1
|
Gaur J, Kumar S, Zineddine M, Kaur H, Pal M, Bala K, Kumar V, Lotey GS, Musa M, El Outassi O. CTAB-crafted ZnO nanostructures for environmental remediation and pathogen control. Sci Rep 2024; 14:20561. [PMID: 39232017 PMCID: PMC11375032 DOI: 10.1038/s41598-024-65783-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/24/2024] [Indexed: 09/06/2024] Open
Abstract
This study addresses the critical need for efficient and sustainable methods to tackle organic pollutants and microbial contamination in water. The present work aim was to investigate the potential of multi-structured zinc oxide nanoparticles (ZnO NPs) for the combined photocatalytic degradation of organic pollutants and antimicrobial activity. A unique fusion of precipitation-cum-hydrothermal approaches was precisely employed to synthesize the ZnO NPs, resulting in remarkable outcomes. The synthesized CTAB/ZnO NPs demonstrated exceptional properties: they were multi-structured and crystalline with a size of 40 nm and possessed a narrow band gap energy of 2.82 eV, enhancing light absorption for photocatalysis. These nanoparticles achieved an impressive degradation efficiency of 91.75% for Reactive Blue-81 dye within 105 min under UV irradiation. Furthermore, their photocatalytic performance metrics were outstanding, including a quantum yield of 1.73 × 10-4 Φ, a kinetic reaction rate of 3.89 × 102 µmol g-1 h-1, a space-time yield of 8.64 × 10-6 molecules photon-1 mg-1, and a figure-of-merit of 1.03 × 10-9 mol L J-1 g-1 h-1. Notably, the energy consumption was low at 1.73 × 10-4 J mol-1, compared to other systems. Additionally, the ZnO NPs exhibited effective antimicrobial activity against S. aureus and P. aeruginosa. This research underscores the potential of tailored ZnO NPs as a versatile solution for addressing both organic pollution and microbial contamination in water treatment processes. The low energy consumption further enhances its attractiveness as a sustainable solution.
Collapse
Affiliation(s)
- Jyoti Gaur
- School of Basic and Applied Sciences, RIMT University, Mandi Gobindgarh, 147301, India
| | - Sanjeev Kumar
- Department of Physics, Chandigarh University, Gharuan Mohali, 140413, India.
| | | | - Harpreet Kaur
- Department of Physics, Chandigarh University, Gharuan Mohali, 140413, India
| | - Mohinder Pal
- School of Basic and Applied Sciences, RIMT University, Mandi Gobindgarh, 147301, India
| | - Kanchan Bala
- Department of Chemistry, Government Mohindra College, Patiala, 147001, Punjab, India
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), Sector 81, SAS Nagar, Mohali, 140306, Punjab, India
| | - Gurmeet Singh Lotey
- Department of Physics, Indiana University Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202, USA
| | | | - Omar El Outassi
- Materials and Modelling Laboratory, Department of Physics Faculty of Sciences Meknes, Moulay Ismail University, Meknes, Morocco
| |
Collapse
|
2
|
Almoneef MM, Awad MA, Aldosari HH, Hendi AA, Aldehish HA, Merghani NM, Alshammari SG. Exploring the multi-faceted potential: Synthesized ZnO nanostructure - Characterization, photocatalysis, and crucial biomedical applications. Heliyon 2024; 10:e32714. [PMID: 39022102 PMCID: PMC11252658 DOI: 10.1016/j.heliyon.2024.e32714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
This research describes the methodology for synthesizing zinc oxide nanoparticles (ZnO-NPs). It demonstrates a unique, cost-effective, and non-toxic chemical technique for producing ZnO-NPs using the precipitation method with NaOH as reducing and capping agents. The formed nanoparticles have been characterized and analyzed using numerous techniques such as; Fluorescence emission spectroscopy (FL), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray Spectroscopy (EDX), ultraviolet-visible optical absorption (UV-Vis), Fourier transform infrared spectroscopy (FTIR), and Thermal gravimetric analysis (TGA). Also, the analytical technique X-ray diffraction studies has been used which showed that the ZnO-NPs had a Wurtzite hexagonal crystal structure with an average crystallite size of 34.27 nm. The form and the size of the synthesized ZnO-NPs have been seen in SEM and TEM photographs. Using J-image, particle size has been obtained at 13.33 nm, and the grain boundaries were all approximately spherical. Peaks in the FT-IR spectrum of the NPs indicate the presence of carboxylate (COO) and hydroxyl (O-H) functional groups. According to these findings, Zn interstitial defects are responsible for the 380 nm emission peak. Since EDX could not identify any impurities below the detection threshold, we may be sure that Zn and O are the principal components of the synthesized sample. ZnO-NPs cause an absorption band at 350.34 nm in the UV-Vis spectrum and a band gap of 3.24 eV. The catalytic activity of the synthesized ZnO nanoparticles (NPs) was evaluated by investigating their effectiveness in degrading crystal violet (CV) and methylene blue (MB) dyes, along with assessing the degradation rates. The results demonstrated a high degradation efficiency, with ZnO NPs achieving approximately 96.72 % degradation for CV and 97.169 % for MB dyes, underscoring their remarkable efficacy in the degradation process. As for antimicrobial activity assessment, the results revealed that the ZnO-NPs had negligible impact on Gram-negative bacteria, whereas they exhibited a discernible effect on Gram-positive bacteria. Additionally, it showed anti-cancer potential against colon (SW480), breast (MDA-231), and cervix (HELA) lines cells as seen by (MTT) assay. Hence, due to its simplified processes and cheaper chemicals, our synthesis technique may use in industrial settings for various applications.
Collapse
Affiliation(s)
- Maha M. Almoneef
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Manal A. Awad
- King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Haia H. Aldosari
- Department of Physics, College of Science, Shaqra University, P.O. Box 5701, Shaqra 11961, Saudi Arabia
| | - Awatif A. Hendi
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Horiah A. Aldehish
- Department of Botany and Microbiology, Faculty of Science, King Saud University, Riyadh, 11459, Saudi Arabia
| | - Nada M. Merghani
- Central Research Laboratory, Vice Rectorate for Studies and Scientific Research, King Saud University, Riyadh 11451, Saudi Arabia
| | - Saad G. Alshammari
- Department of Chemistry, College of Science, King Saud University, P. O. 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Alaizeri ZM, Alhadlaq HA, Aldawood S, Abduh NAY. Green synthesis of ZnO-TiO 2/RGO nanocomposites using Senna surattensis extract: a novel approach for enhanced anticancer efficacy and biocompatibility. RSC Adv 2024; 14:16685-16695. [PMID: 38784428 PMCID: PMC11110525 DOI: 10.1039/d4ra01634c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
The purpose of the present study is to enhance the anticancer and biocompatibility performance of TiO2 NPs, ZnO NPs, ZnO-TiO2 (NCs), and ZnO-TiO2/reduced graphene oxide (RGO) NCs against two types of human cancer (HCT116) and normal (HUVCE) cells. A novel procedure for synthesizing ZnO-TiO2/RGO NCs has been developed using Senna surattensis extract. The improved physicochemical properties of the obtained samples were investigated using different techniques such as XRD, TEM, SEM, XPS, FTIR, DLS and UV-visible spectroscopy. XRD results showed that the addition of ZnO and RGO sheets affects the crystal structure and phase of TiO2 NPs. SEM and TEM images displayed that the TiO2 NPs and ZnO NPs were small with uniform spherical morphology in the prepared ZnO-TiO2/RGO NCs. Besides, it is shown that ZnO-TiO2 NCs anchored onto the surface of RGO sheets with a particle size of 14.80 ± 0.5 nm. XPS data confirmed the surface chemical composition and oxidation states of ZnO-TiO2/RGO NCs. Functional groups of prepared NPs and NCs were determined using FTIR spectroscopy. DLS data confirmed that the addition of ZnO and RGO sheets improves the negative surface charge of the prepared pure TiO2 NPs (-22.51 mV), ZnO NPs (-18.27 mV), ZnO-TiO2 NCs (-30.20 mV), and ZnO-TiO2/RGO NCs (-33.77 mV). Optical analysis exhibited that the bandgap energies of TiO2 NPs (3.30 eV), ZnO NPs (3.33 eV), ZnO-TiO2 NCs (3.03 eV), and ZnO-TiO2/RGO NCs (2.78 eV) were further enhanced by adding ZnO NPs and RGO sheets. This indicates that the synthesized samples can be applied to cancer therapy and environmental remediation. The biological data demonstrated that the produced ZnO-TiO2/RGO NCs show a more cytotoxic effect on HCT116 cells compared to pure TiO2 NPs and ZnO-TiO2 NCs. On the other hand, these NCs displayed the lowest level of toxicity towards normal HUVCE cells. These results indicate that the ZnO-TiO2/RGO NCs have strong toxicity against HCT116 cells and are compatible with normal cells. Our results show that the plant extract enhanced the physicochemical properties of NPs and NCs compared with the traditional chemical methods for synthesis. This study could open new avenues for developing more effective and targeted cancer treatments.
Collapse
Affiliation(s)
- ZabnAllah M Alaizeri
- Department of Physics and Astronomy, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Hisham A Alhadlaq
- Department of Physics and Astronomy, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Saad Aldawood
- Department of Physics and Astronomy, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Naaser A Y Abduh
- Department of Chemistry, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| |
Collapse
|
4
|
Roberts N, Raeisi Kheirabadi N, Tsompanas MA, Chiolerio A, Crepaldi M, Adamatzky A. Logical circuits in colloids. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231939. [PMID: 39076794 PMCID: PMC11285612 DOI: 10.1098/rsos.231939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/01/2024] [Accepted: 03/13/2024] [Indexed: 07/31/2024]
Abstract
Colloid-based computing devices offer remarkable fault tolerance and adaptability to varying environmental conditions due to their amorphous structure. An intriguing observation is that a colloidal suspension of ZnO nanoparticles in dimethylsulfoxide (DMSO) exhibits reconfiguration when exposed to electrical stimulation and produces spikes of electrical potential in response. This study presents a novel laboratory prototype of a ZnO colloidal computer, showcasing its capability to implement various Boolean functions featuring two, four and eight inputs. During our experiments, we input binary strings into the colloid mixture, where a logical 'True' state is represented by an impulse of an electrical potential. In contrast, the absence of the electrical impulse denotes a logical 'False' state. The electrical responses of the colloid mixture are recorded, allowing us to extract truth tables from the recordings. Through this methodological approach, we demonstrate the successful implementation of a wide range of logical functions using colloidal mixtures. We provide detailed distributions of the logical functions discovered and offer speculation on the potential impacts of our findings on future and emerging unconventional computing technologies. This research highlights the exciting possibilities of colloid-based computing and paves the way for further advancements.
