1
|
Buraschi FB, Mollard FPO, Di Bella CE, Grimoldi AA, Striker GG. Shaking off the blow: plant adjustments during submergence and post-stress growth in Lotus forage species. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:NULL. [PMID: 37814354 DOI: 10.1071/fp23172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/20/2023] [Indexed: 10/11/2023]
Abstract
Flooding significantly hampers global forage production. In flood-prone regions, Lotus tenuis and Lotus corniculatus are common forage legumes, yet little is known about their responses to partial or complete submergence. To address this, we evaluated 10 Lotus accessions subjected to 11days of either partial or complete submergence, analysing growth traits related to tolerance and recovery after de-submergence. Principal component analyses revealed that submergence associated growth parameters were linked to L. corniculatus accessions, whereas recovery was associated with L. tenuis accessions. Notably, in L. tenuis , recovery from complete submergence positively correlated with leaf mass fraction but negatively with root mass fraction, showing an opposite pattern than in L. corniculatus . Encouragingly, no trade-off was found between inherent growth capacity and submergence tolerance (both partial and complete) or recovery ability, suggesting genetic selection for increased tolerance would not compromise growth potential. L. tenuis exhibited accessions with both partial and complete submergence tolerance, making them versatile for flood-prone environments, whereas L. corniculatus accessions were better suited for partial submergence. These findings offer valuable insights to enhance forage production in flood-prone areas and guide the selection of appropriate Lotus accessions for specific flood conditions.
Collapse
Affiliation(s)
- Florencia B Buraschi
- IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Avenida San Martín 4453, Buenos Aires C1417DSE, Argentina; and Cátedra de Fisiología Vegetal, Departamento Biología Aplicada y Alimentos, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Federico P O Mollard
- IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Avenida San Martín 4453, Buenos Aires C1417DSE, Argentina; and Cátedra de Fisiología Vegetal, Departamento Biología Aplicada y Alimentos, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carla E Di Bella
- IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Avenida San Martín 4453, Buenos Aires C1417DSE, Argentina; and Cátedra de Forrajicultura, Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Agustín A Grimoldi
- IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Avenida San Martín 4453, Buenos Aires C1417DSE, Argentina; and Cátedra de Forrajicultura, Departamento de Producción Animal, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gustavo G Striker
- IFEVA, Universidad de Buenos Aires, CONICET, Facultad de Agronomía, Avenida San Martín 4453, Buenos Aires C1417DSE, Argentina; and Cátedra de Fisiología Vegetal, Departamento Biología Aplicada y Alimentos, Facultad de Agronomía, Universidad de Buenos Aires, Buenos Aires, Argentina; and School of Agriculture and Environment, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
2
|
Maffei ME, Salata C, Gribaudo G. Tackling the Future Pandemics: Broad-Spectrum Antiviral Agents (BSAAs) Based on A-Type Proanthocyanidins. Molecules 2022; 27:8353. [PMID: 36500445 PMCID: PMC9736452 DOI: 10.3390/molecules27238353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
A-type proanthocyanidins (PAC-As) are plant-derived natural polyphenols that occur as oligomers or polymers of flavan-3-ol monomers, such as (+)-catechin and (-)-epicatechin, connected through an unusual double A linkage. PAC-As are present in leaves, seeds, flowers, bark, and fruits of many plants, and are thought to exert protective natural roles against microbial pathogens, insects, and herbivores. Consequently, when tested in isolation, PAC-As have shown several biological effects, through antioxidant, antibacterial, immunomodulatory, and antiviral activities. PAC-As have been observed in fact to inhibit replication of many different human viruses, and both enveloped and non-enveloped DNA and RNA viruses proved sensible to their inhibitory effect. Mechanistic studies revealed that PAC-As cause reduction of infectivity of viral particles they come in contact with, as a result of their propensity to interact with virion surface capsid proteins or envelope glycoproteins essential for viral attachment and entry. As viral infections and new virus outbreaks are a major public health concern, development of effective Broad-Spectrum Antiviral Agents (BSAAs) that can be rapidly deployable even against future emerging viruses is an urgent priority. This review summarizes the antiviral activities and mechanism of action of PAC-As, and their potential to be deployed as BSAAs against present and future viral infections.
Collapse
Affiliation(s)
- Massimo E. Maffei
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Cristiano Salata
- Department of Molecular Medicine, University of Padua, 35121 Padua, Italy
| | - Giorgio Gribaudo
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Turin, Italy
| |
Collapse
|
3
|
Cui X, Jun JH, Rao X, Bahr C, Chapman E, Temple S, Dixon RA. Leaf layer-based transcriptome profiling for discovery of epidermal-selective promoters in Medicago truncatula. PLANTA 2022; 256:31. [PMID: 35790623 DOI: 10.1007/s00425-022-03920-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Transcriptomics of manually dissected leaf layers from Medicago truncatula identifies genes with preferential expression in upper and/or lower epidermis. The promoters of these genes confer epidermal-specific expression of transgenes. Improving the quality and quantity of proanthocyanidins (PAs) in forage legumes has potential to improve the nitrogen nutrition of ruminant animals and protect them from the risk of pasture bloat, as well as parasites. However, ectopic constitutive accumulation of PAs in plants by genetic engineering can significantly inhibit growth. We selected the leaf epidermis as a candidate tissue for targeted engineering of PAs or other pathways. To identify gene promoters selectively expressed in epidermal tissues, we performed comparative transcriptomic analyses in the model legume Medicago truncatula, using five tissue samples representing upper epidermis, lower epidermis, whole leaf without upper epidermis, whole leaf without lower epidermis, and whole leaf. We identified 52 transcripts preferentially expressed in upper epidermis, most of which encode genes involved in flavonoid biosynthesis, and 53 transcripts from lower epidermis, with the most enriched category being anatomical structure formation. Promoters of the preferentially expressed genes were cloned from the M. truncatula genome and shown to direct tissue-selective promoter activities in transient assays. Expression of the PA pathway transcription factor TaMYB14 under control of several of the promoters in transgenic alfalfa resulted in only modest MYB14 transcript accumulation and low levels of PA production. Activity of a subset of promoters was confirmed by transcript analysis in field-grown alfalfa plants throughout the growing season, and revealed variable but consistent expression, which was generally highest 3-4 weeks after cutting. We conclude that, although the selected promoters show acceptable tissue-specificity, they may not drive high enough transcription factor expression to activate the PA pathway.
