1
|
Tabanca N, Cloonan KR, Nesterkina M, Gill MA, Montgomery WS, Kravchenko I, Kendra PE. Behavioral and electrophysiological responses of the male medfly, Ceratitis capitata, to thymol and carvacrol ethers. PEST MANAGEMENT SCIENCE 2024. [PMID: 39096116 DOI: 10.1002/ps.8324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND The Mediterranean fruit fly, Ceratitis capitata, is one of the most economically important insect pests attacking fruits and vegetables in tropical and subtropical areas of the world. Semiochemical-based pest management programs are being used to provide environmentally friendly control methods for medflies. The goals of the current study were to discover potential new, attractive, kairomones by designing, synthesizing, and testing simplified ethers of thymol and carvacrol along with their ether derivatives in short-range attraction assays and electroantennogram (EAG) assays with male C. capitata. To the best of our knowledge, this study represents the first investigation of thymol and carvacrol, and their respective ethers for attractancy to C. capitata, a major agricultural pest worldwide. RESULTS In short-range attraction bioassays, parent compounds, thymol and carvacrol, along with their propyl, butyl, benzyl, and octyl ethers captured the most male C. capitata. The attraction patterns changed over time and captures were only significant if they were greater than the positive control tea tree oil (TTO) at 90 min. In EAG assays, thymol benzyl, octyl ethers, and carvacrol benzyl ether evoked significantly greater antennal responses than their parent compounds. The EAG responses did not correlate with short-range male attraction. The aliphatic side chains of thymol and carvacrol had a small effect on the activity. Future studies will investigate the long-range attraction of the ethers that elicited large EAG responses. CONCLUSION This report provides new information for discovering potential kairomones through synthesis and structure-activity studies for sterile male medflies. Thymol, carvacrol, and several of their ether derivatives displayed improved longevity of attraction compared with TTO (a strong medfly attractant), with significantly higher captures than TTO observed at 90 min in laboratory bioassays. Further chemical synthesis of thymol and carvacrol ethers within this series may lead to the development of ethers that are more attractive or persistent than their parent compounds, thymol and carvacrol. © 2024 Society of Chemical Industry. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Nurhayat Tabanca
- USDA-ARS, Subtropical Horticulture Research Station, Miami, FL, USA
| | - Kevin R Cloonan
- USDA-ARS, Subtropical Horticulture Research Station, Miami, FL, USA
| | - Mariia Nesterkina
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Micah A Gill
- USDA-ARS, Subtropical Horticulture Research Station, Miami, FL, USA
| | | | - Iryna Kravchenko
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) - Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Paul E Kendra
- USDA-ARS, Subtropical Horticulture Research Station, Miami, FL, USA
| |
Collapse
|
2
|
Effects of Cabya ( Piper retrofractum Vahl.) Fruit Developmental Stage on VOCs. Foods 2022; 11:foods11162528. [PMID: 36010528 PMCID: PMC9407187 DOI: 10.3390/foods11162528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
The differences in VOCs can affect the flavor and medicinal value of cabya, and the flavor changes that occur in stages as the fruit develops are currently unknown. In order to investigate the influence of the developmental stage on the aroma composition of cabya essential oil, VOCs at each of the four developmental stages were analyzed by steam distillation (SD) extraction combined with GC-MS detection. The similarities and differences in fruit composition among the developmental stages were evaluated using hierarchical cluster analysis (HCA) and principal component analysis (PCA). A total of 60 VOCs, mainly alcohols, alkenes and alkanes, were identified across all of the developmental stages. The most acidic substances were detected in phase A and have a high medicinal value. There was no significant difference between the B and C phases, and the alcohols in those phases mainly promoted terpenoid synthesis in the D phase. Constituents during the D phase were mainly alkenes, at 57.14%, which contributed significantly to the aroma of the essential oil. PCA and HCA both were able to effectively differentiate the cabya fruit developmental stages based on the SD-GC-MS data. In summary, this study investigated the flavor variation characteristics and the diversity of VOCs in cabya fruits at different developmental stages, and its findings can provide a reference for developing essential oil products for different uses and determining appropriate stages for harvesting cabya resources.
