Collapse
|
24
|
Structural properties of nickel hydroxide/oxyhydroxide and oxide nanoparticles obtained by microwave-assisted oxidation technique. POWDER TECHNOL 2013. [DOI: 10.1016/j.powtec.2012.12.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|