Collapse
Affiliation(s)
- Xin Cui
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203, USA
| | - Ji Hyung Jun
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203, USA
- Children's Research Institute and the Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xiaolan Rao
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203, USA
- College of Life Sciences, Hubei University, Wuhan, 430068, Hubei, China
| | - Camille Bahr
- Forage Genetics International, N5292 Gills Coulee Rd S, West Salem, WI, 54669, USA
| | - Elisabeth Chapman
- Forage Genetics International, N5292 Gills Coulee Rd S, West Salem, WI, 54669, USA
| | - Stephen Temple
- Forage Genetics International, N5292 Gills Coulee Rd S, West Salem, WI, 54669, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, 1155 Union Circle #311428, Denton, TX, 76203, USA.
| |
Collapse
|
4
|
Aoki T, Kawaguchi M, Imaizumi-Anraku H, Akao S, Ayabe SI, Akashi T. Mutants of Lotus japonicus deficient in flavonoid biosynthesis. JOURNAL OF PLANT RESEARCH 2021; 134:341-352. [PMID: 33570676 PMCID: PMC7929969 DOI: 10.1007/s10265-021-01258-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Spatiotemporal features of anthocyanin accumulation in a model legume Lotus japonicus (Regel) K.Larsen were elucidated to develop criteria for the genetic analysis of flavonoid biosynthesis. Artificial mutants and wild accessions, with lower anthocyanin accumulation in the stem than the standard wild type (B-129 'Gifu'), were obtained by ethyl methanesulfonate (EMS) mutagenesis and from a collection of wild-grown variants, respectively. The loci responsible for the green stem of the mutants were named as VIRIDICAULIS (VIC). Genetic and chemical analysis identified two loci, namely, VIC1 and VIC2, required for the production of both anthocyanins and proanthocyanidins (condensed tannins), and two loci, namely, VIC3 and VIC4, required for the steps specific to anthocyanin biosynthesis. A mutation in VIC5 significantly reduced the anthocyanin accumulation. These mutants will serve as a useful system for examining the effects of anthocyanins and proanthocyanidins on the interactions with herbivorous pests, pathogenic microorganisms and nitrogen-fixing symbiotic bacteria, Mesorhizobium loti.
Collapse
Affiliation(s)
- Toshio Aoki
- Department of Applied Biological Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Masayoshi Kawaguchi
- Division of Symbiotic Systems, National Institute for Basic Biology, Okazaki, Aichi, 444-8585, Japan.
| | - Haruko Imaizumi-Anraku
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8634, Japan
| | - Shoichiro Akao
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8634, Japan
| | - Shin-Ichi Ayabe
- Department of Applied Biological Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan
| | - Tomoyoshi Akashi
- Department of Applied Biological Sciences, Nihon University, Fujisawa, Kanagawa, 252-0880, Japan.
| |
Collapse
|
5
|
Morris P, Carter EB, Hauck B, Lanot A, Theodorou MK, Allison G. Responses of Lotus corniculatus to environmental change 3: The sensitivity of phenolic accumulation to growth temperature and light intensity and effects on tissue digestibility. PLANTA 2021; 253:35. [PMID: 33459906 DOI: 10.1007/s00425-020-03524-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Growth temperature and light intensity are major drivers of phenolic accumulation in Lotus corniculatus resulting in major changes in carbon partitioning which significantly affects tissue digestibility and forage quality. The response of plant growth, phenolic accumulation and tissue digestibility to light and temperature was determined in clonal plants of three genotypes of Lotus corniculatus (birdsfoot trefoil) cv Leo, with low, intermediate or high levels of proanthocyanidins (condensed tannins). Plants were grown from 10 °C to 30 °C, or at light intensities from 20 to 500 µm m-2 s-1. Plants grown at 25 °C had the highest growth rate and highest digestibility, whereas the maximum tannin concentration was found in plants grown at 15 °C. Approximately linear increases in leaf flavonol glycoside levels were found with increasing growth temperature in the low tannin genotype. Tannin hydroxylation increased with increasing growth temperature but decreased with increasing light intensity. The major leaf flavonols were kaempferol glycosides of which kaempferol-3-glucoside and kaempferol-3,7-dirhamnoside were the major components. Increases in both tannin and total flavonol concentrations in leaves were linearly related to light intensity and were preceded by a specific increase in the transcript level of a non-legume type chalcone isomerase. Changes in growth temperature and light intensity, therefore, result in major changes in the partitioning of carbon into phenolics, which significantly affects tissue digestibility and nutritional quality with a high correlation between tannin concentration and leaf digestibility.
Collapse
Affiliation(s)
- Phillip Morris
- Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK.