Collapse
|
3
|
Gómez-Escobar E, Alavez-Rosas D, Castellanos D, Quintero-Fong L, Liedo P, Malo EA. Effect of Aging on Three Lures Used for Monitoring Ceratitis capitata (Diptera: Tephritidae): Release Rate, Volatile Composition, and Fly Recaptures. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:133-142. [PMID: 34958104 DOI: 10.1093/jee/toab246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Indexed: 06/14/2023]
Abstract
Prevention and control programs for Ceratitis capitata require a large supply of lures and traps for use in established trapping networks and mass-trapping suppression measures. The main lures currently used are: Trimedure (TML), three-component Biolure (BL), and Ceratrap (CT). The aim of this study was to determine the release rates of these lures, the chemical composition of their volatiles, and how these parameters change with exposure time. Tests were conducted under field conditions at three different elevations (25, 500, and 1,300 masl) during the dry and rainy seasons in Chiapas, Mexico. We found that for TML and BL, the release rate was similar in both seasons and at all three elevations. In the case of CT, the release rate was greater during the dry season and at the lowest elevation during the rainy season. With the caveat of using solid-phase microextraction technique for identification of lure compounds in this study, we found that the volatile compounds of TML were maintained throughout the rainy season, however, in the dry season, some compounds could not be detected. The volatile compounds emitted by BL were trimethylamine, ammonium acetate, and acetamide. Among volatile compounds of CT, acetic acid was the most abundant in the rainy season, while minor compounds were only detected during the first five weeks. Recapture rates were affected by elevation in the three lures tested and there was a significant interaction between elevation in exposure time for TML and BL.
Collapse
Affiliation(s)
- Enoc Gómez-Escobar
- Programa Moscamed (SADER-IICA), Avenida Central S/N, Metapa de Domínguez, Chiapas, CP 30860, México
| | - David Alavez-Rosas
- Instituto de Biociencias, Universidad Autónoma de Chiapas, Boulevard Príncipe Akishino S/N, Solidaridad 2000, Tapachula, Chiapas, CP 30798, México
| | - David Castellanos
- Programa Moscamed (SADER-IICA), Avenida Central S/N, Metapa de Domínguez, Chiapas, CP 30860, México
| | - Luis Quintero-Fong
- Representación SENASICA-SADER, Programa Moscamed Guatemala, 16 calle. No. 3-38 Zona 10, Ciudad de Guatemala, Guatemala
| | - Pablo Liedo
- El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km. 2.5, Tapachula, Chiapas, CP 30700, México
| | - Edi A Malo
- El Colegio de la Frontera Sur, Carretera Antiguo Aeropuerto Km. 2.5, Tapachula, Chiapas, CP 30700, México
| |
Collapse
|
4
|
Luu-Dam NA, Tabanca N, Estep AS, Nguyen DH, Kendra PE. Insecticidal and Attractant Activities of Magnolia citrata Leaf Essential Oil against Two Major Pests from Diptera: Aedes aegypti (Culicidae) and Ceratitis capitata (Tephritidae). Molecules 2021; 26:molecules26082311. [PMID: 33923456 PMCID: PMC8072556 DOI: 10.3390/molecules26082311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, Magnolia citrata Noot and Chalermglin (Magnoliaceae) essential oil (MCEO) was evaluated for insecticidal activity against the yellow fever mosquito Aedes aegypti and attractant activity for the Mediterranean fruit fly Ceratitis capitata. The leaves of Magnolia citrata (Giổi chanh) were collected from northwestern Vietnam, and the water-distilled MCEO was analyzed by gas-chromatography and mass spectrometry (GC-MS). The major constituents of MCEO were identified as linalool 19%, geranial 16%, citronellal 14%, neral 14%, and sabinene 12%. MCEO showed 100% mortality at 1 μg/μL against 1st instar larvae of Ae. aegypti (Orlando strain, ORL), and the oil exhibited 54% (ORL) and 68% (Puerto Rico strain) mortality at 5 μg/mosquito against Ae. aegypti adult females. Initial screens showed that MCEO had weak insecticidal activity compared to the positive control permethrin. In bioassays with sterile male C. capitata, MCEO exhibited moderately strong attraction, comparable to that observed with a positive control, Tetradenia riparia essential oil (TREO). Herein, the insecticidal and attractant activities of MCEO are reported for the first time.
Collapse
Affiliation(s)
- Ngoc Anh Luu-Dam
- Vietnam Academy of Science and Technology (VAST), Graduate University of Science and Technology, No. 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi 100803, Vietnam; (N.A.L.-D.); (D.H.N.)