Collapse
Affiliation(s)
- Nic Roberts
- Unconventional Computing Laboratory, UWE, Bristol, UK
- Department of Engineering and Technology, University of Huddersfield, Huddersfield, UK
| | | | | | - Alessandro Chiolerio
- Unconventional Computing Laboratory, UWE, Bristol, UK
- Center for Bioinspired Soft Robotics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Marco Crepaldi
- Electronic Design Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | | |
Collapse
|
5
|
Bahrami R, Nikparto N, Gharibpour F, Pourhajibagher M, Bahador A. The effects of antimicrobial photocatalytic nanoparticles on the flexural strength of orthodontic acrylic resins: A systematic review and meta-analysis. Photodiagnosis Photodyn Ther 2024; 46:104021. [PMID: 38401821 DOI: 10.1016/j.pdpdt.2024.104021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/27/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND/PURPOSE Orthodontic acrylic resins containing antimicrobial photocatalytic nanoparticles aims to reduce oral lesions including denture stomatitis and white spot lesions but they should not imperil its mechanical properties. This systematic review was done to evaluate the effect of various photocatalytic nanoparticles on the flexural strength (FS) of acrylic resins. MATERIALS AND METHODS We systematically searched the PubMed/Medline, Cochrane Library, and Scopus databases from January 2018 to October 2023. The review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and the quality of the studies was evaluated using the QUIN tool, which is specifically designed to assess the risk of bias in vitro studies. RESULTS Following screening of 1016 initial records, 23 studies were deemed eligible for inclusion. The addition of photocatalytic nanoparticles, such as emodin (Emo), curcumin (Cur), Cur nisin (CurNis), zeolite/zinc oxide (Zeo/ZnO), and Ulva lactuca (U. lactuca), to acrylic resins resulted in a reduction in FS, with the extent of reduction dependent on the nanoparticle concentration. Specifically, the addition of Emo (≥0.5 %), Cur (≥0.5 %), CurNis (≥5 %), Zeo/ZnO (≥2), and U. lactuca (≥1 %) to acrylic resins significantly decreased FS. Conversely, the inclusion of ZnO and titanium dioxide (TiO2) in acrylic resins improved FS, but higher concentrations (≥5 % for TiO2) had a limited positive effect. CONCLUSION Our study supports the use of low concentrations of photocatalytic nanoparticles, such as ZnO (≤2 %), TiO2 (≤3 %), Emo (≤0.5 %), Cur (≤0.5 %), CurNis (≤5 %), and U. lactuca (≤1 %), in orthodontic acrylic resins without compromising FS.
Collapse
Affiliation(s)
- Rashin Bahrami
- Dental Sciences Research Center, Department of Orthodontics, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | - Nariman Nikparto
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Fateme Gharibpour
- Dental Sciences Research Center, Department of Orthodontics, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran.
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Bumbudsanpharoke N, Nurhadi RP, Chongcharoenyanon B, Kwon S, Harnkarnsujarit N, Ko S. Effect of migration on the functionality of zinc oxide nanoparticle in polybutylene adipate terephthalate/thermoplastic starch films: A food simulant study. Int J Biol Macromol 2024; 263:130232. [PMID: 38373561 DOI: 10.1016/j.ijbiomac.2024.130232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
Active packaging relies on controlled release of antimicrobials for food protection; however, uncontrolled migration due to environmental factors poses safety and functionality challenges. This study investigated the stability of zinc oxide nanoparticle (ZnONP) in poly(butylene-adipate-co-terephthalate)/thermoplastic starch (PBAT/TPS) biopolymer film for active food packaging applications. While incorporating ZnONP significantly enhanced the properties and active functionalities (UV-light blocking, antimicrobial activity) of PBAT/TPS film, food simulants posed significant stability challenges. Notably, exposure to 3 % acetic acid (acidic food simulant) triggered complete detachment and dissolution of ZnONPs from the film surface, leading to pore formation and subsequent internal ZnO dissolution. This resulted in dramatic alterations to the bionanocomposite films, including increased opacity, water vapor permeability, and decreased thermal stability, mechanical properties, and active functionalities. In contrast, 10 % ethanol (aqueous food simulant) had minimal impact, suggesting higher ZnO stability in neutral environments. Importantly, ZnO migration analysis revealed thresholds for safe application: 1 % ZnONP for acidic food contact and up to 5 % for aqueous foodstuffs. These findings highlight the critical role of environmental factors in ZnONP stability and emphasize the need for strategic optimization of ZnO content for achieving both functionality and safety in active biopolymer packaging.
Collapse
Affiliation(s)
- Nattinee Bumbudsanpharoke
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatujak, Bangkok 10900, Thailand.
| | - Rineta Pertiwi Nurhadi
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatujak, Bangkok 10900, Thailand.
| | - Busarin Chongcharoenyanon
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatujak, Bangkok 10900, Thailand.
| | - Seongyoung Kwon
- Laboratory of Nano-Enabled Packaging and Safety, Department of Packaging, Yonsei University 1 Yonseidaegil, Wonju-si, Gangwon-do 26493, Republic of Korea.
| | - Nathdanai Harnkarnsujarit
- Department of Packaging and Materials Technology, Faculty of Agro-Industry, Kasetsart University, 50 Ngam Wong Wan Rd., Latyao, Chatujak, Bangkok 10900, Thailand.
| | - Seonghyuk Ko
- Laboratory of Nano-Enabled Packaging and Safety, Department of Packaging, Yonsei University 1 Yonseidaegil, Wonju-si, Gangwon-do 26493, Republic of Korea.
| |
Collapse
|
7
|
Ashrafi M, Amini M, Seidi F. Synthesis of Cu 3Fe 4V 6O 24 Nanoparticles to Produce 1,2,3-Triazoles by Azide-Alkyne Cycloaddition Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5195-5204. [PMID: 38418460 DOI: 10.1021/acs.langmuir.3c03389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
This paper presents the fabrication of novel Cu3Fe4V6O24 nanoparticles (NPs) via a facile sol-gel method as efficient nanocatalysts (NCs) to produce azide-alkyne 1,3-dipolar cycloaddition compounds. The effect of the calcination time on the formation of NPs was investigated. The as-prepared NPs were characterized using X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), electron-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), and Brunauer-Emmett-Teller (BET) analyses. Cu3Fe4V6O24 NCs were applied to azide-alkyne 1,3-dipolar cycloaddition reactions. The effect of the catalyst loading, temperature, and time of reaction was optimized to improve the efficiency of the NC function by the response surface methodology-central composite design (RSM-CCD) method. In optimal conditions, the yield of the reaction was 96%. In addition, the effect of different solvents on the yield of the reaction was investigated. Moreover, Cu3Fe4V6O24 NPs efficiently catalyze different 1,2,3-triazoles in excellent yields.
Collapse
Affiliation(s)
- Mahdi Ashrafi
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran
| | - Mojtaba Amini
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
8
|
Alarfaj NA, Alshehri EM, Al-Tamimi SA, El-Tohamy MF. Plant extract mediated synthesis of ZnO and CeO 2 nanoparticles for spectrofluorometric assay of omeprazole and domperidone in pharmaceuticals. Heliyon 2024; 10:e26164. [PMID: 38390119 PMCID: PMC10882036 DOI: 10.1016/j.heliyon.2024.e26164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
The current research proposed a highly sensitive and selective spectrofluorometric approach for the assay of gastrointestinal medications omeprazole (OMZ) and domperidone (DOM). Green synthesis of metal oxide nanoparticles such as zinc oxide (ZnONPs) and cerium oxide (CeO2NPs) using Pimpinella anisum and Syzygium aromaticum extract was used as fluorescence emission catalysts for the determination of OMZ and DOM. Due to their unique optical properties, nanoparticles (NPs) form the basis for spectrofluorimetric quantification of the selected drugs. The detection studies were performed under λex/λem 350/450 nm and 284/392 nm for OMZ and DOM in the presence of ZnONPs and CeO2NPs, respectively. Under ideal conditions, fluorescence intensities (FI) were linearly with correlation coefficient (r = 0.999) over concentration ranges of 0.1-100 and 0.01-200 μg mL-1 for OMZ, 0.01-100 and 0.01-300 n g mL-1 for DOM in the presence of ZnONPs and CeO2NPs, respectively. Method validation was carried out to guarantee the accuracy, suitability, and precision of the proposed fluorescence (FL) systems for the determination of OMZ and DOM. Analytical method guidelines and requirements were followed. The designed procedure was used effectively to identify the determined drugs in both their pure and commercial versions.