| | - Eunice B Carter
- Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, Wales, UK
| | - Barbara Hauck
- Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, Wales, UK
| | - Alexandra Lanot
- Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Michael K Theodorou
- Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
- Department of Agriculture and Environment, Agriculture Centre for Sustainable Energy Systems, Harper Adams University, Newport, Shropshire, TF10 8NB, UK
| | - Gordon Allison
- Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, UK
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, Wales, UK
| |
Collapse
|
6
|
García-Calderón M, Pérez-Delgado CM, Palove-Balang P, Betti M, Márquez AJ. Flavonoids and Isoflavonoids Biosynthesis in the Model Legume Lotus japonicus; Connections to Nitrogen Metabolism and Photorespiration. PLANTS 2020; 9:plants9060774. [PMID: 32575698 PMCID: PMC7357106 DOI: 10.3390/plants9060774] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022]
Abstract
Phenylpropanoid metabolism represents an important metabolic pathway from which originates a wide number of secondary metabolites derived from phenylalanine or tyrosine, such as flavonoids and isoflavonoids, crucial molecules in plants implicated in a large number of biological processes. Therefore, various types of interconnection exist between different aspects of nitrogen metabolism and the biosynthesis of these compounds. For legumes, flavonoids and isoflavonoids are postulated to play pivotal roles in adaptation to their biological environments, both as defensive compounds (phytoalexins) and as chemical signals in symbiotic nitrogen fixation with rhizobia. In this paper, we summarize the recent progress made in the characterization of flavonoid and isoflavonoid biosynthetic pathways in the model legume Lotus japonicus (Regel) Larsen under different abiotic stress situations, such as drought, the impairment of photorespiration and UV-B irradiation. Emphasis is placed on results obtained using photorespiratory mutants deficient in glutamine synthetase. The results provide different types of evidence showing that an enhancement of isoflavonoid compared to standard flavonol metabolism frequently occurs in Lotus under abiotic stress conditions. The advance produced in the analysis of isoflavonoid regulatory proteins by the use of co-expression networks, particularly MYB transcription factors, is also described. The results obtained in Lotus japonicus plants can be also extrapolated to other cultivated legume species, such as soybean, of extraordinary agronomic importance with a high impact in feeding, oil production and human health.
Collapse
Affiliation(s)
- Margarita García-Calderón
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, Calle Profesor García González, 1, 41012-Sevilla, Spain; (M.G.-C.); (C.M.P.-D.); (M.B.)
| | - Carmen M. Pérez-Delgado
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, Calle Profesor García González, 1, 41012-Sevilla, Spain; (M.G.-C.); (C.M.P.-D.); (M.B.)
| | - Peter Palove-Balang
- Institute of Biology and Ecology, Faculty of Science, P.J. Šafárik University in Košice, Mánesova 23, SK-04001 Košice, Slovakia;
| | - Marco Betti
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, Calle Profesor García González, 1, 41012-Sevilla, Spain; (M.G.-C.); (C.M.P.-D.); (M.B.)
| | - Antonio J. Márquez
- Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, Calle Profesor García González, 1, 41012-Sevilla, Spain; (M.G.-C.); (C.M.P.-D.); (M.B.)
- Correspondence: ; Tel.: +34-954557145
| |
Collapse
|
7
|
Lorite MJ, Estrella MJ, Escaray FJ, Sannazzaro A, Videira e Castro IM, Monza J, Sanjuán J, León-Barrios M. The Rhizobia- Lotus Symbioses: Deeply Specific and Widely Diverse. Front Microbiol 2018; 9:2055. [PMID: 30258414 PMCID: PMC6144797 DOI: 10.3389/fmicb.2018.02055] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/13/2018] [Indexed: 11/13/2022] Open
Abstract
The symbiosis between Lotus and rhizobia has been long considered very specific and only two bacterial species were recognized as the microsymbionts of Lotus: Mesorhizobium loti was considered the typical rhizobia for the L. corniculatus complex, whereas Bradyrhizobium sp. (Lotus) was the symbiont for L. uliginosus and related species. As discussed in this review, this situation has dramatically changed during the last 15 years, with the characterization of nodule bacteria from worldwide geographical locations and from previously unexplored Lotus spp. Current data support that the Lotus rhizobia are dispersed amongst nearly 20 species in five genera (Mesorhizobium, Bradyrhizobium, Rhizobium, Ensifer, and Aminobacter). As a consequence, M. loti could be regarded an infrequent symbiont of Lotus, and several plant-bacteria compatibility groups can be envisaged. Despite the great progress achieved with the model L. japonicus in understanding the establishment and functionality of the symbiosis, the genetic and biochemical bases governing the stringent host-bacteria compatibility pairships within the genus Lotus await to be uncovered. Several Lotus spp. are grown for forage, and inoculation with rhizobia is a common practice in various countries. However, the great diversity of the Lotus rhizobia is likely squandered, as only few bacterial strains are used as inoculants for Lotus pastures in very different geographical locations, with a great variety of edaphic and climatic conditions. The agroecological potential of the genus Lotus can not be fully harnessed without acknowledging the great diversity of rhizobia-Lotus interactions, along with a better understanding of the specific plant and bacterial requirements for optimal symbiotic nitrogen fixation under increasingly constrained environmental conditions.
Collapse
Affiliation(s)
- María J. Lorite
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - María J. Estrella
- Instituto Tecnológico de Chascomús, IIB-INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Francisco J. Escaray
- Instituto Tecnológico de Chascomús, IIB-INTECH, UNSAM-CONICET, Chascomús, Argentina
| | - Analía Sannazzaro
- Instituto Tecnológico de Chascomús, IIB-INTECH, UNSAM-CONICET, Chascomús, Argentina
| | | | - Jorge Monza
- Facultad de Agronomia, Universidad de la República, Montevideo, Uruguay
| | - Juan Sanjuán
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Milagros León-Barrios
- Departamento de Bioquímica, Microbiología, Biología Celular y Genética, Universidad de la Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
8
|
Rue EA, Rush MD, van Breemen RB. Procyanidins: a comprehensive review encompassing structure elucidation via mass spectrometry. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2018; 17:1-16. [PMID: 29651231 PMCID: PMC5891158 DOI: 10.1007/s11101-017-9507-3] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 04/19/2017] [Indexed: 05/04/2023]
Abstract
Procyanidins are polyphenols abundant in dietary fruits, vegetables, nuts, legumes, and grains with a variety of chemopreventive biological effects. Rapid structure determination of these compounds is needed, notably for the more complex polymeric procyanidins. We review the recent developments in the structure elucidation of procyanidins with a focus on mass spectrometric approaches, especially liquid chromatography-tandem mass spectrometry (LC-MS/MS) and matrix-assisted laser desorption ionization (MALDI) MS/MS.