- Vietnam National Museum of Nature, Vietnam Academy of Science and Technology (VAST), No.18 Hoang Quoc Viet Road, Cau Giay District, Hanoi 100803, Vietnam
| | - Nurhayat Tabanca
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Subtropical Horticulture Research Station (SHRS), 13601 Old Cutler Rd., Miami, FL 33158, USA
- Correspondence: (N.T.); (P.E.K.)
| | - Alden S. Estep
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Center for Medical, Agricultural, and Veterinary Entomology (CMAVE), Gainesville, FL 32608, USA;
| | - Duy Hung Nguyen
- Vietnam Academy of Science and Technology (VAST), Graduate University of Science and Technology, No. 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi 100803, Vietnam; (N.A.L.-D.); (D.H.N.)
| | - Paul E. Kendra
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Subtropical Horticulture Research Station (SHRS), 13601 Old Cutler Rd., Miami, FL 33158, USA
- Correspondence: (N.T.); (P.E.K.)
| |
Collapse
|
5
|
Electrophysiological and Behavioral Responses of an Ambrosia Beetle to Volatiles of its Nutritional Fungal Symbiont. J Chem Ecol 2021; 47:463-475. [PMID: 33761047 PMCID: PMC8116273 DOI: 10.1007/s10886-021-01263-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 11/03/2022]
Abstract
Ambrosia beetles (Coleoptera: Scolytinae) cultivate their fungal symbiont within host substrates as the sole source of nutrition on which the larvae and adults must feed. To investigate a possible role for semiochemicals in this interaction, we characterized electrophysiological and behavioral responses of Xylosandrus germanus to volatiles associated with its fungal symbiont Ambrosiella grosmanniae. During still-air walking bioassays, X. germanus exhibited an arrestment response to volatiles of A. grosmanniae, but not antagonistic fungi Beauveria bassiana, Metarhizium brunneum, Trichoderma harzianum, the plant pathogen Fusarium proliferatum, or malt extract agar. Solid phase microextraction-gas chromatography-mass spectrometry identified 2-ethyl-1-hexanol, 2-phenylethanol, methyl benzoate and 3-methyl-1-butanol in emissions from A. grosmanniae; the latter two compounds were also detected in emissions from B. bassiana. Concentration-responses using electroantennography documented weak depolarizations to A. grosmanniae fungal volatiles, unlike the comparatively strong response to ethanol. When tested singly in walking bioassays, volatiles identified from A. grosmanniae elicited relatively weak arrestment responses, unlike the responses to ethanol. Xylosandrus germanus also exhibited weak or no long-range attraction to the fungal volatiles when tested singly during field trials in 2016-2018. None of the fungal volatiles enhanced attraction of X. germanus to ethanol when tested singly; in contrast, 2-phenylethanol and 3-methyl-1-butanol consistently reduced attraction to ethanol. Volatiles emitted by A. grosmanniae may represent short-range olfactory cues that could aid in distinguishing their nutritional fungal symbiont from other fungi, but these compounds are not likely to be useful as long-range attractants for improving detection or mass trapping tactics.
Collapse
|
6
|
Blythe EK, Tabanca N, Demirci B, Kendra PE. Chemical Composition of Essential Oil From Tetradenia riparia and Its Attractant Activity for Mediterranean Fruit Fly, Ceratitis capitata. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20953955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The Mediterranean fruit fly or medfly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae), is one of the most economically important invasive pests worldwide, with over 300 known hosts. Essential oils have great promise for application in integrated pest management, where they function as natural repellents, attractants, and toxicants with a reduced impact on the environment. In this study, we evaluated essential oil from aerial parts of the African ginger bush, Tetradenia riparia (Hochst.) Codd (Lamiaceae), as a potential new attractant for male C. capitata. Tetradenia riparia essential oil (TREO) was analyzed by gas chromatography (GC)-flame ionization detection and GC-mass spectrometry (GC-MS). The primary compounds identified were fenchone (15%), δ-cadinene (11%), 14-hydroxy-β-caryophyllene (8%), and tau-cadinol (7%). In short-range laboratory bioassays with sterile male medflies, TREO exhibited attractancy comparable to that observed with a positive control, essential oil from tea tree ( Melaleuca alternifolia (Maiden and Betche) Cheel.). This study provides the first report of C. capitata behavioral response to TREO. Further research is needed, particularly with the 2 enantiomers of fenchone, to determine the chemical constituents responsible for the attraction of C. capitata.