Collapse
Affiliation(s)
- Nawal A Alarfaj
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Eman M Alshehri
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Salma A Al-Tamimi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Maha F El-Tohamy
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| |
Collapse
|
9
|
Voorhis C, González-Benito J, Kramar A. "Nano in Nano"-Incorporation of ZnO Nanoparticles into Cellulose Acetate-Poly(Ethylene Oxide) Composite Nanofibers Using Solution Blow Spinning. Polymers (Basel) 2024; 16:341. [PMID: 38337230 DOI: 10.3390/polym16030341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
In this work, the preparation and characterization of composites from cellulose acetate (CA)-poly(ethylene oxide) (PEO) nanofibers (NFs) with incorporated zinc oxide nanoparticles (ZnO-NPs) using solution blow spinning (SBS) is reported. CA-PEO nanofibers were produced by spinning solution that contained a higher CA-to-PEO ratio and lower (equal) CA-to-PEO ratio. Nanoparticles were added to comprise 2.5% and 5% of the solution, calculated on the weight of the polymers. To have better control of the SBS processing conditions, characterization of the spinning suspensions is carried out, which reveals a decrease in viscosity (two- to eightfold) upon the addition of NPs. It is observed that this variation of viscosity does not significantly affect the mean diameters of nanofibers, but does affect the mode of the nanofibers' size distribution, whereby lower viscosity provides thinner fibers. FESEM-EDS confirms ZnO NP encapsulation into nanofibers, specifically into the CA component based on UV-vis studies, since the release of ZnO is not detected for up to 5 days in deionized water, despite the significant swelling of the material and accompanied dissolution of water-soluble PEO. Upon the dissolution of CA nanofibers into acetone, immediate release of ZnO is detected, both visually and by spectrometer. ATR-FTIR studies reveal interaction of ZnO with the CA component of composite nanofibers. As ZnO nanoparticles are known for their bioactivity, it can be concluded that these CA-PEO-ZnO composites are good candidates to be used in filtration membranes, with no loss of incorporated ZnO NPs or their release into an environment.
Collapse
Affiliation(s)
- Caroline Voorhis
- School of Science, Marist College, 3399 North Road, Poughkeepsie, NY 12601, USA
- Department of Materials Science and Engineering and Chemical Engineering, Institute of Chemistry and Materials Álvaro Alonso Barba, IQMAAB, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain
| | - Javier González-Benito
- Department of Materials Science and Engineering and Chemical Engineering, Institute of Chemistry and Materials Álvaro Alonso Barba, IQMAAB, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain
| | - Ana Kramar
- Department of Materials Science and Engineering and Chemical Engineering, Institute of Chemistry and Materials Álvaro Alonso Barba, IQMAAB, Universidad Carlos III de Madrid, Avda. Universidad 30, 28911 Leganés, Spain
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), Calle Catedrático Agustín Escardino Benlloch 7, 46980 Paterna, Spain
| |
Collapse
|
10
|
Perumal P, Sathakkathulla NA, Kumaran K, Ravikumar R, Selvaraj JJ, Nagendran V, Gurusamy M, Shaik N, Gnanavadivel Prabhakaran S, Suruli Palanichamy V, Ganesan V, Thiraviam PP, Gunalan S, Rathinasamy S. Green synthesis of zinc oxide nanoparticles using aqueous extract of shilajit and their anticancer activity against HeLa cells. Sci Rep 2024; 14:2204. [PMID: 38273022 PMCID: PMC10810832 DOI: 10.1038/s41598-024-52217-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
In the present study, ZnO nanoparticles have been synthesized using an aqueous extract of shilajit. The nanoparticles were characterized using different techniques such as UV (ultraviolet-visible spectrophotometer), FTIR (Fourier transform infrared), XRD (X-ray diffraction), particle size analysis, SEM (scanning electron microscope) and EDAX (Energy-dispersive X-ray) analysis. The UV absorption peak at 422.40 nm was observed for ZnO nanoparticles. SEM analysis showed the shape of nanoparticles to be spherical, FTIR spectrum confirmed the presence of zinc atoms, particle size analysis showed the nanoparticle size, EDAX confirmed the purity of ZnO nanoparticles whereas XRD pattern similar to that of JCPDS card for ZnO confirmed the presence of pure ZnO nanoparticles. The in vitro anticancer activity of ZnO nanoparticles against the HeLa cell line showed the IC50 value of 38.60 μg/mL compared to reference standard cisplatin. This finding confirms that ZnO nanoparticles from shilajit extract have potent cytotoxic effect on human cervical cancer cell lines.
Collapse
Affiliation(s)
- Parthasarathi Perumal
- Department of Molecular and Cell Biology Lab, Greensmed Labs, Thoraipakkam, Chennai, 600097, India
| | | | - Kalaivani Kumaran
- Department of Pharmaceutical Chemistry, EGS Pillay College of Pharmacy, Nagapattinam, 611002, India
| | - Ramaladevi Ravikumar
- Department of Pharmaceutical Chemistry, EGS Pillay College of Pharmacy, Nagapattinam, 611002, India
| | - Justin Jayaraj Selvaraj
- Department of Pharmaceutical Chemistry, EGS Pillay College of Pharmacy, Nagapattinam, 611002, India
| | - Vijayakumar Nagendran
- Department of Pharmaceutical Chemistry, EGS Pillay College of Pharmacy, Nagapattinam, 611002, India
| | - Mariappan Gurusamy
- Department of Pharmaceutics, St. Mary's College of Pharmacy, Secunderabad, Telangana, 500025, India
| | - Naazneen Shaik
- Department of Pharmaceutics, St. Mary's College of Pharmacy, Secunderabad, Telangana, 500025, India
| | | | - Vinothkumar Suruli Palanichamy
- Department of Pharmaceutical Chemistry, Pannai College of Pharmacy (Affiliated to the Tamil Nadu Dr. M.G.R. Medical University, Chennai), Dindigul, 624005, India
| | - Vellaichamy Ganesan
- Department of Pharmaceutical Chemistry, Pannai College of Pharmacy (Affiliated to the Tamil Nadu Dr. M.G.R. Medical University, Chennai), Dindigul, 624005, India
| | | | - Seshan Gunalan
- Centre of Advanced Study in Crystallography and Biophysics, Guindy Campus, University of Madras, Chennai, 600025, India
| | - Suresh Rathinasamy
- Department of Molecular and Cell Biology Lab, Greensmed Labs, Thoraipakkam, Chennai, 600097, India.
| |
Collapse
|
11
|
Kambale EK, Domingues I, Zhang W, Marotti V, Chen C, Hughes K, Quetin-Leclercq J, Memvanga PB, Beloqui A. "Green" synthesized versus chemically synthesized zinc oxide nanoparticles: In vivo antihyperglycemic activity and pharmacokinetics. Int J Pharm 2024; 650:123701. [PMID: 38081556 DOI: 10.1016/j.ijpharm.2023.123701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 01/08/2024]
Abstract
Zinc is one of the most studied trace elements, commonly used as supplement in diabetes treatment. By its involvement in the synthesis, secretion of insulin, promotion of insulin sensitivity and its multiple enzymatic functions it is known to contribute to reduce hyperglycemia. Researchers have shown that zinc administered under the form of zinc oxide nanoparticles (ZnONPs) is more effective than under its ionic form. Studies evaluating the antihyperglycemic activity of these nanocarriers include both ZnONPs synthesised using plants (i.e. green synthesized) or chemically synthesized. The present work aims to compare green synthesized ZnONPs with the marketed chemically synthesized ones. Green ZnONPs were synthesized using the aqueous extract of the stem bark of the medicinal plant Panda oleosa and zinc nitrate hexahydrate. Both nanocarriers were compared in terms of optical properties, morphology, composition, chemical functions, resistance to oxidation, in vivo antihyperglycemic activity via oral glucose tolerance test (OGTT) and pharmacokinetics in relation to zinc in C57BL/6J mice. A UV absorption peak was observed at 354 nm and 374 nm for the green and marketed ZnONPs, respectively. The shape and hydrodynamic diameters were anisotropic and of 228.8 ± 3.0 nm for the green ZnONPs and spherical and of 225.6 ± 0.9 nm for the marketed ZnONPs. Phenolic compounds accounted for 2.58 ± 0.04% of the green ZnONPs and allowed them to be more stable and unaffected by an oxidizing agent during the experiment, while the marketed chemically synthesized ZnONPs aggregated with or without contact with an oxidizing agent. No significant differences were observed on the amounts of zinc absorbed when comparing green ZnONPs, chemically synthesized ZnONPs and zinc sulfate in a pharmacokinetics study in normoglycemic mice. When evaluating the in vivo hypoglycemic activity of the nanocarriers in obese/diabetic mice, green synthesized ZnONPs displayed a significant hypoglycemic effect compared with the chemically synthesized nanoparticles following an OGTT. Altogether, these data indicate that phytocompounds, as catechin derivatives and polyphenols, attached to the green synthesized ZnONPs' surface, could contribute to their hypoglycemic activity. The comparison thus demonstrated that green synthesized ZnONPs are significantly more efficient than chemically ones at reducing hyperglycemia regardless of their absorption.
Collapse
Affiliation(s)
- Espoir K Kambale
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, B.P. 212, Kinshasa XI, Democratic Republic of the Congo
| | - Inês Domingues
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium
| | - Wunan Zhang
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium
| | - Valentina Marotti
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium
| | - Cheng Chen
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium
| | - Kristelle Hughes
- Pharmacognosy Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 72, B1.72.03, 1200 Brussels, Belgium
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 72, B1.72.03, 1200 Brussels, Belgium
| | - Patrick B Memvanga
- Laboratory of Pharmaceutics and Phytopharmaceutical Drug Development, Faculty of Pharmaceutical Sciences, University of Kinshasa, B.P. 212, Kinshasa XI, Democratic Republic of the Congo; Centre de Recherche et d'Innovation Technologique en Environnement et en Sciences de la Santé (CRITESS), University of Kinshasa, B.P. 212, Kinshasa XI, Democratic Republic of the Congo
| | - Ana Beloqui
- Advanced Drug Delivery and Biomaterials Group, Louvain Drug Research Institute, UCLouvain, Université catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; WEL Research Institute, Avenue Pasteur 6, 1300 Wavre, Belgium.
| |
Collapse
|
12
|
Sivagami M, Asharani IV. Sunlight-assisted photocatalytic degradation of orange G dye using cost-effective zinc oxide nanoparticles. Photochem Photobiol Sci 2023; 22:2445-2462. [PMID: 37493919 DOI: 10.1007/s43630-023-00462-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
We have used an environmentally friendly approach to produce zinc oxide nanoparticles from an aqueous extract of Cucumis maderaspatanus L. leaves (Cm-ZnO NPs). Leaf extract phytoconstituents work as both reducing and stabilising agents. Calcination at 300, 500, 700, and 800 °C allowed fine-tuning of the bandgap of synthesised Cm-ZnO NPs, which has been well-characterized. The XRD analysis confirmed the crystalline nature of the Cm-ZnO NPs. The Cm-ZnO NPs were found to be spherical and averaged 8.6 nm in size, as determined by transmission electron microscopy and field emission scanning electron microscopy. TGA testing validated the nanoparticles' resilience to heat. The zeta potential measurements showed that the Cm-ZnO NPs were stable. By analysing the sorption of nitrogen onto the nanoparticles, we were able to calculate their surface area, which came in at 19 m2/g. The degradation of orange G (OG) dye in the presence of hydrogen peroxide (H2O2) served as an oxidizing agent and measured the photocatalytic efficiency of the Cm-ZnO NPs. In addition, the effect of varying dye, H2O2, and catalyst concentrations on photodegradation was studied. The rate of reactions was computed. In conclusion, the obtained data demonstrated that the produced Cm-ZnO NPs can be employed as a cost-efficient catalyst for textile industrial effluent treatment.