Collapse
Affiliation(s)
- Emily A Rue
- University of Illinois College of Pharmacy, 833 S Wood St, Chicago, Il, 60612, USA
| | - Michael D Rush
- University of Illinois College of Pharmacy, 833 S Wood St, Chicago, Il, 60612, USA
| | | |
Collapse
|
9
|
da Silva GS, Canuto KM, Ribeiro PRV, de Brito ES, Nascimento MM, Zocolo GJ, Coutinho JP, de Jesus RM. Chemical profiling of guarana seeds ( Paullinia cupana ) from different geographical origins using UPLC-QTOF-MS combined with chemometrics. Food Res Int 2017; 102:700-709. [DOI: 10.1016/j.foodres.2017.09.055] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/06/2017] [Accepted: 09/19/2017] [Indexed: 12/01/2022]
|
10
|
Escaray FJ, Passeri V, Perea-García A, Antonelli CJ, Damiani F, Ruiz OA, Paolocci F. The R2R3-MYB TT2b and the bHLH TT8 genes are the major regulators of proanthocyanidin biosynthesis in the leaves of Lotus species. PLANTA 2017; 246:243-261. [PMID: 28429079 DOI: 10.1007/s00425-017-2696-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/12/2017] [Indexed: 05/26/2023]
Abstract
By exploiting interspecific hybrids and their progeny, we identified key regulatory and transporter genes intimately related to proanthocyanidin biosynthesis in leaves of Lotus spp. Proanthocyanidins (PAs), known as condensed tannins, are polymeric flavonoids enriching forage legumes of key nutritional value to prevent bloating in ruminant animals. Unfortunately, major forage legumes such as alfalfa and clovers lack PAs in edible tissues. Therefore, engineering the PA trait in herbage of forage legumes is paramount to improve both ecological and economical sustainability of cattle production system. Progresses on the understanding of genetic determinants controlling PA biosynthesis and accumulation have been mainly made studying mutants of Arabidopsis, Medicago truncatula and Lotus japonicus, model species unable to synthesize PAs in the leaves. Here, we exploited interspecific hybrids between Lotus corniculatus, with high levels of PAs in the leaves, and Lotus tenuis, with no PAs in these organs, and relative F2 progeny, to identify among candidate PA regulators and transporters the genes mainly affecting this trait. We found that the levels of leaf PAs significantly correlate with the expression of MATE1, the putative transporter of glycosylated PA monomers, and, among the candidate regulatory genes, with the expression of the MYB genes TT2a, TT2b and MYB14 and the bHLH gene TT8. The expression levels of TT2b and TT8 also correlated with those of all key structural genes of the PA pathways investigated, MATE1 included. Our study unveils a different involvement of the three Lotus TT2 paralogs to the PA trait and highlights differences in the regulation of this trait in our Lotus genotypes with respect to model species. This information opens new avenues for breeding bloat safe forage legumes.
Collapse
Affiliation(s)
- Francisco José Escaray
- Unidad de Biotecnología 1, Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECh) / Universidad Nacional de San Martín. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Valentina Passeri
- Institute of Biosciences and BioResources (CNR-IBBR), Perugia, Italy
| | - Ana Perea-García
- Unidad de Biotecnología 1, Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECh) / Universidad Nacional de San Martín. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Cristian Javier Antonelli
- Unidad de Biotecnología 1, Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECh) / Universidad Nacional de San Martín. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | - Francesco Damiani
- Institute of Biosciences and BioResources (CNR-IBBR), Perugia, Italy
| | - Oscar Adolfo Ruiz
- Unidad de Biotecnología 1, Instituto de Investigaciones Biotecnológicas - Instituto Tecnológico de Chascomús (IIB-INTECh) / Universidad Nacional de San Martín. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Chascomús, Argentina
| | | |
Collapse
|
11
|
Jonker A, Yu P. The Occurrence, Biosynthesis, and Molecular Structure of Proanthocyanidins and Their Effects on Legume Forage Protein Precipitation, Digestion and Absorption in the Ruminant Digestive Tract. Int J Mol Sci 2017; 18:E1105. [PMID: 28531145 PMCID: PMC5455013 DOI: 10.3390/ijms18051105] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/08/2017] [Accepted: 05/15/2017] [Indexed: 12/28/2022] Open
Abstract
Forages grown in temperate regions, such as alfalfa (Medicago sativa L.) and white clover (Trefolium repens L.), typically have a high nutritional value when fed to ruminants. Their high protein content and degradation rate result, however, in poor utilization of protein from the forage resulting in excessive excretion of nitrogen into the environment by the animal. Proanthocyanindins (also known as condensed tannins) found in some forage legumes such as birdsfoot trefoil (Lotus corniculatus L.), bind to dietary protein and can improve protein utilization in the animal. This review will focus on (1) the occurrence of proanthocyanidins; (2) biosynthesis and structure of proanthocyanidins; (3) effects of proanthocyanidins on protein metabolism; (4) protein precipitating capacity of proanthocyanidins and their effects on true intestinal protein adsorption by ruminants; and (5) effect on animal health, animal performance and environmental emissions.
Collapse
Affiliation(s)
- Arjan Jonker
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada.
- Grasslands Research Centre, AgResearch Ltd., Tennent Drive, Private Bag 11008, Palmerston North 4442, New Zealand.
| | - Peiqiang Yu
- Department of Animal and Poultry Science, College of Agriculture and Bioresources, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada.
| |
Collapse
|
12
|
Hoste H, Torres-Acosta JFJ, Quijada J, Chan-Perez I, Dakheel MM, Kommuru DS, Mueller-Harvey I, Terrill TH. Interactions Between Nutrition and Infections With Haemonchus contortus and Related Gastrointestinal Nematodes in Small Ruminants. ADVANCES IN PARASITOLOGY 2016; 93:239-351. [PMID: 27238007 DOI: 10.1016/bs.apar.2016.02.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Interactions between host nutrition and feeding behaviour are central to understanding the pathophysiological consequences of infections of the digestive tract with parasitic nematodes. The manipulation of host nutrition provides useful options to control gastrointestinal nematodes as a component of an integrated strategy. Focussed mainly on the Haemonchus contortus infection model in small ruminants, this chapter (1) illustrates the relationship between quantitative (macro- and micro-nutrients) and qualitative (plant secondary metabolites) aspects of host nutrition and nematode infection, and (2) shows how basic studies aimed at addressing some generic questions can help to provide solutions, despite the considerable diversity of epidemiological situations and breeding systems.