Collapse
Affiliation(s)
| | - Nurhayat Tabanca
- USDA-ARS, Subtropical Horticultural Research Station, Miami, FL, USA
| | - Betul Demirci
- Department of Pharmacognosy, Anadolu University, Eskisehir, Turkey
| | - Paul E. Kendra
- USDA-ARS, Subtropical Horticultural Research Station, Miami, FL, USA
| |
Collapse
|
7
|
Tabanca N, Nalbantsoy A, Kendra PE, Demirci F, Demirci B. Chemical Characterization and Biological Activity of the Mastic Gum Essential Oils of Pistacia lentiscus Var. Chia from Turkey. Molecules 2020; 25:molecules25092136. [PMID: 32370246 PMCID: PMC7248992 DOI: 10.3390/molecules25092136] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 11/16/2022] Open
Abstract
The essential oils (EOs) were isolated by hydrodistillation from wild and cultivated Pistacia lentiscus L. var. chia-mastic gum tree (Anacardiaceae) from two natural habitats, namely from Cesme-Uzunkoy (1) and Mordogan (2), and one cultivated source, Cesme-Germiyan (3), in Izmir, Turkey. This comparative study evaluated the chemical composition and biological activity of mastic gum essential oils (MGEOs). For this purpose, MGEOs 1-3 were analyzed by gas chromatography-flame ionization detection (GC-FID), gas chromatography-mass spectrometry (GC-MS), and chiral GC for α-pinene. Laboratory assays were conducted to assess for potential in vitro cytotoxicity (multiple in vitro cancer cell lines), antimicrobial properties (five bacterial species and yeast), anti-inflammatory activity (inhibition of inducible nitric oxide synthase, iNOS), and the attraction of Ceratitis capitata (Mediterranean fruit fly, medfly), respectively. Chemical analysis indicated that MGEOs 1 and 2 were rich in α-pinene (56.2% and 51.9%), myrcene (20.1% and 18.6%), and β-pinene (2.7% and 3.1%), respectively; whereas MGEO-3 was characterized by a high level of α-pinene (70.8%), followed by β-pinene (5.7%) and myrcene (2.5%). Chiral GC analyses showed that concentration ratios between (-)/(+)-α-pinene and (-)-α-pinene/myrcene allowed for differentiation between wild and cultivated MGEO sources. In biological assays, MGEOs 1-3 did not exhibit significant antimicrobial effects against the pathogens evaluated and were not strong attractants of male medflies; however, all three MGEOs displayed a dose-dependent inhibition of iNOS, and MGEOs 1 and 2 exhibited selective in vitro cytotoxicity against human cancer cells. These results suggest that wild-type mastic gum oils from Cesme and Mordogan (MGEOs 1 and 2) are potential sources of beneficial products and warrant further investigation.
Collapse
Affiliation(s)
- Nurhayat Tabanca
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station (SHRS), Miami, FL 33158, USA;
- Correspondence: (N.T.); (A.N.); Tel.: +1-(786)-5737077 (N.T.); +90-(232)-3115807 (A.N.)
| | - Ayse Nalbantsoy
- Department of Bioengineering, Faculty of Engineering, Ege University, Bornova, Izmir 35100, Turkey
- Correspondence: (N.T.); (A.N.); Tel.: +1-(786)-5737077 (N.T.); +90-(232)-3115807 (A.N.)
| | - Paul E. Kendra
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station (SHRS), Miami, FL 33158, USA;
| | - Fatih Demirci
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey; (F.D.); (B.D.)
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta 99628, Cyprus
| | - Betul Demirci
- Department of Pharmacognosy, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Turkey; (F.D.); (B.D.)