Collapse
Affiliation(s)
- M Sivagami
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - I V Asharani
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
13
|
Allogmani AS, Mohamed RM, Hasanin MS. Green, Eco-Friendly, Highly Biocompatible and Bioactive Nanocomposite-Based Biopolymers Loaded with ZnO@Fe 3O 4 Nanoparticles. Polymers (Basel) 2023; 15:3641. [PMID: 37688268 PMCID: PMC10490337 DOI: 10.3390/polym15173641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/27/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Biocompatibility is a major concern for promising multifunctional bioactive materials. Unfortunately, bioactive materials lack biocompatibility in some respects, so active ingredient formulations are urgently needed. Bimetallic nanoparticles have demonstrated drawbacks in stabilized biocompatible formulations. This study examined the preparation of biomaterial-based multifunctional biopolymers via an eco-friendly formulation method using ultrasound. Bimetallic zinc oxide/iron oxide (magnetic form) nanoparticles (ZnO@Fe3O4NPs) were formulated using casein and starch as capping agents and stabilizers. The formulated nanocomposite was characterized using ultraviolet-visible spectroscopy (UV-vis), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HR-TEM). Herein, the formulated nanocomposite was shown to have a thermally stable nanostructure, and the bimetallic ZnO@Fe3O4 NPs were measured as 85 nm length and 13 nm width. Additionally, the biocompatibility test showed its excellent cytocompatibility with Wi 38 and Vero normal cell lines, with IC50 550 and 650 mg/mL, respectively. Moreover, the antimicrobial activity was noted against six pathogens that are represent to the most common pathogenic microbes, with the time required for killing of bacteria and unicellular fungi being 19 h and 61 h for filamentous fungi with remarket an excellent antioxidant activity.
Collapse
Affiliation(s)
- Ayed S. Allogmani
- University of Jeddah, College of Science and Arts at Khulis, Department of Biology, Jeddah, Saudi Arabia
| | - Roushdy M. Mohamed
- University of Jeddah, College of Science and Arts at Khulis, Department of Biology, Jeddah, Saudi Arabia
| | - Mohamed S. Hasanin
- Cellulose and Paper Department, National Research Centre, Dokki, Cairo 12622, Egypt
| |
Collapse
|
14
|
Taglieri G, Daniele V, Maurizio V, Merlin G, Siligardi C, Capron M, Mondelli C. New Eco-Friendly and Low-Energy Synthesis to Produce ZnO Nanoparticles for Real-World Scale Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2458. [PMID: 37686967 PMCID: PMC10490244 DOI: 10.3390/nano13172458] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
This paper presents an original and sustainable method for producing ZnO nanoparticles (NPs) in response to global challenges (low energy requirements, low environmental impact, short production times, and high production yield). The method is based on an ion exchange process between an anionic resin and an aqueous ZnCl2 solution; it operates in one step at room temperature/ambient pressure without the need for complex apparatus or purification steps. From the kinetics, we observed the formation of pure simonkolleite, a zinc-layered hydroxide salt (Zn5(OH)8Cl2·H2O), after only 5 min of reaction. This compound, used elsewhere as a ZnO precursor after calcination at high temperatures, here decomposes at room temperature into ZnO, allowing extraordinary savings of time and energy. Finally, in only 90 min, pure and crystalline ZnO NPs are obtained, with a production yield > 99%. Several types of aggregates resulting from the self-assembly of small hexagonal platelets (solid or hollow in shape) were observed. Using our revolutionary method, we produced almost 10 kg of ZnO NPs per week without any toxic waste, significantly reducing energy consumption; this method allows transferring the use of these unique NPs from the laboratory environment to the real world.
Collapse
Affiliation(s)
- Giuliana Taglieri
- Department of Industrial and Information Engineering and Economics, University of L’Aquila, Piazzale E. Pontieri 1, Monteluco di Roio, Roio Poggio, 67100 L’Aquila, AQ, Italy;
| | - Valeria Daniele
- Department of Industrial and Information Engineering and Economics, University of L’Aquila, Piazzale E. Pontieri 1, Monteluco di Roio, Roio Poggio, 67100 L’Aquila, AQ, Italy;
| | - Valentina Maurizio
- Department of Industrial and Information Engineering and Economics, University of L’Aquila, Piazzale E. Pontieri 1, Monteluco di Roio, Roio Poggio, 67100 L’Aquila, AQ, Italy;
| | - Gabriel Merlin
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, PD, Italy;
| | - Cristina Siligardi
- Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, MO, Italy;
| | - Marie Capron
- ESRF, 71 Avenue des Martyrs, 38042 Grenoble, CEDEX 9, France;
- Paternship for Soft Condensed Matter PSCM, 71 Avenue des Martyrs, 38042 Grenoble, CEDEX 9, France
| | - Claudia Mondelli
- CNR-IOM-OGG, Institut Laue Langevin, 71 Avenue des Martyrs, 38042 Grenoble, CEDEX 9, France;
| |
Collapse
|
15
|
Seghir BB, Hima M, Moulatti F, Sahraoui I, Ben Amor I, Zeghoud S, Hemmami H, Kouadri I, Ben Amor A, Messaoudi M, Ahmed S, Rebiai A, Pohl P. Exploring the Antibacterial Potential of Green-Synthesized MgO and ZnO Nanoparticles from Two Plant Root Extracts. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2425. [PMID: 37686933 PMCID: PMC10489724 DOI: 10.3390/nano13172425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
The green approach-based nanoparticle synthesis is considered a more cost-effective and ecologically responsible method of producing nanoparticles than other standard techniques. A major accomplishment in resolving these issues is the use of nanoparticles for environmental pollution remediation. This article describes a simple method for producing MgO and ZnO nanoparticles (NPs) using aqueous extracts of Zingiber officinale and Glycyrrhiza roots as the stabilizing and reducing agents, respectively. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersed X-ray (EDX) spectroscopy methods were used to characterize the biologically synthesized metal oxide nanoparticles (MO NPs). The XRD results showed that the mean crystallite sizes of synthesized ZnO and MgO NPs, which have excellent purity, are 12.35 nm and 4.83 nm, respectively. The spherical or elliptical shape of the synthesized NPs was confirmed by the SEM analysis. The antibacterial activity of the synthesized NPs against both Gram-negative and Gram-positive bacteria was thoroughly investigated. With a medium zone of inhibition of 7 to 10 mm, the as-synthesized MgO NPs and ZnO NPs demonstrated moderate antibacterial activity towards various bacterial strains.
Collapse
Affiliation(s)
- Bachir Ben Seghir
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria; (M.H.); (F.M.); (I.S.); (I.B.A.); (S.Z.); (H.H.); (A.B.A.)
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria; (I.K.); (A.R.)
- Laboratory of Industrial Analysis and Materials Engineering (LAGIM), University of 8 May 1945, P.O. Box 401, Guelma 24000, Algeria
| | - Meriem Hima
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria; (M.H.); (F.M.); (I.S.); (I.B.A.); (S.Z.); (H.H.); (A.B.A.)
| | - Fatima Moulatti
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria; (M.H.); (F.M.); (I.S.); (I.B.A.); (S.Z.); (H.H.); (A.B.A.)
| | - Ibtihal Sahraoui
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria; (M.H.); (F.M.); (I.S.); (I.B.A.); (S.Z.); (H.H.); (A.B.A.)
| | - Ilham Ben Amor
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria; (M.H.); (F.M.); (I.S.); (I.B.A.); (S.Z.); (H.H.); (A.B.A.)
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria; (I.K.); (A.R.)
| | - Soumeia Zeghoud
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria; (M.H.); (F.M.); (I.S.); (I.B.A.); (S.Z.); (H.H.); (A.B.A.)
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria; (I.K.); (A.R.)
| | - Hadia Hemmami
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria; (M.H.); (F.M.); (I.S.); (I.B.A.); (S.Z.); (H.H.); (A.B.A.)
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria; (I.K.); (A.R.)
| | - Imane Kouadri
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria; (I.K.); (A.R.)
- Laboratory of Industrial Analysis and Materials Engineering (LAGIM), University of 8 May 1945, P.O. Box 401, Guelma 24000, Algeria
- Department of Process Engineering, Faculty of Science and Technology, University of 8 May 1945, P.O. Box 401, Guelma 24000, Algeria
| | - Asma Ben Amor
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria; (M.H.); (F.M.); (I.S.); (I.B.A.); (S.Z.); (H.H.); (A.B.A.)