Collapse
Affiliation(s)
- H Hoste
- INRA, UMR 1225 IHAP, Toulouse, France; Université de Toulouse, Toulouse, France
| | | | - J Quijada
- INRA, UMR 1225 IHAP, Toulouse, France; Université de Toulouse, Toulouse, France
| | - I Chan-Perez
- Universidad Autónoma de Yucatán, Merida, Yucatan, Mexico
| | - M M Dakheel
- University of Reading, Reading, United Kingdom
| | - D S Kommuru
- Fort Valley State University, Fort Valley, GA, United States
| | | | - T H Terrill
- Fort Valley State University, Fort Valley, GA, United States
| |
Collapse
|
13
|
Hatew B, Stringano E, Mueller-Harvey I, Hendriks WH, Carbonero CH, Smith LMJ, Pellikaan WF. Impact of variation in structure of condensed tannins from sainfoin (Onobrychis viciifolia
) on in vitro
ruminal methane production and fermentation characteristics. J Anim Physiol Anim Nutr (Berl) 2015; 100:348-60. [DOI: 10.1111/jpn.12336] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 03/27/2015] [Indexed: 11/28/2022]
Affiliation(s)
- B. Hatew
- Animal Nutrition Group; Wageningen University; Wageningen The Netherlands
| | - E. Stringano
- Chemistry and Biochemistry Laboratory; Food Production and Quality Division; School of Agriculture, Policy and Development; University of Reading; Reading UK
| | - I. Mueller-Harvey
- Chemistry and Biochemistry Laboratory; Food Production and Quality Division; School of Agriculture, Policy and Development; University of Reading; Reading UK
| | - W. H. Hendriks
- Animal Nutrition Group; Wageningen University; Wageningen The Netherlands
- Department of Farm Animal Health, Faculty of Veterinary Medicine; Utrecht University; Utrecht The Netherlands
| | | | | | - W. F. Pellikaan
- Animal Nutrition Group; Wageningen University; Wageningen The Netherlands
| |
Collapse
|
14
|
Mouradov A, Spangenberg G. Flavonoids: a metabolic network mediating plants adaptation to their real estate. FRONTIERS IN PLANT SCIENCE 2014; 5:620. [PMID: 25426130 PMCID: PMC4226159 DOI: 10.3389/fpls.2014.00620] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/21/2014] [Indexed: 05/18/2023]
Abstract
From an evolutionary perspective, the emergence of the sophisticated chemical scaffolds of flavonoid molecules represents a key step in the colonization of Earth's terrestrial environment by vascular plants nearly 500 million years ago. The subsequent evolution of flavonoids through recruitment and modification of ancestors involved in primary metabolism has allowed vascular plants to cope with pathogen invasion and damaging UV light. The functional properties of flavonoids as a unique combination of different classes of compounds vary significantly depending on the demands of their local real estate. Apart from geographical location, the composition of flavonoids is largely dependent on the plant species, their developmental stage, tissue type, subcellular localization, and key ecological influences of both biotic and abiotic origin. Molecular and metabolic cross-talk between flavonoid and other pathways as a result of the re-direction of intermediate molecules have been well investigated. This metabolic plasticity is a key factor in plant adaptive strength and is of paramount importance for early land plants adaptation to their local ecosystems. In human and animal health the biological and pharmacological activities of flavonoids have been investigated in great depth and have shown a wide range of anti-inflammatory, anti-oxidant, anti-microbial, and anti-cancer properties. In this paper we review the application of advanced gene technologies for targeted reprogramming of the flavonoid pathway in plants to understand its molecular functions and explore opportunities for major improvements in forage plants enhancing animal health and production.
Collapse
Affiliation(s)
- Aidyn Mouradov
- Royal Melbourne Institute of Technology UniversityBundoora, VIC, Australia
| | - German Spangenberg
- Department of Environment and Primary Industries, Biosciences Research Division, AgriBio, Centre for AgriBioscienceBundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe University – AgriBio, Centre for AgriBioscienceBundoora, VIC, Australia
| |
Collapse
|
15
|
Kommuru D, Barker T, Desai S, Burke J, Ramsay A, Mueller-Harvey I, Miller J, Mosjidis J, Kamisetti N, Terrill T. Use of pelleted sericea lespedeza (Lespedeza cuneata) for natural control of coccidia and gastrointestinal nematodes in weaned goats. Vet Parasitol 2014; 204:191-8. [DOI: 10.1016/j.vetpar.2014.04.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 03/05/2014] [Accepted: 04/16/2014] [Indexed: 11/30/2022]
|
16
|
Developing a conceptual model of possible benefits of condensed tannins for ruminant production. Animal 2014; 8:1095-105. [PMID: 24784919 DOI: 10.1017/s1751731114000974] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Enteric methane (CH4) emissions from ruminants have compelled a wide range of research initiatives to identify environmental abatement opportunities. However, although such mitigations can theoretically be attained with feed additives and feeding strategies, the limited empirical evidence on plant extracts used as feed additives does not support extensive or long-term reductions. Nevertheless, their strategic use (i.e. alone or combined in a simultaneous or consecutive use) may provide not only acceptable CH4 abatement levels, but also relevant effects on animal physiology and productivity. Condensed tannins (CT) represent a range of polyphenolic compounds of flavan-3-ol units present in some forage species that can also be added to prepared diets. Methods to determine CT, or their conjugated metabolites, are not simple. Although there are limitations and uncertainties about the methods to be applied, CT are thought to reduce CH4 production (1) indirectly by binding to the dietary fibre and/or reducing the rumen digestion and digestibility of the fibre and (2) directly by inhibiting the growth of rumen methanogens. On the basis of their role in livestock nutrition, CT influence the digestion of protein in the rumen because of their affinity for proteins (e.g. oxidative coupling and H bonding at neutral pH) that causes the CT-protein complex to be insoluble in the rumen; and dissociate in the abomasum at pH 2.5 to 3.0 for proteolysis and absorption in the small intestine. CT may also reduce gastro-intestinal parasite burdens and improve reproductive performance, foetal development, immune system response, hormone serum concentrations, wool production and lactation. The objectives of this paper are to discuss some of the beneficial and detrimental effects of CT on ruminant production systems and to develop a conceptual model to illustrate these metabolic relationships in terms of systemic physiology using earlier investigations with the CT-containing legume Lotus corniculatus. Our conceptual model indicated four complex and long-lasting relationships (digestive, toxicological, physiological and morphological) that can alter the normal biology of the animal. These relationships are interdependent, integrative, and sometimes, complementary to each other. This conceptual model can be used to develop mechanistic models to improve the understanding of the interaction between CT and the ruminants as well as to guide research initiatives of the impact of polyphenol-rich foods on human health.