| |
Collapse
|
8
|
TLC-Based Bioassay to Isolate Kairomones from Tea Tree Essential Oil That Attract Male Mediterranean Fruit Flies, Ceratitis capitata (Wiedemann). Biomolecules 2020; 10:biom10050683. [PMID: 32354100 PMCID: PMC7277685 DOI: 10.3390/biom10050683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 11/16/2022] Open
Abstract
The Mediterranean fruit fly, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae) poses a major threat to fruit and vegetable production in the United States and throughout the world. New attractants and detection methods could improve control strategies for this invasive pest. In this study, we developed a method that combined thin-layer chromatography (TLC) of tea tree essential oil (TTO) (Melaleuca alternifolia) with short-range bioassays to isolate attractive kairomones for male C. capitata. After development, the TLC chromatogram indicated that TTO separated into five major spots, designated as zones 1 to 5. When the TLC plate was exposed to flies, zones 1 and 3 were strongly attractive to male C. capitata. To confirm activity, the developed TLC plate was cut into five zones which were then tested in short-range bioassays. Again, flies were observed to aggregate around zones 1 and 3, which corresponded with Rf values of 0.93 and 0.59. In addition, zones 1 to 5 were separated using preparative-TLC, and olfactory responses to volatile emissions from the five fractions were quantified by electroantennography (EAG). Highest amplitude EAG responses were recorded with fractions 1 and 3, further supporting the bioactivity of these samples. In conclusion, a TLC-based bioassay system can provide an effective, rapid screening protocol for initial isolation of insect kairomones from complex mixtures such as essential oils or plant extracts. Further analysis of TTO fractions 1 and 3 is needed to identify the specific constituents attractive to male C. capitata.
Collapse
|
9
|
Tabanca N, Masi M, Epsky ND, Nocera P, Cimmino A, Kendra PE, Niogret J, Evidente A. Laboratory Evaluation of Natural and Synthetic Aromatic Compounds as Potential Attractants for Male Mediterranean fruit Fly, Ceratitis capitata. Molecules 2019; 24:molecules24132409. [PMID: 31261896 PMCID: PMC6651369 DOI: 10.3390/molecules24132409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 01/08/2023] Open
Abstract
Ceratitis capitata, the Mediterranean fruit fly, is one of the most serious agricultural pests worldwide responsible for significant reduction in fruit and vegetable yields. Eradication is expensive and often not feasible. Current control methods include the application of conventional insecticides, leading to pesticide resistance and unwanted environmental effects. The aim of this study was to identify potential new attractants for incorporation into more environmentally sound management programs for C. capitata. In initial binary choice bioassays against control, a series of naturally occurring plant and fungal aromatic compounds and their related analogs were screened, identifying phenyllactic acid (7), estragole (24), o-eugenol (21), and 2-allylphenol (23) as promising attractants for male C. capitata. Subsequent binary choice tests evaluated five semisynthetic derivatives prepared from 2-allylphenol, but none of these were as attractive as 2-allylphenol. In binary choice bioassays with the four most attractive compounds, males were more attracted to o-eugenol (21) than to estragole (24), 2-allylphenol (23), or phenyllactic acid (7). In addition, electroantennography (EAG) was used to quantify antennal olfactory responses to the individual compounds (1–29), and the strongest EAG responses were elicited by 1-allyl-4-(trifluoromethyl)benzene (11), estragole (24), 4-allyltoluene (14), trans-anethole (9), o-eugenol (21), and 2-allylphenol (23). The compounds evaluated in the current investigation provide insight into chemical structure–function relationships and help direct future efforts in the development of improved attractants for the detection and control of invasive C. capitata.
Collapse
Affiliation(s)
- Nurhayat Tabanca
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station (SHRS), Miami, FL 33158, USA.
| | - Marco Masi
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Nancy D Epsky
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station (SHRS), Miami, FL 33158, USA
| | - Paola Nocera
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Alessio Cimmino
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Paul E Kendra
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station (SHRS), Miami, FL 33158, USA
| | - Jerome Niogret
- Niogret Ecology Consulting LLC, 13601 Old Cutler Road, Miami, FL 33158, USA
| | - Antonio Evidente
- Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy.
| |
Collapse
|
10
|
Niogret J, Epsky ND. Attraction of Ceratitis capitata (Diptera: Tephritidae) Sterile Males to Essential Oils: The Importance of Linalool. ENVIRONMENTAL ENTOMOLOGY 2018; 47:1287-1292. [PMID: 29961857 DOI: 10.1093/ee/nvy096] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Indexed: 06/08/2023]
Abstract
Small cage and wind tunnel bioassays were used to understand the role of volatile chemicals found in ginger root oil and other essential oils in the attraction of sterile male Mediterranean fruit flies, Ceratitis capitata (Wiedemann) (Diptera: Tephritidae). Small cage bioassays found that both a 10 component blend (geraniol, linalool, β-myrcene, limonene, α-pinene, β-pinene, β-caryophyllene, terpinen-4-ol, α-terpineol, and α-humulene) and a 4 component subset of that blend (geraniol, linalool, β-myrcene and limonene) were more attractive than paired mineral oil controls. Both blends were equally attractive as ginger root oil and each other. Deletion studies, which tested all 3 component blends, found decreased attraction when linalool was deleted from the 4 component blend. Linalool alone attracted an equal percentage of flies as the 4 component blend, confirming that this chemical was responsible primarily for attraction to ginger root oil. Wind tunnel bioassays confirmed previous studies that panel traps baited with ginger root oil captured more flies than traps baited with manuka oil. Addition of linalool to manuka oil resulted in capture equal to ginger root oil, and addition of linalool to ginger root oil resulted in capture of more flies than ginger root alone. The results of this study will allow a better understanding of the role of individual plant-based chemicals in the attraction of male C. capitata.
