1
|
Lima JCDS, da Silva Cavalcante E, Gonçalves CR, Lima-Junior SE, Cardoso CAL, Antonialli-Junior WF. Effect of Seasonal Variation on the Cuticular Chemical Composition of Atta laevigata (Smith 1858) (Hymenoptera: Formicidae). J Chem Ecol 2025; 51:15. [PMID: 39888559 DOI: 10.1007/s10886-025-01559-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/16/2024] [Accepted: 11/23/2024] [Indexed: 02/01/2025]
Abstract
Cuticular hydrocarbons (CHCs) constitute an important class of chemical compounds present in the cuticular layer of insects, where their main functions are to prevent desiccation of the cuticle and as signals for intraspecific recognition. Studies concerning CHCs have shown a phenotypic flexibility of their composition, depending on environmental factors. However, the way that each of these factors influences this variation remains little explored. The aim of the present study was to evaluate the effects of environmental variations on the cuticular chemical composition of the ant Atta laevigata. Workers from four different colonies nesting in forest edge environments were collected over the course of a year, during the hot and humid and cold and dry seasons. The cuticular compounds were extracted and then analyzed by gas chromatography, revealing that the compounds of this species belonged to the classes of linear alkanes, mono, di and trimethyl alkanes, alkenes and alkadienes. Furthermore, the cuticular profile varied significantly among colonies of this species and between seasons, while intra-season variability was more significant during the hot and humid season. The observed temporal variation indicated that the numbers of compounds and the proportion of different types of CHC can vary according to the period of the year, however with a greater significant variation in colonies in the hot and humid season. These results showed that variations in environmental conditions, especially climate, can have decisive effects in the dynamics of cuticular chemistry.
Collapse
Affiliation(s)
- Jean Carlos Dos Santos Lima
- Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados, Dourados, MS, Brazil.
- Laboratório de Ecologia Comportamental, Centro de Estudos em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul, Dourados, MS, Brazil.
| | - Elivelto da Silva Cavalcante
- Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Cristiano Ramos Gonçalves
- Programa de Pós-Graduação em Entomologia e Conservação da Biodiversidade, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Sidnei Eduardo Lima-Junior
- Centro de Estudos em Recursos Naturais, Programa de Pós-graduação em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul, Dourados, MS, Brazil
| | - Claudia Andrea Lima Cardoso
- Centro de Estudos em Recursos Naturais, Programa de Pós-graduação em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul, Dourados, MS, Brazil
| | - William Fernando Antonialli-Junior
- Laboratório de Ecologia Comportamental, Centro de Estudos em Recursos Naturais, Universidade Estadual de Mato Grosso do Sul, Dourados, MS, Brazil
| |
Collapse
|
2
|
Fladerer JP, Grollitsch S, Bucar F. Three cuticular amides in the tripartite symbiosis of leafcutter ants. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:1-13. [PMID: 37518892 DOI: 10.1002/arch.22041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/02/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023]
Abstract
Cuticular hydrocarbons (CHCs) play various roles in insects' chemical ecology. As leafcutter ants live in a specific symbiosis with fungi, they harvest and with different bacteria, some of these CHCs might be associated with a mutualistic function within this symbiosis. To obtain a more precise picture in that respect we compared the CHC profiles of the leafcutter ants, Atta sexdens, Atta cephalotes, and Acromyrmex octospinosus inhabited by mutualistic bacteria with the profiles of Polyrhachis dives and Messor aciculatus by GC-EI-MS analysis and 28 other ant species by data from the literature. We were able to identify three alkyl amides (hexadecanamide, hexadecenamide, and tetradecanamide), occurring only in the CHC profiles of leafcutter ants inhabited by symbiotic bacteria. Our results lead to the conclusion that those alkyl amides could have a function in the tripartite symbiosis of leafcutter ants.
Collapse
Affiliation(s)
| | | | - Franz Bucar
- Karl-Franzens-Universitat Graz Pharmacognosy, Graz, Austria
| |
Collapse
|
3
|
Barrett BT, Kubik TD, Golightly PR, Kellner K, Kardish MR, Mueller UG. Ant genotype, but not genotype of cultivated fungi, predicts queen acceptance in the asexual fungus-farming ant Mycocepurus smithii (Hymenoptera: Formicidae). Behav Ecol Sociobiol 2023. [DOI: 10.1007/s00265-022-03276-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
4
|
Goes AC, Kooij PW, Culot L, Bueno OC, Rodrigues A. Distinct and enhanced hygienic responses of a leaf-cutting ant toward repeated fungi exposures. Ecol Evol 2022; 12:e9112. [PMID: 35866016 PMCID: PMC9288931 DOI: 10.1002/ece3.9112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/06/2022] [Accepted: 06/23/2022] [Indexed: 11/10/2022] Open
Abstract
Leaf-cutting ants and their fungal crops are a textbook example of a long-term obligatory mutualism. Many microbes continuously enter their nest containing the fungal cultivars, destabilizing the symbiosis and, in some cases, outcompeting the mutualistic partners. Preferably, the ant workers should distinguish between different microorganisms to respond according to their threat level and recurrence in the colony. To address these assumptions, we investigated how workers of Atta sexdens sanitize their fungal crop toward five different fungi commonly isolated from the fungus gardens: Escovopsis sp., Fusarium oxysporum, Metarhizium anisopliae, Trichoderma spirale, and Syncephalastrum sp. Also, to investigate the plasticity of these responses toward recurrences of these fungi, we exposed the colonies with each fungus three times fourteen days apart. As expected, intensities in sanitization differed according to the fungal species. Ants significantly groom their fungal crop more toward F. oxysporum, M. anisopliae, and Syncephalastrum sp. than toward Escovopsis sp. and T. spirale. Weeding, self-, and allogrooming were observed in less frequency than fungus grooming in all cases. Moreover, we detected a significant increase in the overall responses after repeated exposures for each fungus, except for Escovopsis sp. Our results indicate that A. sexdens workers are able to distinguish between different fungi and apply distinct responses to remove these from the fungus gardens. Our findings also suggest that successive exposures to the same antagonist increase hygiene, indicating plasticity of ant colonies' defenses to previously encountered pathogens.