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria; (I.K.); (A.R.)
| | - Mohammed Messaoudi
- Nuclear Research Centre of Birine, P.O. Box 180, Ain Oussera 17200, Algeria;
- Laboratory of Applied Chemistry and Environment (LCAE), Department of Chemistry, Faculty of Exact Sciences, University of Hamma Lakhdar El Oued, B.P. 789, El Oued 39000, Algeria
| | - Shakeel Ahmed
- Department of Chemistry, Government Degree College Mendhar, Kashmir 185211, India;
- Higher Education Department, Government of Jammu and Kashmir, Srinagar 190001, India
- University Center for Research and Development (UCRD), Chandigarh University, Mohali 140413, India
| | - Abdelkrim Rebiai
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria; (I.K.); (A.R.)
- Laboratory of Applied Chemistry and Environment (LCAE), Department of Chemistry, Faculty of Exact Sciences, University of Hamma Lakhdar El Oued, B.P. 789, El Oued 39000, Algeria
| | - Pawel Pohl
- Department of Analytical Chemistry and Chemical Metallurgy, Faculty of Chemistry, University of Science and Technology, Wyspianskiego 27, 50-370 Wroclaw, Poland
| |
Collapse
|
16
|
Tryfon P, Sperdouli I, Adamakis IDS, Mourdikoudis S, Moustakas M, Dendrinou-Samara C. Impact of Coated Zinc Oxide Nanoparticles on Photosystem II of Tomato Plants. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5846. [PMID: 37687539 PMCID: PMC10488754 DOI: 10.3390/ma16175846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Abstract
Zinc oxide nanoparticles (ZnO NPs) have emerged as a prominent tool in agriculture. Since photosynthetic function is a significant measurement of phytotoxicity and an assessment tool prior to large-scale agricultural applications, the impact of engineered irregular-shaped ZnO NPs coated with oleylamine (ZnO@OAm NPs) were tested. The ZnO@OAm NPs (crystalline size 19 nm) were solvothermally prepared in the sole presence of oleylamine (OAm) and evaluated on tomato (Lycopersicon esculentum Mill.) photosystem II (PSII) photochemistry. Foliar-sprayed 15 mg L-1 ZnO@OAm NPs on tomato leaflets increased chlorophyll content that initiated a higher amount of light energy capture, which resulted in about a 20% increased electron transport rate (ETR) and a quantum yield of PSII photochemistry (ΦPSII) at the growth light (GL, 600 μmol photons m-2 s-1). However, the ZnO@OAm NPs caused a malfunction in the oxygen-evolving complex (OEC) of PSII, which resulted in photoinhibition and increased ROS accumulation. The ROS accumulation was due to the decreased photoprotective mechanism of non-photochemical quenching (NPQ) and to the donor-side photoinhibition. Despite ROS accumulation, ZnO@OAm NPs decreased the excess excitation energy of the PSII, indicating improved PSII efficiency. Therefore, synthesized ZnO@OAm NPs can potentially be used as photosynthetic biostimulants for enhancing crop yields after being tested on other plant species.
Collapse
Affiliation(s)
- Panagiota Tryfon
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization-Dimitra, 57001 Thessaloniki, Greece;
| | | | - Stefanos Mourdikoudis
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, UK;
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Catherine Dendrinou-Samara
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
17
|
Khamis M, Gouda GA, Nagiub AM. Biosynthesis approach of zinc oxide nanoparticles for aqueous phosphorous removal: physicochemical properties and antibacterial activities. BMC Chem 2023; 17:99. [PMID: 37587477 PMCID: PMC10428629 DOI: 10.1186/s13065-023-01012-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 08/01/2023] [Indexed: 08/18/2023] Open
Abstract
In this study, phosphorus (PO43--P) is removed from water samples using zinc oxide nanoparticles (ZnO NPs). These nanoparticles are produced easily, quickly, and sustainably using Onion extracts (Allium cepa) at an average crystallite size of 8.13 nm using the Debye-Scherrer equation in the hexagonal wurtzite phase. The characterization and investigation of bio-synthesis ZnO NPs were carried out. With an initial concentration of 250 mg/L of P, the effects of the adsorbent dose, pH, contact time, and temperature were examined. At pH = 3 and T = 300 K, ZnO NPs achieved the optimum sorption capacity of 84 mg/g, which was superior to many other adsorbents. The isothermal study was found to fit the Langmuir model at a monolayer capacity of 89.8 mg/g, and the kinetic study was found to follow the pseudo-second-order model. The adsorption process was verified to be endothermic and spontaneous by thermodynamic characteristics. As a result of their low cost as an adsorbent and their high metal absorption, ZnO NPs were found to be the most promising sorbent in this investigation and have the potential to be used as effective sorbents for the removal of P from aqueous solutions. The antimicrobial activity results showed that ZnO NPs concentration had greater antibacterial activity than conventional Cefotaxime, which was utilized as a positive control in the inhibitory zone. However, no inhibitory zone was visible in the controlled wells that had been supplemented with onion extract and DMSO.
Collapse
Affiliation(s)
- Mona Khamis
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Gamal A Gouda
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt.
| | - Adham M Nagiub
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| |
Collapse
|
18
|
Ghaffar S, Abbas A, Naeem-Ul-Hassan M, Assad N, Sher M, Ullah S, Alhazmi HA, Najmi A, Zoghebi K, Al Bratty M, Hanbashi A, Makeen HA, Amin HMA. Improved Photocatalytic and Antioxidant Activity of Olive Fruit Extract-Mediated ZnO Nanoparticles. Antioxidants (Basel) 2023; 12:1201. [PMID: 37371931 DOI: 10.3390/antiox12061201] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Photodegradation is an efficient strategy for the removal of organic pollutants from wastewater. Due to their distinct properties and extensive applications, semiconductor nanoparticles have emerged as promising photocatalysts. In this work, olive (Olea Europeae) fruit extract-based zinc oxide nanoparticles (ZnO@OFE NPs) were successfully biosynthesized using a one-pot sustainable method. The prepared ZnO NPs were systematically characterized using UV-Vis, FTIR, SEM, EDX and XRD and their photocatalytic and antioxidant activity was evaluated. SEM demonstrated the formation of spheroidal nanostructures (57 nm) of ZnO@OFE and the EDX analysis confirmed its composition. FTIR suggested the modification/capping of the NPs with functional groups of phytochemicals from the extract. The sharp XRD reflections revealed the crystalline nature of the pure ZnO NPs with the most stable hexagonal wurtzite phase. The photocatalytic activity of the synthesized catalysts was evaluated by measuring the degradation of methylene blue (MB) and methyl orange (MO) dyes under sunlight irradiation. Improved degradation efficiencies of 75% and 87% were achieved within only 180 min with photodegradation rate constant k of 0.008 and 0.013 min-1 for MB and MO, respectively. The mechanism of degradation was proposed. Additionally, ZnO@OFE NPs exhibited potent antioxidant activity against DPPH, hydroxyl, peroxide and superoxide radicals. Hence, ZnO@OFE NPs may have potential as a cost-effective and green photocatalyst for wastewater treatment.
Collapse
Affiliation(s)
- Sadia Ghaffar
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Azhar Abbas
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
- Department of Chemistry, Government Ambala Muslim Graduate College Sargodha, Sargodha 40100, Pakistan
| | | | - Nasir Assad
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Muhammad Sher
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Sami Ullah
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan
| | - Hassan A Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 82912, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 82912, Saudi Arabia
| | - Asim Najmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 82912, Saudi Arabia
| | - Khalid Zoghebi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 82912, Saudi Arabia
| | - Mohammed Al Bratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 82912, Saudi Arabia
| | - Ali Hanbashi
- Department of Pharmacology, College of Pharmacy, Jazan University, Jazan 82912, Saudi Arabia
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 82912, Saudi Arabia
| | - Hatem M A Amin
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
- Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
19
|
Kader DA, Rashid SO, Omer KM. Green nanocomposite: fabrication, characterization, and photocatalytic application of vitamin C adduct-conjugated ZnO nanoparticles. RSC Adv 2023; 13:9963-9977. [PMID: 37006348 PMCID: PMC10050948 DOI: 10.1039/d2ra06575d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/15/2023] [Indexed: 03/31/2023] Open
Abstract
Recently, the conjugation of metal oxide nanoparticles with organic moieties has attracted the attention of many researchers for various applications. In this research, the green and biodegradable vitamin C was employed in a facile and inexpensive procedure to synthesize the vitamin C adduct (3), which was then blended with green ZnONPs to fabricate a new composite category (ZnONPs@vitamin C adduct). The morphology and structural composition of the prepared ZnONPs and their composites were confirmed by several techniques: Fourier-transform infrared (FT-IR) spectroscopy, field-emission scanning electron microscopy (FE-SEM), UV-vis differential reflectance spectroscopy (DRS), energy dispersive X-ray (EDX) analysis, elemental mapping, X-ray diffraction (XRD) analysis, photoluminescence (PL) spectroscopy, and zeta potential measurements. The structural composition and conjugation strategies between the ZnONPs and vitamin C adduct were revealed by FT-IR spectroscopy. The experimental results for the ZnONPs showed that they possessed a nanocrystalline wurtzite structure with quasi-spherical particles with a polydisperse size ranging from 23 to 50 nm, while the particle size appeared greater in the FE-SEM images (band gap energy of 3.22 eV); after loading with the l-ascorbic acid adduct (3), the band gap energy dropped to 3.06 eV. Later, under solar light irradiation, the photocatalytic activities of both the synthesized ZnONPs@vitamin C adduct (4) and ZnONPs, including the stability, regeneration and reusability, catalyst amount, initial dye concentration, pH effect, and light source studies, were investigated in detail in the degradation of Congo red dye (CR). Furthermore, an extensive comparison between the fabricated ZnONPs, composite (4), and ZnONPs from previous studies was performed to gain insights to commercialize the catalyst (4). Under optimum conditions, the photodegradation of CR after 180 min was 54% for ZnONPs and 95% for the ZnONPs@l-ascorbic acid adduct. Moreover, the PL study confirmed the photocatalytic enhancement of the ZnONPs. The photocatalytic degradation fate was determined by LC-MS spectrometry.