Collapse
Affiliation(s)
- Jerome Niogret
- USDA/ARS, Subtropical Horticulture Research Station, Miami, FL
| | - Nancy D Epsky
- USDA/ARS, Subtropical Horticulture Research Station, Miami, FL
| |
Collapse
|
11
|
Kendra PE, Montgomery WS, Niogret J, Tabanca N, Owens D, Epsky ND. Utility of essential oils for development of host-based lures for Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae), vector of laurel wilt. OPEN CHEM 2018. [DOI: 10.1515/chem-2018-0045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractRedbay ambrosia beetle, Xyleborus glabratus, is native to Southeast Asia, but subsequent to introduction in Georgia in 2002, it has become a serious invasive pest in the USA, now established in nine southeastern states. Females vector Raffaelea lauricola, the fungus that causes laurel wilt, a lethal vascular disease of trees in the family Lauraceae. Laurel wilt has caused extensive mortality in native Persea species, including redbay (P. borbonia), swampbay (P. palustris), and silkbay (P. humilis). Avocado (P. americana) is now impacted in Florida, and with continued spread, laurel wilt has potential to affect avocado and native Lauraceae in California, Mexico, and throughout the American tropics. Effective lures for detection and control of X. glabratus are critical to slow the spread of laurel wilt. No pheromones are known for this species; primary attractants are volatile terpenoids emitted from host Lauraceae. This report provides a concise summary of the chemical ecology of X. glabratus, highlighting research to identify kairomones used by females for host location. It summarizes development of essential oil lures for pest detection, including discussions of the initial use of phoebe and manuka oil lures, the current cubeb oil lure, and a newly-developed distilled oil lure enriched in (-)-α-copaene.
Collapse
Affiliation(s)
- Paul E. Kendra
- USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Road, Miami, FL 33158, USA
| | - Wayne S. Montgomery
- USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Road, Miami, FL 33158, USA
| | - Jerome Niogret
- USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Road, Miami, FL 33158, USA
- Niogret Ecology Consulting LLC, 2980 SW 25th Street, Miami, FL 33133, USA
| | - Nurhayat Tabanca
- USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Road, Miami, FL 33158, USA
| | - David Owens
- USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Road, Miami, FL 33158, USA
- University of Delaware, Carvel Research and Education Center, 16483 County Seat Highway, Georgetown, DE 19947, USA
| | - Nancy D. Epsky
- USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Road, Miami, FL 33158, USA
| |
Collapse
|
12
|
Kendra PE, Owens D, Montgomery WS, Narvaez TI, Bauchan GR, Schnell EQ, Tabanca N, Carrillo D. α-Copaene is an attractant, synergistic with quercivorol, for improved detection of Euwallacea nr. fornicatus (Coleoptera: Curculionidae: Scolytinae). PLoS One 2017; 12:e0179416. [PMID: 28609448 PMCID: PMC5469513 DOI: 10.1371/journal.pone.0179416] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 05/30/2017] [Indexed: 11/19/2022] Open
Abstract
The tea shot-hole borer, Euwallacea fornicatus Eichhoff, is an ambrosia beetle endemic to Asia and a pest of commercial tea, Camellia sinensis (L.) Kuntze. Recently, a complex of species morphologically similar to E. fornicatus has been recognized, which includes new pests established in Israel and the USA, both in California and Florida. Collectively termed E. nr. fornicatus, these cryptic species carry symbiotic Fusarium spp. fungi, some of which cause dieback disease in susceptible hosts, which include avocado, Persea americana Miller. Due to the threat to this economically important crop, research was initiated to evaluate efficacy of kairomone-based lures for detection of the beetle in Florida (termed the Florida tea shot hole borer, FL-TSHB). A series of field tests were conducted in 2016 in commercial avocado groves known to have FL-TSHB at various population levels. All tests evaluated lures containing quercivorol (p-menth-2-en-1-ol) and α-copaene, presented separately and in combination; and one test evaluated effect of trap type on beetle captures. In addition, electroantennography (EAG) was used to quantify female olfactory responses to lure emissions. This study identified (-)-α-copaene as a new attractant for FL-TSHB, equivalent in efficacy to quercivorol (the standard lure for Euwallacea detection in the USA); however, the combination of lures captured significantly more FL-TSHB than either lure alone. This combination resulted in synergistic attraction at two field sites and additive attraction at a third site. Sticky panel traps captured more FL-TSHB than comparably-baited Lindgren funnel traps. Females engaged in host-seeking flight from 11:00 to 16:00 hr (EST), with peak numbers observed between 12:00 and 13:00 hr. EAG analyses confirmed olfactory chemoreception of both kairomones, with a higher response elicited with the combination of volatiles. Results indicate that detection of pest E. nr. fornicatus in Florida can be improved by using a two-component lure consisting of p-menth-2-en-1-ol and (-)-α-copaene.