Collapse
Affiliation(s)
- Aryel C. Goes
- Department of General and Applied BiologySão Paulo State University (UNESP)Rio ClaroBrazil
| | - Pepijn W. Kooij
- Department of General and Applied BiologySão Paulo State University (UNESP)Rio ClaroBrazil
| | - Laurence Culot
- Department of BiodiversitySão Paulo State University (UNESP)Rio ClaroBrazil
| | - Odair C. Bueno
- Department of General and Applied BiologySão Paulo State University (UNESP)Rio ClaroBrazil
| | - Andre Rodrigues
- Department of General and Applied BiologySão Paulo State University (UNESP)Rio ClaroBrazil
| |
Collapse
|
5
|
Pulliainen U, Bos N, d'Ettorre P, Sundström L. The Scent of Ant Brood: Caste Differences in Surface Hydrocarbons of Formica exsecta Pupae. J Chem Ecol 2021; 47:513-524. [PMID: 33900528 PMCID: PMC8217064 DOI: 10.1007/s10886-021-01275-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 03/02/2021] [Accepted: 04/12/2021] [Indexed: 10/25/2022]
Abstract
Chemical communication is common across all organisms. Insects in particular use predominantly chemical stimuli in assessing their environment and recognizing their social counterparts. One of the chemical stimuli used for recognition in social insects, such as ants, is the suite of long-chain, cuticular hydrocarbons. In addition to providing waterproofing, these surface hydrocarbons serve as a signature mixture, which ants can perceive, and use to distinguish between strangers and colony mates, and to determine caste, sex, and reproductive status of another individual. They can be both environmentally and endogenously acquired. The surface chemistry of adult workers has been studied extensively in ants, yet the pupal stage has rarely been considered. Here we characterized the surface chemistry of pupae of Formica exsecta, and examine differences among sexes, castes (reproductive vs. worker), and types of sample (developing individual vs. cocoon envelope). We found quantitative and qualitative differences among both castes and types of sample, but male and female reproductives did not differ in their surface chemistry. We also found that the pupal surface chemistry was more complex than that of adult workers in this species. These results improve our understanding of the information on which ants base recognition, and highlights the diversity of surface chemistry in social insects across developmental stages.
Collapse
Affiliation(s)
- Unni Pulliainen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Tväminne Zoological Station, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Nick Bos
- Department of Biology, Faculty of Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Patrizia d'Ettorre
- Laboratory of Experimental and Comparative Ethology, University of Paris, 13, Sorbonne Paris Cité, Paris, France
| | - Liselotte Sundström
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
- Tväminne Zoological Station, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
6
|
Trumbo ST, Philbrick PKB, Stökl J, Steiger S. Burying Beetle Parents Adaptively Manipulate Information Broadcast from a Microbial Community. Am Nat 2021; 197:366-378. [PMID: 33625971 DOI: 10.1086/712602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractMicrobial volatiles provide essential information for animals, which compete to detect, respond to, and perhaps control this information. Burying beetle parents have the opportunity to influence microbially derived semiochemicals, because they monopolize a small carcass for their family, repairing feeding holes and applying exudates that alter the microbial community. To study adaptive manipulation of microbial cues, we integrated mechanistic and functional approaches. We contrasted gas chromatography-mass spectrometry (GC-MS) volatile profiles from carcasses that were or were not prepared by a resident pair of Nicrophorus orbicollis. Methyl thiocyanate (MeSCN), the primary attractant for burying beetles seeking a fresh carcass, was reduced 20-fold by carcass preparation, while dimethyl trisulfide (DMTS), which deters breeding beetles, was increased 20-fold. These results suggest that parental care serves to make previously public information more private (crypsis, MeSCN) and to disinform rivals with a deterrent (DMTS). Functional tests in the field demonstrated that carcass preparation reduced discovery and use by congeners (threefold) as well as by dipteran rivals. Because microbes and their chemicals influence nearly every aspect of animal ecology, animal manipulation of microbial cues may be as widespread as manipulation of their own signals.