Collapse
Affiliation(s)
- Dana A Kader
- Department of Chemistry, College of Education, University of Sulaimani Kurdistan Region Iraq
| | - Srood Omer Rashid
- Department of Chemistry, College of Education, University of Sulaimani Kurdistan Region Iraq
- Department of Chemistry, College of Science, University of Sulaimani Kurdistan Region Iraq
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani Kurdistan Region Iraq
| |
Collapse
|
20
|
Porrawatkul P, Nuengmatcha P, Kuyyogsuy A, Pimsen R, Rattanaburi P. Effect of Na and Al doping on ZnO nanoparticles for potential application in sunscreens. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 240:112668. [PMID: 36774718 DOI: 10.1016/j.jphotobiol.2023.112668] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023]
Abstract
This study investigated the environment-friendly production and characterization of zinc oxide nanoparticles (ZnO NPs) doped with sodium (Na) and aluminum (Al) metals to decrease the photocatalytic activity of ZnO for use in sunscreen. The metal-doped zinc oxide (ZnO) materials were prepared by the microwave method using extracts of Averrhoa carambola, also known as star fruit, as a reducing agent. The effects of metal-ion doping on the crystal structure, morphology, and optical characteristics of ZnO were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), transmission electron microscopy (TEM), and ultraviolet-visible (UV-Vis) spectroscopy. The sun protection factor (SPF) of the sunscreen formulations containing undoped ZnO, Na-doped ZnO (Na/ZnO), and Al-doped ZnO (Al/ZnO) NPs were found to be 10.10, 25.10, and 43.08, respectively. Therefore, Na/ZnO and Al/ZnO showed increased SPF. Additionally, the prepared nanomaterials and sunscreens were effective against Gram-positive and Gram-negative bacteria and showed antioxidant activities. The methylene blue (MB) degradation was used to evaluate the photocatalytic activities of the undoped ZnO, Na/ZnO, and Al/ZnO NPs, which were found to be 66%, 46%, and 38%, respectively. Therefore, due to the structural defects of ZnO NPs, their photocatalytic activity was decreased with Na- and Al- doping. Additionally, Al/ZnO is an ideal candidate as an ingredient in sunscreens.
Collapse
Affiliation(s)
| | - Prawit Nuengmatcha
- Creative Innovation in Science and Technology; Nanomaterials Chemistry Research Unit, Department of Chemistry, Faculty of Science and Technology, Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat 80280, Thailand.
| | - Arnannit Kuyyogsuy
- Nanomaterials Chemistry Research Unit, Department of Chemistry, Faculty of Science and Technology, Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat 80280, Thailand
| | - Rungnapa Pimsen
- Nanomaterials Chemistry Research Unit, Department of Chemistry, Faculty of Science and Technology, Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat 80280, Thailand
| | - Parintip Rattanaburi
- Department of General Science, Faculty of Education, Nakhon Si Thammarat Rajabhat University, Nakhon Si Thammarat 80280, Thailand
| |
Collapse
|
21
|
Tryfon P, Kamou NN, Pavlou A, Mourdikoudis S, Menkissoglu-Spiroudi U, Dendrinou-Samara C. Nanocapsules of ZnO Nanorods and Geraniol as a Novel Mean for the Effective Control of Botrytis cinerea in Tomato and Cucumber Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:1074. [PMID: 36903940 PMCID: PMC10005723 DOI: 10.3390/plants12051074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Inorganic-based nanoparticle formulations of bioactive compounds are a promising nanoscale application that allow agrochemicals to be entrapped and/or encapsulated, enabling gradual and targeted delivery of their active ingredients. In this context, hydrophobic ZnO@OAm nanorods (NRs) were firstly synthesized and characterized via physicochemical techniques and then encapsulated within the biodegradable and biocompatible sodium dodecyl sulfate (SDS), either separately (ZnO NCs) or in combination with geraniol in the effective ratios of 1:1 (ZnOGer1 NCs), 1:2 (ZnOGer2 NCs), and 1:3 (ZnOGer2 NCs), respectively. The mean hydrodynamic size, polydispersity index (PDI), and ζ-potential of the nanocapsules were determined at different pH values. The efficiency of encapsulation (EE, %) and loading capacity (LC, %) of NCs were also determined. Pharmacokinetics of ZnOGer1 NCs and ZnOGer2 NCs showed a sustainable release profile of geraniol over 96 h and a higher stability at 25 ± 0.5 °C rather than at 35 ± 0.5 °C. ZnOGer1 NCs, ZnOGer2 NCs and ZnO NCs were evaluated in vitro against B. cinerea, and EC50 values were calculated at 176 μg/mL, 150 μg/mL, and > 500 μg/mL, respectively. Subsequently, ZnOGer1 NCs and ZnOGer2 NCs were tested by foliar application on B. cinerea-inoculated tomato and cucumber plants, showing a significant reduction of disease severity. The foliar application of both NCs resulted in more effective inhibition of the pathogen in the infected cucumber plants as compared to the treatment with the chemical fungicide Luna Sensation SC. In contrast, tomato plants treated with ZnOGer2 NCs demonstrated a better inhibition of the disease as compared to the treatment with ZnOGer1 NCs and Luna. None of the treatments caused phytotoxic effects. These results support the potential for the use of the specific NCs as plant protection agents against B. cinerea in agriculture as an effective alternative to synthetic fungicides.
Collapse
Affiliation(s)
- Panagiota Tryfon
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nathalie N. Kamou
- Pesticide Science Laboratory, School of Agriculture, Faculty of Agriculture Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Akrivi Pavlou
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stefanos Mourdikoudis
- Biophysics Group, Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
- UCL Healthcare Biomagnetics and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK
| | - Urania Menkissoglu-Spiroudi
- Pesticide Science Laboratory, School of Agriculture, Faculty of Agriculture Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Catherine Dendrinou-Samara
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
22
|
Antimicrobial Activity and Cytotoxic Effect of ZnO and Ag-ZnO Nanoparticles Using Capsicum Frutescence Fruits. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-023-01058-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
23
|
K K S, P M PN, Vasundhara M. Enhanced photocatalytic activity in ZnO nanoparticles developed using novel Lepidagathis ananthapuramensis leaf extract. RSC Adv 2023; 13:1497-1515. [PMID: 36688071 PMCID: PMC9819108 DOI: 10.1039/d2ra06967a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023] Open
Abstract
The present study focuses on the green synthesis of zinc oxide nanoparticles (ZnO NPs) using a novel Lepidagathis ananthapuramensis (LA) leaf extract and a systematic study on the photocatalytic degradation of methylene blue (MB) dye. The structural, thermal, morphological, optical, and surface area analysis of prepared ZnO NPs were examined using X-ray diffraction (XRD), UV-visible spectroscopy, Raman spectroscopy, Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), Brunauer-Emmett-Teller (BET) analysis, thermogravimetric analysis (TGA), field emission-scanning electron microscopy (FE-SEM), energy dispersive X-ray analysis (EDAX) and high-resolution transmission electron microscopy (HR-TEM). The LA stabilised ZnO NPs produced NPs with diverse morphologies, low band gap and cost-effective high yield of production. A systematic study has been carried out to determine the crystallinity and crystallite size of ZnO NPs based on the concentration of Zn(NO3)2 precursor, concentration of LA leaf extract, calcination temperature and calcination time. The crystallinity and crystallite size of ZnO NPs were evaluated based on the XRD technique. The photocatalytic activity of ZnO NPs was thoroughly investigated for the degradation of MB dye based on various physicochemical parameters such as reaction time, concentration of catalyst, concentration of precursors, concentration of LA extract, concentration of MB, calcination temperature and calcination time. These systematic photocatalytic studies followed green protocols and provided an excellent photocatalytic efficiency result of 96-98.5% towards the decomposition of MB. Hence, this material can work as a potential candidate for waste water treatment by also degrading other toxic dyes.
Collapse
Affiliation(s)
- Supin K K
- Polymers and Functional Materials Department, CSIR- Indian Institute of Chemical Technology Hyderabad 500007 India
| | - Parvathy Namboothiri P M
- Polymers and Functional Materials Department, CSIR- Indian Institute of Chemical Technology Hyderabad 500007 India
| | - M Vasundhara
- Polymers and Functional Materials Department, CSIR- Indian Institute of Chemical Technology Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
24
|
Selva Esakki E, Vivek P, Sarathi R, Devi LR, Sheeba N, Meenakshi Sundar S. Investigation on electrochemical analysis of ZnO nanoparticles and its performance for dye-sensitized solar cells using various natural dyes. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
25
|
Thabet NM, Abdel-Rafei MK, Askar MA, Abdelmohsen SA, Ahmed OM, Elbakry MM. Nanocomposite zinc oxide@ γ-linolenic acid-canagliflozin-fucoxanthin and/or γ-radiation perturbs key metabolic effectors and suppresses the proliferation of breast cancer cells in vitro. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
26
|
Udhaya PA, Ahmad A, Meena M, Queen M, Aravind M, Velusamy P, Almutairi TM, Mohammed A, Ali S. Copper Ferrite nanoparticles synthesised using a novel green synthesis route: structural development and photocatalytic activity. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Bauer EM, Bogliardi G, Ricci C, Cecchetti D, De Caro T, Sennato S, Nucara A, Carbone M. Syntheses of APTMS-Coated ZnO: An Investigation towards Penconazole Detection. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8050. [PMID: 36431536 PMCID: PMC9697174 DOI: 10.3390/ma15228050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Extrinsic chemiluminescence can be an efficient tool for determining pesticides and fungicides, which do not possess any intrinsic fluorescent signal. On this basis, (3-aminopropyl) trimethoxysilane (APTMS)-coated ZnO (APTMS@ZnO) was synthesized and tested as an extrinsic probe for the fungicide penconazole. Several synthetic routes were probed using either a one-pot or two-steps method, in order to ensure both a green synthetic pathway and a good signal variation for the penconazole concentration. The synthesized samples were characterized using X-ray diffraction (XRD), infrared (IR), Raman and ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM) imaging and associated energy-dispersive X-ray (EDX) analysis. The average size of the synthesized ZnO nanoparticles (NPs) is 54 ± 10 nm, in line with previous preparations. Of all the samples, those synthesized in two steps, at temperatures ranging from room temperature (RT) to a maximum of 40 °C, using water solvent (G-APTMG@ZnO), appeared to be composed of nanoparticles, homogeneously coated with APTMS. Chemiluminescence tests of G-APTMG@ZnO, in the penconazole concentration range 0.7-1.7 ppm resulted in a quenching of the native signal between 6% and 19% with a good linear response, thus indicating a green pathway for detecting the contaminant. The estimated detection limit (LOD) is 0.1 ± 0.01 ppm.