Collapse
|
17
|
Du H, Wu J, Li H, Zhong PX, Xu YJ, Li CH, Ji KX, Wang LS. Polyphenols and triterpenes from Chaenomeles fruits: Chemical analysis and antioxidant activities assessment. Food Chem 2013; 141:4260-8. [DOI: 10.1016/j.foodchem.2013.06.109] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 01/15/2023]
|
18
|
Coblentz W, Grabber J. In situ protein degradation of alfalfa and birdsfoot trefoil hays and silages as influenced by condensed tannin concentration. J Dairy Sci 2013; 96:3120-37. [DOI: 10.3168/jds.2012-6098] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 01/09/2013] [Indexed: 11/19/2022]
|
19
|
Deep sequencing of Lotus corniculatus L. reveals key enzymes and potential transcription factors related to the flavonoid biosynthesis pathway. Mol Genet Genomics 2013; 288:131-9. [PMID: 23463169 DOI: 10.1007/s00438-013-0736-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 02/10/2013] [Indexed: 10/27/2022]
Abstract
Lotus corniculatus L. is used worldwide as a forage crop due to its abundance of secondary metabolites and its ability to grow in severe environments. Although the entire genome of L. corniculatus var. japonicus R. is being sequenced, the differences in morphology and production of secondary metabolites between these two related species have led us to investigate this variability at the genetic level, in particular the differences in flavonoid biosynthesis. Our goal is to use the resulting information to develop more valuable forage crops and medicinal materials. Here, we conducted Illumina/Solexa sequencing to profile the transcriptome of L. corniculatus. We produced 26,492,952 short reads that corresponded to 2.38 gigabytes of total nucleotides. These reads were then assembled into 45,698 unigenes, of which a large number associated with secondary metabolism were annotated. In addition, we identified 2,998 unigenes based on homology with L. japonicus transcription factors (TFs) and grouped them into 55 families. Meanwhile, a comparison of four tag-based digital gene expression libraries, built from the flowers, pods, leaves, and roots, revealed distinct patterns of spatial expression of candidate unigenes in flavonoid biosynthesis. Based on these results, we identified many key enzymes from L. corniculatus which were different from reference genes of L. japonicus, and five TFs that are potential enhancers in flavonoid biosynthesis. Our results provide initial genetics resources that will be valuable in efforts to manipulate the flavonoid metabolic pathway in plants.
Collapse
|
20
|
Hancock KR, Collette V, Fraser K, Greig M, Xue H, Richardson K, Jones C, Rasmussen S. Expression of the R2R3-MYB transcription factor TaMYB14 from Trifolium arvense activates proanthocyanidin biosynthesis in the legumes Trifolium repens and Medicago sativa. PLANT PHYSIOLOGY 2012; 159:1204-20. [PMID: 22566493 PMCID: PMC3387705 DOI: 10.1104/pp.112.195420] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 05/06/2012] [Indexed: 05/18/2023]
Abstract
Proanthocyanidins (PAs) are oligomeric flavonoids and one group of end products of the phenylpropanoid pathway. PAs have been reported to be beneficial for human and animal health and are particularly important in pastoral agricultural systems for improved animal production and reduced greenhouse gas emissions. However, the main forage legumes grown in these systems, such as Trifolium repens and Medicago sativa, do not contain any substantial amounts of PAs in leaves. We have identified from the foliar PA-accumulating legume Trifolium arvense an R2R3-MYB transcription factor, TaMYB14, and provide evidence that this transcription factor is involved in the regulation of PA biosynthesis in legumes. TaMYB14 expression is necessary and sufficient to up-regulate late steps of the phenylpropanoid pathway and to induce PA biosynthesis. RNA interference silencing of TaMYB14 resulted in almost complete cessation of PA biosynthesis in T. arvense, whereas Nicotiana tabacum, M. sativa, and T. repens plants constitutively expressing TaMYB14 synthesized and accumulated PAs in leaves up to 1.8% dry matter. Targeted liquid chromatography-multistage tandem mass spectrometry analysis identified foliar PAs up to degree of polymerization 6 in leaf extracts. Hence, genetically modified M. sativa and T. repens plants expressing TaMYB14 provide a viable option for improving animal health and mitigating the negative environmental impacts of pastoral animal production systems.