Collapse
|
7
|
Goes AC, Barcoto MO, Kooij PW, Bueno OC, Rodrigues A. How Do Leaf-Cutting Ants Recognize Antagonistic Microbes in Their Fungal Crops? Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
8
|
Bonadies E, Wcislo WT, Gálvez D, Hughes WOH, Fernández-Marín H. Hygiene Defense Behaviors Used by a Fungus-Growing Ant Depend on the Fungal Pathogen Stages. INSECTS 2019; 10:insects10050130. [PMID: 31060310 PMCID: PMC6572560 DOI: 10.3390/insects10050130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 11/24/2022]
Abstract
Parasites and their hosts use different strategies to overcome the defenses of the other, often resulting in an evolutionary arms race. Limited animal studies have explored the differential responses of hosts when challenged by differential parasite loads and different developmental stages of a parasite. The fungus-growing ant Trachymyrmex sp. 10 employs three different hygienic strategies to control fungal pathogens: Grooming the antibiotic-producing metapleural glands (MGs) and planting or weeding their mutualistic fungal crop. By inoculating Trachymyrmex colonies with different parasite concentrations (Metarhizium) or stages (germinated conidia or ungermianted conidia of Metarhizium and Escovopsis), we tested whether ants modulate and change hygienic strategies depending on the nature of the parasite challenge. There was no effect of the concentration of parasite on the frequencies of the defensive behaviors, indicating that the ants did not change defensive strategy according to the level of threat. However, when challenged with conidia of Escovopsis sp. and Metarhizium brunneum that were germinated or not-germinated, the ants adjusted their thygienic behavior to fungal planting and MG grooming behaviors using strategies depending on the conidia germination status. Our study suggests that fungus-growing ants can adjust the use of hygienic strategies based on the nature of the parasites.
Collapse
Affiliation(s)
- Ernesto Bonadies
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Apartado 0843-01103, Panamá, República de Panamá.
- Programa de Maestría en Entomología, Vicerrectoría de Investigación y Postgrado, Estafeta Universitaria 0824, Universidad de Panamá, República de Panamá.
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panamá, República de Panamá.
| | - William T Wcislo
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Panamá, República de Panamá.
| | - Dumas Gálvez
- Programa de Maestría en Entomología, Vicerrectoría de Investigación y Postgrado, Estafeta Universitaria 0824, Universidad de Panamá, República de Panamá.
| | | | - Hermógenes Fernández-Marín
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Apartado 0843-01103, Panamá, República de Panamá.
| |
Collapse
|
9
|
Context is everything: mapping Cyphomyrmex-derived compounds to the fungus-growing ant phylogeny. CHEMOECOLOGY 2018. [DOI: 10.1007/s00049-018-0265-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Pulliainen U, Bos N, d'Ettorre P, Sundström L. Caste-dependent brood retrieval by workers in the ant Formica exsecta. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
11
|
Fortin M, Debenest C, Souty‐Grosset C, Richard F. Males prefer virgin females, even if parasitized, in the terrestrial isopod Armadillidium vulgare. Ecol Evol 2018; 8:3341-3353. [PMID: 29607029 PMCID: PMC5869267 DOI: 10.1002/ece3.3858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 12/06/2017] [Accepted: 12/22/2017] [Indexed: 02/05/2023] Open
Abstract
In many species, males increase their reproductive success by choosing high-quality females. In natural populations, they interact with both virgin and mated females, which can store sperm in their spermatheca. Therefore, males elaborate strategies to avoid sperm competition. In the terrestrial isopod Armadillidium vulgare, females can store sperm and produce several clutches. Moreover, this species can be parasitized by Wolbachia, which feminizes genetic males, transforming them into functional females. Our study compared attractiveness and mate choice when a male is exposed to both virgin and experienced females (i.e., females who have produced offspring and rested for 6 months), with or without Wolbachia. Our results revealed that males are more attracted to virgin females than experienced females, even if these virgin females are parasitized. Moreover, the chemical analysis highlighted different odors in females according to their reproductive and infection (Wolbachia-free or vertically Wolbachia-infected) status. Males attempted copulation more frequently and for longer with virgin females, even if Wolbachia-infected, while experienced females refused further copulation. The evolutionary consequences of both male choice and female resistance on their fitness are discussed in this study.
Collapse
Affiliation(s)
- Margot Fortin
- Laboratoire Ecologie et Biologie des InteractionsEquipe “Ecologie, Evolution, Symbiose”Université de Poitiers, UMR CNRS 7267PoitiersFrance
| | - Catherine Debenest
- Laboratoire Ecologie et Biologie des InteractionsEquipe “Ecologie, Evolution, Symbiose”Université de Poitiers, UMR CNRS 7267PoitiersFrance
| | - Catherine Souty‐Grosset
- Laboratoire Ecologie et Biologie des InteractionsEquipe “Ecologie, Evolution, Symbiose”Université de Poitiers, UMR CNRS 7267PoitiersFrance
| | - Freddie‐Jeanne Richard
- Laboratoire Ecologie et Biologie des InteractionsEquipe “Ecologie, Evolution, Symbiose”Université de Poitiers, UMR CNRS 7267PoitiersFrance
| |
Collapse
|
12
|
Abstract
Symbiotic microorganisms can influence the fitness of their insect hosts by modulating pheromone production and perception.