Collapse
Affiliation(s)
- Elvira Maria Bauer
- Institute of Structure of Matter, Italian National Research Council (ISM-CNR), Via Salaria km 29.3, 00015 Monterotondo, RM, Italy
| | - Gabriele Bogliardi
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, RM, Italy
| | - Cosimo Ricci
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, RM, Italy
| | - Daniele Cecchetti
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, RM, Italy
| | - Tilde De Caro
- Institute of Nanostructure Materials, National Research Council (ISMN-CNR), Via Salaria km 29.3, 00015 Monterotondo, RM, Italy
| | - Simona Sennato
- Institute of Complex Systems, Italian National Research Council (ISC-CNR) Sapienza Unit, and Physics Department, Sapienza University, P.le A. Moro 5, 00185 Rome, RM, Italy
| | - Alessandro Nucara
- Department of Physics, Sapienza University, P.le A. Moro 5, 00185 Rome, RM, Italy
| | - Marilena Carbone
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, RM, Italy
| |
Collapse
|
28
|
Ren Z, Xie J, Li X, Guo L, Zhang Q, Wu J, Li Y, Liu W, Li P, Fu Y, Zhao K, Ma J. Rational design of graphite carbon nitride-decorated zinc oxide nanoarrays on three-dimensional nickel foam for the efficient production of reactive oxygen species through stirring-promoted piezo–photocatalysis. J Colloid Interface Sci 2022; 632:271-284. [DOI: 10.1016/j.jcis.2022.11.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/05/2022] [Accepted: 11/12/2022] [Indexed: 11/21/2022]
|
29
|
Vinayagam R, Sharma G, Murugesan G, Pai S, Gupta D, Narasimhan MK, Kaviyarasu K, Varadavenkatesan T, Selvaraj R. Rapid photocatalytic degradation of 2, 4-dichlorophenoxy acetic acid by ZnO nanoparticles synthesized using the leaf extract of Muntingia calabura. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133127] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
Influence of Precursor Concentration in the Synthesis of ZnO Nanoparticles on their Morphological, Structural, and Photocatalytic Properties. Top Catal 2022. [DOI: 10.1007/s11244-022-01687-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
31
|
Kanavi PS, Meti S, Fattepur R, Patil VB. Emphasized temperature dependent electrical properties study of fabricated ZnO/PVA/PANI nanocomposite films. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Palladium and Graphene Oxide Doped ZnO for Aqueous Acetamiprid Degradation under Visible Light. Catalysts 2022. [DOI: 10.3390/catal12070709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Acetamiprid is a neonicotinoid insecticide widely used in pest control. In recent years, it has been considered as a contaminant in groundwater, lakes, and rivers. Photocatalysis under visible light radiation proved to be an effective process for getting rid of several organic pollutants. In the present work, photodegradation of aqueous acetamiprid was investigated over bare zinc oxide (ZnO) photocatalyst as well as ZnO doped with either palladium or palladium combined with graphene oxide. Both ZnO and doped-ZnO were synthesized via a microwave-assisted hydrothermal procedure. The obtained photocatalysts were characterized using different techniques. After 5 h of reaction at ambient temperature under visible light irradiation, acetamiprid conversions attained ca. 38, 82, and 98% in the presence of bare ZnO, Pd-doped ZnO and Pd-GO-doped ZnO photocatalysts, respectively, thus demonstrating the positive effect of Pd- and GO-doping on the photocatalytic activity of ZnO. In addition, Pd-GO-doped ZnO was shown to keep its activity even when it is recycled five times, thus proving its stability in the reaction medium.
Collapse
|
33
|
Ichipi EO, Tichapondwa SM, Chirwa EM. Plasmonic effect and bandgap tailoring of Ag/Ag2S doped on ZnO nanocomposites for enhanced visible-light photocatalysis. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Kejela Tolossa W, Taddesse Shibeshi P. Structural, optical and enhanced antibacterial activities of ZnO and (Co, Fe) co-doped ZnO nanoparticles by sol-gel combustion method. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
35
|
Bassi A, Hasan I, Qanungo K, Koo BH, Khan RA. Visible light assisted mineralization of malachite green dye by green synthesized xanthan gum/agar@ZnO bionanocomposite. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132518] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
S. M, Narasaiah BP, B. H, G. L. B, Pradeepkiran JA, Padhy H. Sunflower-Assisted Bio-Derived ZnO-NPs as an Efficient Nanocatalyst for the Synthesis of Novel Quinazolines with Highly Antioxidant Activities. Antioxidants (Basel) 2022; 11:antiox11040688. [PMID: 35453373 PMCID: PMC9025409 DOI: 10.3390/antiox11040688] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
The present report presents a green method for the rapid biogenic synthesis of nanoparticles that offers several advantages over the current chemical and physical procedures. It is easy and fast, eco-friendly, and does not involve any precious elements, hazardous chemicals, or harmful solvents. The synthesized ZnO nanoparticles were characterized using different techniques, such as UV-Visible spectroscopy. The surface plasmon resonance confirmed the formation of ZnO nanoparticles at 344 nm, using UV-Visible spectroscopy. The leaf extract acts as a source of phytochemicals and is primarily used for the reduction and then the formation of stable ZnO nanoparticles by the characteristic functional groups of the extract; the synthesized ZnO nanoparticles were identified using FTIR spectroscopy. The crystalline nature of ZnO-NPs was confirmed via powder X-ray diffraction (XRD). Size and morphology were measured via high resolution transmission electron microscopy (HR-TEM) analysis. The stability of the nanoparticles is established using dynamic light scattering (DLS) and thermogravimetric analysis (TGA). The synthesized ZnO nanoparticles have been found to be a good and efficient catalyst for the synthesis of novel 1,2-dihydro quinazoline derivatives under the green method via a one-pot reaction of 2-amino benzophenone, 1,3-diphenyl-1H-pyrazole carbaldehydes, and ammonium acetate. The synthesized compounds (4a–o) were characterized by the 1H NMR, 13C NMR, and HRMS spectra and were further validated for free-radical scavenging activity. The synthesized ZnO nanoparticles exhibited good antioxidant activity.
Collapse
Affiliation(s)
- Mahesh S.
- PG&Research Department of Chemistry, Thanthai Hans Roever Collage (Autonomous), Affiliated to Bharathidasan University, Perambalur 621220, India;
| | | | - Himabindu B.
- Department of Zoology, Sri Venkateswara University, Tirupati 517502, India;
| | - Balaji G. L.
- PG&Research Department of Chemistry, Thanthai Hans Roever Collage (Autonomous), Affiliated to Bharathidasan University, Perambalur 621220, India;
- Department of Chemistry, School of Advance Science and Languages, VIT Bhopal University, Bhopal 466114, India;
- Correspondence: (G.L.B.); (J.A.P.)
| | - Jangampalli Adi Pradeepkiran
- Department of Zoology, Sri Venkateswara University, Tirupati 517502, India;
- Department of Internal Medicine, Texas Tech University of Health Science Centre, Lubbock, TX 79415, USA
- Correspondence: (G.L.B.); (J.A.P.)
| | - Harihara Padhy
- Department of Chemistry, School of Advance Science and Languages, VIT Bhopal University, Bhopal 466114, India;
- Department of Chemistry, GITAM Institute of Science, GITAM (Deemed to be University), Visakapatnam 530045, India
| |
Collapse
|
37
|
Comparative effects of zinc oxide nanoparticles over the interfacial properties of low concentrations of ionic surfactants at interfaces. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Imade EE, Ajiboye TO, Fadiji AE, Onwudiwe DC, Babalola OO. Green synthesis of zinc oxide nanoparticles using plantain peel extracts and the evaluation of their antibacterial activity. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01152] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
39
|
Varkey V, Jose E T. Investigations on the Structural and Optical Properties of electrospun ZnO – poly (styrene – co-methyl methacrylate) Nanofiber Composites. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2021.1971717] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Vinitha Varkey
- Department of Chemistry, Kuriakose Gregorios College, Pampady, Kottayam, India
| | - Tomlal Jose E
- Department of Chemistry, St. Berchmans College, Changanacherry, Kottayam, India
| |
Collapse
|
40
|
Faradilla P, Setiyanto H, Manurung RV, Saraswaty V. Electrochemical sensor based on screen printed carbon electrode-zinc oxide nano particles/molecularly imprinted-polymer (SPCE-ZnONPs/MIP) for detection of sodium dodecyl sulfate (SDS). RSC Adv 2021; 12:743-752. [PMID: 35425090 PMCID: PMC8978621 DOI: 10.1039/d1ra06862h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/29/2021] [Indexed: 12/23/2022] Open
Abstract
The foremost objective of this work is to prepare a novel electrochemical sensor-based screen-printed carbon electrode made of zinc oxide nanoparticles/molecularly imprinted polymer (SPCE-ZnONPs/MIP) and investigate its characteristics to detect sodium dodecyl sulfate (SDS). The MIP that is polyglutamic acid (PGA) film was synthesized via in situ electro-polymerization. The SDS's recognition site was left on the surface of the PGA film after extraction using the cyclic voltammetry (CV) technique, facilitating the specific detection of SDS. Moreover, the ZnONPs (∼71 nm, polydispersity index of 0.138) were synthesized and effectively combined with the MIP by a drop-casting method, enhancing the current response. The surface of the prepared SPCE-ZnONPs/MIP was characterized by scanning electron microscopy and energy dispersive X-ray. Besides, the electrochemical performance of the SPCE-ZnONPs/MIP was also studied through CV and differential pulse voltammetry (DPV) techniques. As an outstanding result, it is observed that the current response of SPCE-ZnONPs/MIP for detection of SDS remarkably increased almost four times higher from 0.009 mA to 0.041 mA in comparison with bare SPCE. More importantly, the proposed SPCE-ZnONPs/MIP exhibited an excellent selectivity (in the presence of interfering molecules of Ca2+, Pb2+, as well as sodium dodecylbenzene sulfonate (SDBS)), sensitivity, reproducibility, and repeatability. Since the modified sensor offers portability, it is suitable for in situ environment and cosmetic monitoring.