Collapse
Affiliation(s)
- Paul E. Kendra
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station, Miami, FL, United States of America
| | - David Owens
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station, Miami, FL, United States of America
| | - Wayne S. Montgomery
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station, Miami, FL, United States of America
| | - Teresa I. Narvaez
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station, Miami, FL, United States of America
| | - Gary R. Bauchan
- United States Department of Agriculture, Agricultural Research Service, Beltsville Area Research Center, Electron and Confocal Microscopy Unit, Beltsville, MD, United States of America
| | - Elena Q. Schnell
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station, Miami, FL, United States of America
| | - Nurhayat Tabanca
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station, Miami, FL, United States of America
| | - Daniel Carrillo
- University of Florida, Tropical Research and Education Center, Homestead, FL, United States of America
| |
Collapse
|
13
|
Kendra PE, Montgomery WS, Schnell EQ, Deyrup MA, Epsky ND. Efficacy of α-Copaene, Cubeb, and Eucalyptol Lures for Detection of Redbay Ambrosia Beetle (Coleoptera: Curculionidae: Scolytinae). JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:2428-2435. [PMID: 27986939 DOI: 10.1093/jee/tow214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
Redbay ambrosia beetle, Xyleborus glabratus Eichhoff, is a wood-boring pest that has now invaded nine states in the southeastern United States. The beetle's dominant fungal symbiont (Raffaelea lauricola) is phytopathogenic, inducing laurel wilt in trees within the family Lauraceae. Members of the genus Persea are particularly susceptible to the lethal disease, including native redbay (P. borbonia) and swampbay (P. palustris), as well as commercial avocado (P. americana). Cubeb oil lures are the current standard for detection of X. glabratus, but recently eucalyptol and a 50% α-copaene oil have been identified as additional attractants. This study used a combination of binary-choice bioassays, field cage release-and-recapture assays, and a 12-wk field trial to compare efficacy of eucalyptol and copaene lures relative to commercial cubeb lures. In addition, GC-MS was used to quantify emissions from lures field-aged for 12 wk. In laboratory bioassays, copaene lures were more attractive than eucalyptol lures. In field cage assays, copaene lures recaptured a higher percentage of released beetles than cubeb lures. In the field test, cubeb lures captured fewer beetles than copaene lures, and lowest captures were obtained with eucalyptol lures. Combining eucalyptol with either copaene or cubeb lures did not increase captures over those lures deployed alone. Both copaene and cubeb lures were effective in attracting X. glabratus for 12 wk, but field life of eucalyptol lures was only 4 wk, consistent with the quantification of lure emissions. Results suggest that the 50% α-copaene lure provides the best pest detection currently available for X. glabratus.