Collapse
Affiliation(s)
| | - Vern Collette
- AgResearch, Ltd., Palmerston North 4442, New Zealand
| | - Karl Fraser
- AgResearch, Ltd., Palmerston North 4442, New Zealand
| | | | - Hong Xue
- AgResearch, Ltd., Palmerston North 4442, New Zealand
| | | | - Chris Jones
- AgResearch, Ltd., Palmerston North 4442, New Zealand
| | | |
Collapse
|
21
|
Condensed tannins from Botswanan forage plants are effective priming agents of γδ T cells in ruminants. Vet Immunol Immunopathol 2012; 146:237-44. [DOI: 10.1016/j.vetimm.2012.03.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/01/2012] [Accepted: 03/05/2012] [Indexed: 11/20/2022]
|
22
|
Escaray FJ, Menendez AB, Gárriz A, Pieckenstain FL, Estrella MJ, Castagno LN, Carrasco P, Sanjuán J, Ruiz OA. Ecological and agronomic importance of the plant genus Lotus. Its application in grassland sustainability and the amelioration of constrained and contaminated soils. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 182:121-33. [PMID: 22118623 DOI: 10.1016/j.plantsci.2011.03.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 03/16/2011] [Accepted: 03/24/2011] [Indexed: 05/04/2023]
Abstract
The genus Lotus comprises around 100 annual and perennial species with worldwide distribution. The relevance of Lotus japonicus as a model plant has been recently demonstrated in numerous studies. In addition, some of the Lotus species show a great potential for adaptation to a number of abiotic stresses. Therefore, they are relevant components of grassland ecosystems in environmentally constrained areas of several South American countries and Australia, where they are used for livestock production. Also, the fact that the roots of these species form rhizobial and mycorrhizal associations makes the annual L. japonicus a suitable model plant for legumes, particularly in studies directed to recognize the mechanisms intervening in the tolerance to abiotic factors in the field, where these interactions occur. These properties justify the increased utilization of some Lotus species as a strategy for dunes revegetation and reclamation of heavy metal-contaminated or burned soils in Europe.
Collapse
Affiliation(s)
- Francisco J Escaray
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús UNSAM/CONICET, 7130, Camino circunvalación laguna km 6, Chascomús, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tibe O, Meagher LP, Fraser K, Harding DRK. Condensed tannins and flavonoids from the forage legume sulla (Hedysarum coronarium). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:9402-9409. [PMID: 21780793 DOI: 10.1021/jf2014759] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The condensed tannin concentrations and composition and the characterization of the phenolic constituents in the leaves of the forage legume sulla (Hedysarum coronarium), a biennial forage legume found in temperate agricultural regions, were studied. The colorimetric butanol-HCl assay was used for the quantitation of the seasonal condensed tannin concentrations in the leaves of sulla. Fractionation of extracts on Sephadex LH-20 using step elution with aqueous methanol, followed with aqueous acetone or gradient elution with water, aqueous methanol, and aqueous acetone, gave condensed tannin and flavonoid fractions. The chemical characteristics of the purified condensed tannin fractions were studied by acid-catalyzed degradation with benzyl mercaptan and electrospray ionization mass spectrometry (ESI-MS). Thiolysis revealed that epigallocatechin was the major extender unit (15-75%) while gallocatechin was the major terminal unit (50-66%), thus indicating the extractable sulla condensed tannin fraction as the prodelphinidin type. Condensed tannin oligomers to polymers obtained from Sephadex LH-20 gradient fractions ranged between 2.9 and 46 mDP. The homo- and heterogeneous oligomer ions in condensed tannin gradient fractions detected by ESI-MS ranged from 2 to 10 DP and are consistent with the values obtained by thiolysis (2.9-6.9 DP). Lower molecular weight phenolics, including flavonoids and phenolic acids, were characterized by liquid chromatography atmospheric pressure chemical ionization mass spectrometry (LC-APCI/MS) and ESI/MS/MS on a linear ion trap. The flavonoids extracted with aqueous acetone and methanol from sulla leaves and identified included kaempferol, rutin, quercetin-7-O-α-L-rhamnosyl-3-O-glucosylrhamnoside, quercetin-3-O-α-L-rhamnosyl-7-O-glucoside, kaempferol-3-O-β-D-glucoside-dirhamnoside, genistein-7-O-β-D-glucosyl-6″-O-malonate, formononetin-7-O-β-D-glucoside-6″-O-malonate, and afrormosin and the phenolic acid chlorogenic acid.
Collapse
Affiliation(s)
- Olekile Tibe
- Basic Sciences, Botswana College of Agriculture, Private Bag 0027, Gaborone, Botswana.
| | | | | | | |
Collapse
|
24
|
Serrano J, Puupponen-Pimiä R, Dauer A, Aura AM, Saura-Calixto F. Tannins: current knowledge of food sources, intake, bioavailability and biological effects. Mol Nutr Food Res 2009; 53 Suppl 2:S310-29. [PMID: 19437486 DOI: 10.1002/mnfr.200900039] [Citation(s) in RCA: 445] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tannins are a unique group of phenolic metabolites with molecular weights between 500 and 30 000 Da, which are widely distributed in almost all plant foods and beverages. Proanthocyanidins and hydrolysable tannins are the two major groups of these bioactive compounds, but complex tannins containing structural elements of both groups and specific tannins in marine brown algae have also been described. Most literature data on food tannins refer only to oligomeric compounds that are extracted with aqueous-organic solvents, but a significant number of non-extractable tannins are usually not mentioned in the literature. The biological effects of tannins usually depend on their grade of polymerisation and solubility. Highly polymerised tannins exhibit low bioaccessibility in the small intestine and low fermentability by colonic microflora. This review summarises a new approach to analysis of extractable and non-extractable tannins, major food sources, and effects of storage and processing on tannin content and bioavailability. Biological properties such as antioxidant, antimicrobial and antiviral effects are also described. In addition, the role of tannins in diabetes mellitus has been discussed.
Collapse
Affiliation(s)
- José Serrano
- Universidad Complutense de Madrid, Depto. Nutrición y Bromatología I, Madrid, Spain
| | | | | | | | | |
Collapse
|
25
|
Monagas M, Quintanilla-López JE, Gómez-Cordovés C, Bartolomé B, Lebrón-Aguilar R. MALDI-TOF MS analysis of plant proanthocyanidins. J Pharm Biomed Anal 2009; 51:358-72. [PMID: 19410413 DOI: 10.1016/j.jpba.2009.03.035] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 03/25/2009] [Accepted: 03/30/2009] [Indexed: 10/20/2022]
Abstract
Proanthocyanidins or condensed tannins are among the most abundant polyphenols compounds in our diet and may play a key role in the prevention of cardiovascular and neurodegenerative diseases and cancer. These antioxidants are widely distributed in the plant kingdom both in food plants and in non-food plants. The biological activity of plant proanthocyanidins depends on their chemical structure and concentration. However, due to their structural diversity and complexity, the qualitative and quantitative analysis of proanthocyanidins is a difficult task. Mass spectrometry has enabled great advances in the characterization of plant proanthocyanidins. Among these techniques, MALDI-TOF MS has proved to be highly suited for the analysis of highly polydisperse and heterogeneous proanthocyanidins. The objective of the present paper was to assess the potential, limitations and future challenges of the analysis of plant proanthocyanidins by MALDI-TOF MS techniques. Firstly, the fundamental of this technique, including modes of operation, advantages and limitations, as well as quantitative and qualitative operations, have been summarized. Applications of MALDI-TOF analysis to plant proanthocyanidins reported in the last decade (1997-2008) have been extensively covered, including the sample preparation protocols and conditions used for proanthocyanidin analysis, as well as the main findings regarding the determination of the structural features of different plant proanthocyanidin types (procyanidins, propelargonidins, prodelphinidins, profisetinidins and prorobinetinidins). Finally, attempts in the assessment of the molecular weight distribution of proanthocyanidins by MALDI-TOF are described.