Collapse
Affiliation(s)
- Putri Faradilla
- Analytical Chemistry Research Group, Institut Teknologi Bandung Bandung Indonesia
| | - Henry Setiyanto
- Analytical Chemistry Research Group, Institut Teknologi Bandung Bandung Indonesia .,Center for Defence and Security Research, Institut Teknologi Bandung Bandung Indonesia
| | - Robeth Viktoria Manurung
- Research Centre for Electronics and Telecommunication, National Research and Innovation Agency Republic of Indonesia Bandung Indonesia
| | - Vienna Saraswaty
- Research Unit for Clean Technology, National Research and Innovation Agency Republic of Indonesia Bandung Indonesia
| |
Collapse
|
41
|
Joseph Anthuvan A, Kumaravel K, Chinnuswamy V. Synergetic effect of hierarchical zinc oxide (ZnO) nanostructure with enhanced adsorption and antibacterial action towards waterborne detrimental contaminants. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01967-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Celebi N, Salimi K. Yolk-shell ZnO@C-CeO 2 ternary heterostructures with conductive N-doped carbon mediated electron transfer for highly efficient water splitting. J Colloid Interface Sci 2021; 605:23-32. [PMID: 34311312 DOI: 10.1016/j.jcis.2021.07.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 12/15/2022]
Abstract
Herein, carbon-incorporated yolk-shell ZnO@C-CeO2 ternary heterostructures are employed as visible light responsive photocatalyst for highly efficient photoelectrochemical (PEC) water splitting. Compared to conventional ZnO/CeO2 semiconductors, introduction of a thin PDA shell layer assures the generation of a conductive N-doped graphitic carbon layer after a calcination post-treatment with mesoporous hollow morphologies. The evaluation of PEC water splitting performance of ZnO@C-CeO2 photoanodes reveals the maximum photocurrent density as 7.43 mA/cm2 at 1.18 V RHE under light whereas almost no response is recorded at dark. These superior PEC H2 evolution performance strongly implies efficient charge separation, facilitated charge transfer between photoanode and electrolyte interface as well as within the semiconductor bulk by means of rapid electron transfer ability of N-doped graphitic carbon layer and prolong life time of light inside yolk-shell structure. Furthermore, considerable depression in PL intensity of ZnO@C-CeO2 photoanodes compared to ZnO clearly reveals a higher photon absorption due to the reflection of light in hollow region and increase in electron hole separation efficiency. Moreover, plausible Z-scheme charge transfer mechanism using ZnO@C-CeO2 photoanodes under visible light illumination is verified using radical trapping experiments and X-ray photoelectron spectroscopy (XPS) methods, suggesting new generation of heterostructures for sufficient conversion of sunlight to H2 fuels.
Collapse
Affiliation(s)
- Nuray Celebi
- Ankara Yildirim Beyazit University, Faculty of Engineering and Natural Sciences, Department of Energy Systems Engineering, Ankara, Turkey
| | - Kouroush Salimi
- Ankara Yildirim Beyazit University, Faculty of Engineering and Natural Sciences, Department of Chemical Engineering, Ankara, Turkey.
| |
Collapse
|
43
|
Use of immobilized zinc oxide photocatalysts for wastewater treatment: Application to methylene blue degradation. CAN J CHEM ENG 2021. [DOI: 10.1002/cjce.24199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Synthesis of photocatalytic zinc oxide nanoflowers using Peltophorum pterocarpum pod extract and their characterization. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-01919-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AbstractZinc oxide nanoflowers (ZnONFs) were prepared by employing the pod extract of Peltophorum pterocarpum as a green resource and characterized by various methods. UV–vis spectrum displayed a peak at 361 nm which confirmed the formation of ZnO nanoparticles. The optical band gap was calculated as 3.43 eV. FE-SEM images exposed the flower-like morphology and EDX portrayed strong signals for Zn and O. XRD studies substantiated signature peaks for the wurtzite phase of ZnONFs and the lattice parameters matched well with the literature. Mesoporous nature was confirmed by BET analysis which yielded a high specific surface area of 19.61 m2/g. FTIR bands at 420.48 and 462.92 cm−1affirmed the Zn and O bonding vibrations. The photocatalytic potential of the ZnONFs was successfully examined for the removal of methylene blue dye under natural solar light. The experimental data were fitted to Langmuir–Hinshelwood’s first-order equation and the kinetic constant was calculated as 0.0114 min–1.
Collapse
|
45
|
Buapoon S, Phuruangrat A, Thongtem T, Thongtem S. AgBr nanoparticles–ZnO flowers nanocomposites used for photodegradation of methylene blue solution illuminated by ultraviolet-visible radiation. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2020.1799397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Saowaluk Buapoon
- Department of Materials Science and Technology, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Anukorn Phuruangrat
- Department of Materials Science and Technology, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | - Titipun Thongtem
- Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Somchai Thongtem
- Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
46
|
Kadam VV, Shanmugam SD, Ettiyappan JP, Balakrishnan RM. Photocatalytic degradation of p-nitrophenol using biologically synthesized ZnO nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:12119-12130. [PMID: 32948944 DOI: 10.1007/s11356-020-10833-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 09/13/2020] [Indexed: 05/24/2023]
Abstract
The present work deals with the photocatalytic degradation of p-nitrophenol as it is a United States Environmental Protection Agency-listed priority pollutant and has adverse environmental and health effects. To eradicate the detrimental environmental impact of p-nitrophenol, the biologically synthesized ZnO nanoparticles were used as a photocatalyst. The degradation of p-nitrophenol was confirmed by decreasing the absorbance value at a characteristic wavelength of 317 nm using the UV-vis spectrophotometer. Reaction parameters such as ZnO photocatalyst concentration of 0.1 g/L at pH 11 in the presence of H2O2 (5 mM) were found to be optimum conditions for p-nitrophenol degradation. The photocatalytic degradation was slowly enhanced in the presence of H2O2 as an electron acceptor. The kinetics of nitrophenol degradation was studied, which follows the pseudo-first-order reaction. The photocatalytic degradation of p-nitrophenol was characterized by using total organic carbon, chemical oxygen demand, and high-performance liquid chromatography analyses. This method is found to be effective as it is environmentally friendly, free of toxic chemicals.
Collapse
Affiliation(s)
- Vrushali Vinayak Kadam
- Department of Chemical Engineering, National Institute of Technology, Surathkal, Karnataka, 575025, India
| | | | | | - Raj Mohan Balakrishnan
- Department of Chemical Engineering, National Institute of Technology, Surathkal, Karnataka, 575025, India.
| |
Collapse
|
47
|
Nanoparticles of two ZnO Precursors as an Encapsulating Matrix of Mangiferin: Associated Studies to Cytotoxic Effects on Liver Cancer Cells Hep-G2 and Healthy Lung Cell Beas-2B. J CLUST SCI 2021. [DOI: 10.1007/s10876-020-01957-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Butova VV, Polyakov VA, Erofeeva EA, Li Z, Soldatov MA, Soldatov AV. Synthesis of Zinc Oxide Nanoparticles Coated with Silicon Oxide. DOKLADY CHEMISTRY 2020. [DOI: 10.1134/s0012500820050018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
49
|
Dong Y, Cao L, Yang Y, Wu X, Wang J. TiO2/P(AM-co-AMPS) monolith prepared by CO2-in-water HIPEs and its potential application in wastewater treatment. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
50
|
Bhattacharjee A, Purkait MK, Gumma S. Loading and release of doxorubicin hydrochloride from iron(iii) trimesate MOF and zinc oxide nanoparticle composites. Dalton Trans 2020; 49:8755-8763. [PMID: 32555814 DOI: 10.1039/d0dt01730b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A significant amount of work has been done in recent years for the development of metal organic framework (MOF) based drug delivery vehicles. Often, nanomaterials such as iron oxide (Fe3O4), zinc oxide (ZnO), and other metal oxides like graphene oxide etc. are incorporated into the structures to impart additional functionality. In this work, an iron(iii) trimesate metal organic framework i.e. MIL-100(Fe) and its composites with ZnO nanoparticles i.e. ZnO@MIL-100(Fe) were investigated as delivery agents for anticancer drug doxorubicin hydrochloride (DOX). The synthesis of the composites was done by two routes viz. a conventional HF route (in the presence of HF as a crystallizing agent) and another one in the absence of HF. The resultant MOF and its composites significantly differ in DOX loading capacity and release rates. The results obtained in this work indicate that the DOX loading capacity increases upon addition of nanoparticles when the original MOF has lower mesopore volume (as in the sample obtained via the HF route). Surprisingly, this increase in the DOX loading was comparable to that of Fe3O4@MIL-100(Fe), although the two pure nanoparticles (ZnO and Fe3O4) have widely different loading capacities. On the other hand, the addition of ZnO nanoparticles reduces the DOX loading capacity, if the MOF has higher mesopore volume (as for the sample obtained via the HF free route). The composites synthesized by the HF route with enhanced loading capacity exhibit slower DOX release rates due to the stronger interaction of the drug with the composite.
Collapse
Affiliation(s)
- Abhik Bhattacharjee
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, India.
| | - Mihir Kumar Purkait
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, India.
| | - Sasidhar Gumma
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, India.
| |
Collapse
|