Collapse
Affiliation(s)
- Tobias Engl
- Department of Evolutionary Ecology
- Institute of Organismic and Molecular Evolution
- Johannes Gutenberg University of Mainz
- 55128 Mainz
- Germany
| | - Martin Kaltenpoth
- Department of Evolutionary Ecology
- Institute of Organismic and Molecular Evolution
- Johannes Gutenberg University of Mainz
- 55128 Mainz
- Germany
| |
Collapse
|
13
|
Richard FJ. Symbiotic Bacteria Influence the Odor and Mating Preference of Their Hosts. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00143] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
14
|
Arthropods Associate with their Red Wood ant Host without Matching Nestmate Recognition Cues. J Chem Ecol 2017; 43:644-661. [PMID: 28744733 DOI: 10.1007/s10886-017-0868-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/28/2017] [Accepted: 07/12/2017] [Indexed: 10/19/2022]
Abstract
Social insect colonies provide a valuable resource that attracts and offers shelter to a large community of arthropods. Previous research has suggested that many specialist parasites of social insects chemically mimic their host in order to evade aggression. In the present study, we carry out a systematic study to test how common such chemical deception is across a group of 22 arthropods that are associated with red wood ants (Formica rufa group). In contrast to the examples of chemical mimicry documented in some highly specialized parasites in previous studies, we find that most of the rather unspecialized red wood ant associates surveyed did not use mimicry of the cuticular hydrocarbon recognition cues to evade host detection. Instead, we found that myrmecophiles with lower cuticular hydrocarbon concentrations provoked less host aggression. Therefore, some myrmecophiles with low hydrocarbon concentrations appear to evade host detection via a strategy known as chemical insignificance. Others showed no chemical disguise at all and, instead, relied on behavioral adaptations such as particular defense or evasion tactics, in order to evade host aggression. Overall, this study indicates that unspecialized myrmecophiles do not require the matching of host recognition cues and advanced strategies of chemical mimicry, but can integrate in a hostile ant nest via either chemical insignificance or specific behavioral adaptations.
Collapse
|
15
|
Camargo RDS, Puccini C, Forti LC, de Matos CAO. Allogrooming, Self-Grooming, and Touching Behavior: Contamination Routes of Leaf-Cutting Ant Workers Using a Fat-Soluble Tracer Dye. INSECTS 2017; 8:insects8020059. [PMID: 28598375 PMCID: PMC5492073 DOI: 10.3390/insects8020059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 11/16/2022]
Abstract
The aim of this study was to determine whether worker self-grooming, allogrooming, and direct contact promotes the dispersal of substances among members of the colony. For this purpose, a tracer (Sudan III dye) was applied topically to a worker ant and the social interactions between the worker with the tracer and workers without the tracer were studied. Additionally, the worker heads were dissected to visualize whether or not the post-pharyngeal gland was stained. The post-pharyngeal glands from 50% to 70% of workers were stained depending on the size of the group. With the increase in the experimental group size, the frequency of interactions between workers increased, with touching being the most frequent behavior. The tracer dye was probably passed on by direct contact between workers, followed by self-grooming and allogrooming. These behaviors are responsible for the rapid dispersal of substances among colony members as observed in our experiment. The results therefore support the hypothesis that contact with substances promotes the contamination of nestmates, even in the absence of feeding, serving as a model for further studies on the contamination of workers with the active ingredients of insecticides.
Collapse
Affiliation(s)
- Roberto da Silva Camargo
- Laboratório de Insetos Sociais-Praga, Departamento de Produção Vegetal, Faculdade de Ciências Agronômicas, UNESP, Caixa Postal 237, Botucatu, SP 18603-970, Brasil.
| | - Carolina Puccini
- Laboratório de Insetos Sociais-Praga, Departamento de Produção Vegetal, Faculdade de Ciências Agronômicas, UNESP, Caixa Postal 237, Botucatu, SP 18603-970, Brasil.
| | - Luiz Carlos Forti
- Laboratório de Insetos Sociais-Praga, Departamento de Produção Vegetal, Faculdade de Ciências Agronômicas, UNESP, Caixa Postal 237, Botucatu, SP 18603-970, Brasil.
| | | |
Collapse
|
16
|
Römer D, Bollazzi M, Roces F. Carbon dioxide sensing in an obligate insect-fungus symbiosis: CO2 preferences of leaf-cutting ants to rear their mutualistic fungus. PLoS One 2017; 12:e0174597. [PMID: 28376107 PMCID: PMC5380341 DOI: 10.1371/journal.pone.0174597] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/10/2017] [Indexed: 11/19/2022] Open
Abstract
Defense against biotic or abiotic stresses is one of the benefits of living in symbiosis. Leaf-cutting ants, which live in an obligate mutualism with a fungus, attenuate thermal and desiccation stress of their partner through behavioral responses, by choosing suitable places for fungus-rearing across the soil profile. The underground environment also presents hypoxic (low oxygen) and hypercapnic (high carbon dioxide) conditions, which can negatively influence the symbiont. Here, we investigated whether workers of the leaf-cutting ant Acromyrmex lundii use the CO2 concentration as an orientation cue when selecting a place to locate their fungus garden, and whether they show preferences for specific CO2 concentrations. We also evaluated whether levels preferred by workers for fungus-rearing differ from those selected for themselves. In the laboratory, CO2 preferences were assessed in binary choices between chambers with different CO2 concentrations, by quantifying number of workers in each chamber and amount of relocated fungus. Leaf-cutting ants used the CO2 concentration as a spatial cue when selecting places for fungus-rearing. A. lundii preferred intermediate CO2 levels, between 1 and 3%, as they would encounter at soil depths where their nest chambers are located. In addition, workers avoided both atmospheric and high CO2 levels as they would occur outside the nest and at deeper soil layers, respectively. In order to prevent fungus desiccation, however, workers relocated fungus to high CO2 levels, which were otherwise avoided. Workers' CO2 preferences for themselves showed no clear-cut pattern. We suggest that workers avoid both atmospheric and high CO2 concentrations not because they are detrimental for themselves, but because of their consequences for the symbiotic partner. Whether the preferred CO2 concentrations are beneficial for symbiont growth remains to be investigated, as well as whether the observed preferences for fungus-rearing influences the ants' decisions where to excavate new chambers across the soil profile.