Collapse
Affiliation(s)
- María Monagas
- Instituto de Fermentaciones Industriales (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
26
|
Cinnamtannin B-1 as an antioxidant and platelet aggregation inhibitor. Life Sci 2008; 82:977-82. [PMID: 18433795 DOI: 10.1016/j.lfs.2008.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 02/19/2008] [Accepted: 03/17/2008] [Indexed: 01/01/2023]
Abstract
Cinnamtannin B-1 is a naturally occurring trimeric A-type proanthocyanidin, present in a limited number of plants, which exhibits a large number of cellular actions mostly derived from its antioxidant properties. Cinnamtannin B-1 modulates several biological processes such as changes in cytosolic free Ca(2+) concentration, endogenous reactive oxygen species generation, protein tyrosine phosphorylation and platelet aggregation. Proanthocyanidins, such as cinnamtannin B-1, have been reported to exert antitumoral activity mediated by a selective proapoptotic action in a number of tumoral cell lines associated with antiapoptotic activity in normal cells. The opposite effects of proanthocyanidins in normal and tumoral cells suggest that these compounds might be the base for therapeutic strategies directed selectively against tumoral cells. In addition, cinnamtannin B-1 shows antithrombotic actions through inhibition, in platelets, of endogenous ROS generation, Ca(2+) mobilization and, subsequently, aggregation. This has been reported to be especially relevant in platelets from diabetic patients, where cinnamtannin B-1 reverses both platelet hypersensitivity and hyperactivity. Considering the large number of cellular effects of cinnamtannin B-1 the development of therapeutic strategies for thrombotic disorders or certain types of cancer deserves further studies. This review summarizes the current knowledge on the actions and relevance of the signalling pathways modulated by cinnamtannin B-1.
Collapse
|
27
|
Alwerdt JL, Seigler DS, Gonzalez de Mejia E, Yousef GG, Lila MA. Influence of alternative liquid chromatography techniques on the chemical complexity and bioactivity of isolated proanthocyanidin mixtures. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:1896-1906. [PMID: 18284202 DOI: 10.1021/jf073001k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Extracts rich in proanthocyanidins, which are implicated in multiple human health benefits, were comparatively separated using alternative separation methods [vacuum or open column liquid chromatography], separation matrices [Toyopearl, Sephadex, or silica gel], and degrees of subfractionation [8 or 12 subfraction series], to evaluate the influence of separation technique on the resolution of the chemical composition and the biological activity of separated proanthocyanidin mixtures in individual subfractions. Bioactivity was assessed using a DNA human topoisomerase II bioassay and structural composition by acid thiolysis (average degree of polymerization, DP) and HPLC-ESI/MS. The amount of parent fraction needed to inhibit 50% of topoisomerase II was 3.38 ng/mL with an average DP of 25.5. A 2(3) factorial analysis revealed that the vacuum and open column strategies for separation, when individually considered, did not yield significantly different results in terms of mass recovery, DP, or bioactivity; however, interactions with other factors such as matrix or subfraction series resulted in distinctive shifts in fraction profiles and biological activity. In general, Sephadex as a matrix permitted elution and separation of discrete, polymerized subfractions with potent inhibition against human topoisomerase II. Sephadex vacuum chromatography, Toyopearl open column chromatography, and Toyopearl vacuum chromatography separation techniques eluted highly polymerized proanthocyanidin mixtures, but the inhibitory bioactivity was attenuated as compared to the parent fraction, whereas Sephadex open column chromatography eluted highly polymerized subfraction mixtures that retained bioactive potential.
Collapse
Affiliation(s)
- Jessica L Alwerdt
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | |
Collapse
|
28
|
Marshall A, Bryant D, Latypova G, Hauck B, Olyott P, Morris P, Robbins M. A high-throughput method for the quantification of proanthocyanidins in forage crops and its application in assessing variation in condensed tannin content in breeding programmes for Lotus corniculatus and Lotus uliginosus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:974-981. [PMID: 18193833 DOI: 10.1021/jf072330+] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Lotus corniculatus and Lotus uliginosus are agronomically important forage crops used in ruminant livestock production. The condensed tannin (CT) content, dry matter (DM) production, and persistence of these species are key characteristics of interest for future exploitation of these crops. Here we present field data on 19 varieties of L. corniculatus, 2 varieties of L. uliginosus and, additionally, a glasshouse experiment using 6 varieties of L. corniculatus and 2 varieties of L. uliginosus. Current methods for the quantification of condensed tannins in crop species are slow and labor intensive and are generally based upon polymer hydrolysis following the extraction of chlorophyll in a liquid phase. Presented here is a high-throughput protocol for condensed tannin quantification suitable for microtiter plates based upon the precipitation of condensed tannin polymers in complex with bovine serum albumin (BSA) with subsequent hydrolysis of precipates using butan 1-ol/ hydrochloric acid.
Collapse
Affiliation(s)
- Athole Marshall
- Legume Breeding and Genetics Team, Institute of Grassland and Environmental Research, Plas Gogerddan, Aberystwyth, Ceredigion, SY23 3EB, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|