Collapse
Affiliation(s)
- Daniela Römer
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
- Unidad de Entomología, Departamento de Protección Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
- * E-mail:
| | - Martin Bollazzi
- Unidad de Entomología, Departamento de Protección Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Flavio Roces
- Department of Behavioral Physiology and Sociobiology, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| |
Collapse
|
17
|
Hernández López J, Riessberger-Gallé U, Crailsheim K, Schuehly W. Cuticular hydrocarbon cues of immune-challenged workers elicit immune activation in honeybee queens. Mol Ecol 2017; 26:3062-3073. [PMID: 28271576 DOI: 10.1111/mec.14086] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 02/17/2017] [Accepted: 02/22/2017] [Indexed: 11/26/2022]
Abstract
Recently, evidence has shown that variations in the cuticular hydrocarbons (CHCs) profile allow healthy honeybees to identify diseased nestmates, eliciting agonistic responses in the former. Here, we determined whether these 'immunologic cues' emitted by diseased nestmates were only detected by workers, who consequently took hygienic measures and excluded these individuals from the colony, or whether queens were also able to detect these cues and respond accordingly. Healthy honeybee queens were exposed to (i) healthy, (ii) Ringer-injected and (iii) lipopolysaccharide (LPS)-injected nestmates by allowing direct body contact. Quantitative differences in the CHC profiles of these three groups were measured using GC-MS. The transcript levels of the products of four genes that encode for antimicrobial peptides (AMPs), which are part of the queen's immune response, were measured in bees exposed to direct contact using qPCR. A significant increase in the transcript levels of these AMP genes over baseline levels in queens was observed when body contact was allowed between the queens and the Ringer- and LPS-injected nestmates. These results provide the first evidence that the detection of CHCs contributes to the initiation of an immune response in insects. In an additional experiment, CHCs were extracted from diseased workers and directly presented to queens, which also evoked a similar immune response. A potential mechanism that relied on volatile compounds could be ruled out by conducting a distance experiment. The study helps to expand our knowledge of chemical communication in insects and sheds light on a likely new mechanism of social immunity.
Collapse
Affiliation(s)
- Javier Hernández López
- Department of Zoology, Karl-Franzens University of Graz, Universitätsplatz 2, A-8010, Graz, Austria
| | - Ulrike Riessberger-Gallé
- Department of Zoology, Karl-Franzens University of Graz, Universitätsplatz 2, A-8010, Graz, Austria
| | - Karl Crailsheim
- Department of Zoology, Karl-Franzens University of Graz, Universitätsplatz 2, A-8010, Graz, Austria
| | - Wolfgang Schuehly
- Department of Zoology, Karl-Franzens University of Graz, Universitätsplatz 2, A-8010, Graz, Austria
| |
Collapse
|
18
|
Nehring V, Dani FR, Calamai L, Turillazzi S, Bohn H, Klass KD, d'Ettorre P. Chemical disguise of myrmecophilous cockroaches and its implications for understanding nestmate recognition mechanisms in leaf-cutting ants. BMC Ecol 2016; 16:35. [PMID: 27495227 PMCID: PMC4974750 DOI: 10.1186/s12898-016-0089-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 07/14/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cockroaches of the genus Attaphila regularly occur in leaf-cutting ant colonies. The ants farm a fungus that the cockroaches also appear to feed on. Cockroaches disperse between colonies horizontally (via foraging trails) and vertically (attached to queens on their mating flights). We analysed the chemical strategies used by the cockroaches to integrate into colonies of Atta colombica and Acromyrmex octospinosus. Analysing cockroaches from nests of two host species further allowed us to test the hypothesis that nestmate recognition is based on an asymmetric mechanism. Specifically, we test the U-present nestmate recognition model, which assumes that detection of undesirable cues (non-nestmate specific substances) leads to strong rejection of the cue-bearers, while absence of desirable cues (nestmate-specific substances) does not necessarily trigger aggression. RESULTS We found that nests of Atta and Acromyrmex contained cockroaches of two different and not yet described Attaphila species. The cockroaches share the cuticular chemical substances of their specific host species and copy their host nest's colony-specific cuticular profile. Indeed, the cockroaches are accepted by nestmate but attacked by non-nestmate ant workers. Cockroaches from Acromyrmex colonies bear a lower concentration of cuticular substances and are less likely to be attacked by non-nestmate ants than cockroaches from Atta colonies. CONCLUSIONS Nest-specific recognition of Attaphila cockroaches by host workers in combination with nest-specific cuticular chemical profiles suggest that the cockroaches mimic their host's recognition labels, either by synthesizing nest-specific substances or by substance transfer from ants. Our finding that the cockroach species with lower concentration of cuticular substances receives less aggression by both host species fully supports the U-present nestmate recognition model. Leaf-cutting ant nestmate recognition is thus asymmetric, responding more strongly to differences than to similarities.
Collapse
Affiliation(s)
- Volker Nehring
- Centre for Social Evolution, University of Copenhagen, Copenhagen, Denmark. .,Department for Ecology and Evolution, Biology I, Freiburg University, Hauptstr. 1, 79104, Freiburg, Germany.
| | - Francesca R Dani
- Centro di Servizi di Spettrometria di Massa (CISM), University of Florence, Florence, Italy.,Dipartimento di Biologia, University of Florence, Florence, Italy
| | - Luca Calamai
- Centro di Servizi di Spettrometria di Massa (CISM), University of Florence, Florence, Italy.,Dipartimento di Scienza del Suolo e Nutrizione della Pianta, University of Florence, Florence, Italy
| | - Stefano Turillazzi
- Department for Ecology and Evolution, Biology I, Freiburg University, Hauptstr. 1, 79104, Freiburg, Germany.,Centro di Servizi di Spettrometria di Massa (CISM), University of Florence, Florence, Italy
| | - Horst Bohn
- Zoologische Staatssammlung München, Munich, Germany
| | | | - Patrizia d'Ettorre
- Centre for Social Evolution, University of Copenhagen, Copenhagen, Denmark.,Laboratoire d'Ethologie Expérimentale et Comparée (LEEC), Université Paris 13, Sorbonne Paris Cité, Villetaneuse, France
| |
Collapse
|
19
|
Kooij PW, Poulsen M, Schiøtt M, Boomsma JJ. Somatic incompatibility and genetic structure of fungal crops in sympatric Atta colombica and Acromyrmex echinatior leaf-cutting ants. FUNGAL ECOL 2015; 18:10-17. [PMID: 26865859 PMCID: PMC4705864 DOI: 10.1016/j.funeco.2015.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Obligate mutualistic symbioses rely on mechanisms that secure host-symbiont commitments to maximize host benefits and prevent symbiont cheating. Previous studies showed that somatic incompatibilities correlate with neutral-marker-based genetic distances between fungal symbionts of Panamanian Acromyrmex leaf-cutting ants, but the extent to which this relationship applies more generally remained unclear. Here we showed that genetic distances accurately predicted somatic incompatibility for Acromyrmex echinatior symbionts irrespective of whether neutral microsatellites or AFLP markers were used, but that such correlations were weaker or absent in sympatric Atta colombica colonies. Further analysis showed that the symbiont clades maintained by A. echinatior and A. colombica were likely to represent separate gene pools, so that neutral markers were unlikely to be similarly correlated with incompatibility loci that have experienced different selection regimes. We suggest that evolutionarily derived claustral colony founding by Atta queens may have removed selection for strong incompatibility in Atta fungi, as this condition makes the likelihood of symbiont swaps much lower than in Acromyrmex, where incipient nests stay open because queens have to forage until the first workers emerge.
Collapse
|
20
|
Engsontia P, Sangket U, Robertson HM, Satasook C. Diversification of the ant odorant receptor gene family and positive selection on candidate cuticular hydrocarbon receptors. BMC Res Notes 2015; 8:380. [PMID: 26306879 PMCID: PMC4549895 DOI: 10.1186/s13104-015-1371-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/18/2015] [Indexed: 01/14/2023] Open
Abstract
Background Chemical communication plays important roles in the social behavior of ants making them one of the most successful groups of animals on earth. However, the molecular evolutionary process responsible for their chemosensory adaptation is still elusive. Recent advances in genomic studies have led to the identification of large odorant receptor (Or) gene repertoires from ant genomes providing fruitful materials for molecular evolution analysis. The aim of this study was to test the hypothesis that diversification of this gene family is involved in olfactory adaptation of each species. Results We annotated the Or genes from the genome sequences of two leaf-cutter ants, Acromyrmex echinatior and Atta cephalotes (385 and 376 putative functional genes, respectively). These were used, together with Or genes from Camponotus floridanus, Harpegnathos saltator, Pogonomyrmex barbatus, Linepithema humile, Cerapachys biroi, Solenopsis invicta and Apis mellifera, in molecular evolution analysis. Like the Or family in other insects, ant Or genes evolve by the birth-and-death model of gene family evolution. Large gene family expansions involving tandem gene duplications, and gene gains outnumbering losses, are observed. Codon analysis of genes in lineage-specific expansion clades revealed signatures of positive selection on the candidate cuticular hydrocarbon receptor genes (9-exon subfamily) of Cerapachys biroi, Camponotus floridanus, Acromyrmex echinatior and Atta cephalotes. Positively selected amino acid positions are primarily in transmembrane domains 3 and 6, which are hypothesized to contribute to the odor-binding pocket, presumably mediating changing ligand specificity. Conclusions This study provides support for the hypothesis that some ant lineage-specific Or genes have evolved under positive selection. Newly duplicated genes particularly in the candidate cuticular hydrocarbon receptor clade that have evolved under positive selection may contribute to the highly sophisticated lineage-specific chemical communication in each ant species. Electronic supplementary material The online version of this article (doi:10.1186/s13104-015-1371-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patamarerk Engsontia
- Molecular Ecology and Evolution Research Unit, Prince of Songkla University, Songkla, 90112, Thailand. .,Department of Biology, Faculty of Science, Prince of Songkla University, Songkla, 90112, Thailand.
| | - Unitsa Sangket
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, The Center for Genomics and Bioinformatics Research, Prince of Songkla University, Songkla, 90112, Thailand.
| | - Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, 505 South Goodwin Avenue, Urbana, IL, 61801, USA.
| | - Chutamas Satasook
- Department of Biology, Faculty of Science, Prince of Songkla University, Songkla, 90112, Thailand.
| |
Collapse
|
21
|
Larsen J, Fouks B, Bos N, d'Ettorre P, Nehring V. Variation in nestmate recognition ability among polymorphic leaf-cutting ant workers. JOURNAL OF INSECT PHYSIOLOGY 2014; 70:59-66. [PMID: 25205477 DOI: 10.1016/j.jinsphys.2014.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 08/20/2014] [Accepted: 09/01/2014] [Indexed: 06/03/2023]
Abstract
A key feature for the success of social insects is division of labour, allowing colony members to specialize on different tasks. Nest defence is a defining task for social insects since it is crucial for colony integrity. A particularly impressive and well-known case of worker specialization in complex hymenopteran societies is found in leaf-cutting ants of the genera Atta and Acromyrmex. We hypothesized that three morphological worker castes of Acromyrmex echinatior differ in their likelihood to attack intruders, and show that major workers are more aggressive towards non-nestmate workers than medium and minor workers. Moreover, minors do not discriminate between nestmate and non-nestmate brood, while larger workers do. We further show that A. echinatior ants use cuticular chemical compounds for nestmate recognition. We took advantage of the natural variation in the cuticular compounds between colonies to investigate the proximate factors that may have led to the observed caste differences in aggression. We infer that major workers differ from medium workers in their general propensity to attack intruders (the "action component" of the nestmate recognition system), while minors seem to be less sensitive to foreign odours ("perception component"). Our results highlight the importance of proximate mechanisms underlying social insect behaviour, and encourage an appreciation of intra-colony variation when analysing colony-level traits such as nest defence.
Collapse
Affiliation(s)
- Janni Larsen
- Centre for Social Evolution, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen E, Denmark.
| | - Bertrand Fouks
- Centre for Social Evolution, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen E, Denmark.
| | - Nick Bos
- Centre for Social Evolution, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen E, Denmark.
| | - Patrizia d'Ettorre
- Centre for Social Evolution, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen E, Denmark.
| | - Volker Nehring
- Centre for Social Evolution, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen E, Denmark.
| |
Collapse
|
22
|
Richard FJ, Holt HL, Grozinger CM. Effects of immunostimulation on social behavior, chemical communication and genome-wide gene expression in honey bee workers (Apis mellifera). BMC Genomics 2012; 13:558. [PMID: 23072398 PMCID: PMC3483235 DOI: 10.1186/1471-2164-13-558] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 10/08/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Social insects, such as honey bees, use molecular, physiological and behavioral responses to combat pathogens and parasites. The honey bee genome contains all of the canonical insect immune response pathways, and several studies have demonstrated that pathogens can activate expression of immune effectors. Honey bees also use behavioral responses, termed social immunity, to collectively defend their hives from pathogens and parasites. These responses include hygienic behavior (where workers remove diseased brood) and allo-grooming (where workers remove ectoparasites from nestmates). We have previously demonstrated that immunostimulation causes changes in the cuticular hydrocarbon profiles of workers, which results in altered worker-worker social interactions. Thus, cuticular hydrocarbons may enable workers to identify sick nestmates, and adjust their behavior in response. Here, we test the specificity of behavioral, chemical and genomic responses to immunostimulation by challenging workers with a panel of different immune stimulants (saline, Sephadex beads and Gram-negative bacteria E. coli). RESULTS While only bacteria-injected bees elicited altered behavioral responses from healthy nestmates compared to controls, all treatments resulted in significant changes in cuticular hydrocarbon profiles. Immunostimulation caused significant changes in expression of hundreds of genes, the majority of which have not been identified as members of the canonical immune response pathways. Furthermore, several new candidate genes that may play a role in cuticular hydrocarbon biosynthesis were identified. Effects of immune challenge expression of several genes involved in immune response, cuticular hydrocarbon biosynthesis, and the Notch signaling pathway were confirmed using quantitative real-time PCR. Finally, we identified common genes regulated by pathogen challenge in honey bees and other insects. CONCLUSIONS These results demonstrate that honey bee genomic responses to immunostimulation are substantially broader than the previously identified canonical immune response pathways, and may mediate the behavioral changes associated with social immunity by orchestrating changes in chemical signaling. These studies lay the groundwork for future research into the genomic responses of honey bees to native honey bee parasites and pathogens.
Collapse
Affiliation(s)
- Freddie-Jeanne Richard
- Laboratoire Ecologie Evolution Symbiose, UMR CNRS 6556, University of Poitiers, Cedex, POITIERS, France.
| | | | | |
Collapse
|
23
|
Nehring V, Evison SEF, Santorelli LA, d'Ettorre P, Hughes WOH. Kin-informative recognition cues in ants. Proc Biol Sci 2010; 278:1942-8. [PMID: 21123270 DOI: 10.1098/rspb.2010.2295] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although social groups are characterized by cooperation, they are also often the scene of conflict. In non-clonal systems, the reproductive interests of group members will differ and individuals may benefit by exploiting the cooperative efforts of other group members. However, such selfish behaviour is thought to be rare in one of the classic examples of cooperation--social insect colonies--because the colony-level costs of individual selfishness select against cues that would allow workers to recognize their closest relatives. In accord with this, previous studies of wasps and ants have found little or no kin information in recognition cues. Here, we test the hypothesis that social insects do not have kin-informative recognition cues by investigating the recognition cues and relatedness of workers from four colonies of the ant Acromyrmex octospinosus. Contrary to the theoretical prediction, we show that the cuticular hydrocarbons of ant workers in all four colonies are informative enough to allow full-sisters to be distinguished from half-sisters with a high accuracy. These results contradict the hypothesis of non-heritable recognition cues and suggest that there is more potential for within-colony conflicts in genetically diverse societies than previously thought.
Collapse
Affiliation(s)
- Volker Nehring
- Centre for Social Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
24
|
Fan Y, Richard FJ, Rouf N, Grozinger CM. Effects of queen mandibular pheromone on nestmate recognition in worker honeybees, Apis mellifera. Anim Behav 2010. [DOI: 10.1016/j.anbehav.2009.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
Richard FJ, Errard C. Hygienic behavior, liquid-foraging, and trophallaxis in the leaf-cutting ants, Acromyrmex subterraneus and Acromyrmex octospinosus. JOURNAL OF INSECT SCIENCE (ONLINE) 2009; 9:1-9. [PMID: 20053118 PMCID: PMC3011949 DOI: 10.1673/031.009.6301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Neotropical leaf-cutting ants (tribe Attini) live in obligate symbiosis with fungus they culture for food. To protect themselves and their fungus garden from pathogens, they minimize the entry of microorganisms through mechanical and chemical means. In this study, focusing on the species Acromyrmex subterraneus and A. octospinosus, (Hymeoptera: Formicidae). Self- and allo-grooming behavior were quantified and it was found that A. octospinosus workers spend less time in self-grooming than A. subterraneus. In the experimental absence of fungus in A. subterraneus, the times spent in these two behaviors are not affected; however workers spend significantly more time immobile. Hygienic and trophallaxis behaviors were examined as well as the possibility that workers exchange food, and the grooming behavior of foraging and non-foraging workers were compared. Behavioral observations revealed that large workers spent more time grooming than small workers, and more than 62% of replete foragers passed collected liquid food via trophallaxis to a nestmate. However, trophallaxis was rarely observed between non-forager workers. These results suggest that trophallaxis permits the exchange of alimentary liquid between colony members, but it is not important for spreading the colony odor signature.
Collapse
Affiliation(s)
- Freddie-Jeanne Richard
- University of Poitiers, Laboratoire Ecologie, Evolution, Symbiose, UMR CNRS 6556, 40 avenue du Recteur Pineau, Poitiers, France.
| | | |
Collapse
|
26
|
Richard FJ, Aubert A, Grozinger CM. Modulation of social interactions by immune stimulation in honey bee, Apis mellifera, workers. BMC Biol 2008; 6:50. [PMID: 19014614 PMCID: PMC2596086 DOI: 10.1186/1741-7007-6-50] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 11/17/2008] [Indexed: 11/14/2022] Open
Abstract
Background Immune response pathways have been relatively well-conserved across animal species, with similar systems in both mammals and invertebrates. Interestingly, honey bees have substantially reduced numbers of genes associated with immune function compared with solitary insect species. However, social species such as honey bees provide an excellent environment for pathogen or parasite transmission with controlled environmental conditions in the hive, high population densities, and frequent interactions. This suggests that honey bees may have developed complementary mechanisms, such as behavioral modifications, to deal with disease. Results Here, we demonstrate that activation of the immune system in honey bees (using bacterial lipopolysaccharides as a non-replicative pathogen) alters the social responses of healthy nestmates toward the treated individuals. Furthermore, treated individuals expressed significant differences in overall cuticular hydrocarbon profiles compared with controls. Finally, coating healthy individuals with extracts containing cuticular hydrocarbons of immunostimulated individuals significantly increased the agonistic responses of nestmates. Conclusion Since cuticular hydrocarbons play a critical role in nestmate recognition and other social interactions in a wide variety of insect species, modulation of such chemical profiles by the activation of the immune system could play a crucial role in the social regulation of pathogen dissemination within the colony.
Collapse
Affiliation(s)
- F-J Richard
- Department of Entomology, WM Keck Center for Behavioral Biology, Gardner Hall, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | |
Collapse
|
27
|
Dahbi A, Hefetz A, Lenoir A. Chemotaxonomy of some Cataglyphis ants from Morocco and Burkina Faso. BIOCHEM SYST ECOL 2008. [DOI: 10.1016/j.bse.2008.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|