Collapse
Affiliation(s)
- Paul E Kendra
- USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Rd., Miami, FL 33158 (; ; ; )
| | - Wayne S Montgomery
- USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Rd., Miami, FL 33158 (; ; ; )
| | - Elena Q Schnell
- USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Rd., Miami, FL 33158 (; ; ; )
| | - Mark A Deyrup
- Archbold Biological Station, P.O. Box 2057, Lake Placid, FL 33862
| | - Nancy D Epsky
- USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Rd., Miami, FL 33158 (; ; ; )
| |
Collapse
|
14
|
Kendra PE, Niogret J, Montgomery WS, Deyrup MA, Epsky ND. Cubeb Oil Lures: Terpenoid Emissions, Trapping Efficacy, and Longevity for Attraction of Redbay Ambrosia Beetle (Coleoptera: Curculionidae: Scolytinae). JOURNAL OF ECONOMIC ENTOMOLOGY 2015; 108:350-361. [PMID: 26470139 DOI: 10.1093/jee/tou023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/21/2014] [Indexed: 06/05/2023]
Abstract
Redbay ambrosia beetle, Xyleborus glabratus Eichhoff, is an exotic wood borer and the primary vector of Raffaelea lauricola, a symbiotic fungus that causes laurel wilt. This lethal disease has decimated native redbay [Persea borbonia (L.) Sprengel] and swampbay [Persea palustris (Rafinesque) Sargent] throughout southeastern U.S. forests, and currently threatens avocado (Persea americana Miller) in Florida. To curtail the spread of laurel wilt, effective attractants are needed for early detection of the vector. Phoebe oil lures were the best known attractant for X. glabratus, but they are no longer available. The current detection system uses manuka oil lures, but previous research indicated that manuka lures have a short field life in Florida. Recently, cubeb oil was identified as a new attractant for X. glabratus, and cubeb bubble lures are now available commercially. This study compared trapping efficacy and field longevity of cubeb and manuka lures with phoebe lures that had been in storage since 2010 over a 12-wk period in south Florida. In addition, terpenoid emissions were quantified from cubeb and manuka lures aged outdoors for 12 wk. Captures were comparable with all three lures for 3 wk, but by 4 wk, captures with manuka were significantly less. Equivalent captures were obtained with cubeb and phoebe lures for 7 wk, but captures with cubeb were significantly greater from 8 to 12 wk. Our results indicate that cubeb bubble lures are the most effective tool currently available for detection of X. glabratus, with a field life of 3 months due to extended low release of attractive sesquiterpenes, primarily α-copaene and α-cubebene.
Collapse
Affiliation(s)
- Paul E Kendra
- USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Rd., Miami, FL 33158.
| | - Jerome Niogret
- USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Rd., Miami, FL 33158. Present address: Niogret Ecology Consulting LLC, 2980 SW 25th St., Miami, FL 33133
| | - Wayne S Montgomery
- USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Rd., Miami, FL 33158
| | - Mark A Deyrup
- Archbold Biological Station, P. O. Box 2057, Lake Placid, FL 33862
| | - Nancy D Epsky
- USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Rd., Miami, FL 33158
| |
Collapse
|
15
|
Kendra PE, Montgomery WS, Niogret J, Pruett GE, Mayfield AE, MacKenzie M, Deyrup MA, Bauchan GR, Ploetz RC, Epsky ND. North American Lauraceae: terpenoid emissions, relative attraction and boring preferences of redbay ambrosia beetle, Xyleborus glabratus (coleoptera: curculionidae: scolytinae). PLoS One 2014; 9:e102086. [PMID: 25007073 PMCID: PMC4090202 DOI: 10.1371/journal.pone.0102086] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 06/15/2014] [Indexed: 11/30/2022] Open
Abstract
The invasive redbay ambrosia beetle, Xyleborus glabratus, is the primary vector of Raffaelea lauricola, a symbiotic fungus and the etiologic agent of laurel wilt. This lethal disease has caused severe mortality of redbay (Persea borbonia) and swampbay (P. palustris) trees in the southeastern USA, threatens avocado (P. americana) production in Florida, and has potential to impact additional New World species. To date, all North American hosts of X. glabratus and suscepts of laurel wilt are members of the family Lauraceae. This comparative study combined field tests and laboratory bioassays to evaluate attraction and boring preferences of female X. glabratus using freshly-cut bolts from nine species of Lauraceae: avocado (one cultivar of each botanical race), redbay, swampbay, silkbay (Persea humilis), California bay laurel (Umbellularia californica), sassafras (Sassafras albidum), northern spicebush (Lindera benzoin), camphor tree (Cinnamomum camphora), and lancewood (Nectandra coriacea). In addition, volatile collections and gas chromatography-mass spectroscopy (GC-MS) were conducted to quantify terpenoid emissions from test bolts, and electroantennography (EAG) was performed to measure olfactory responses of X. glabratus to terpenoids identified by GC-MS. Significant differences were observed among treatments in both field and laboratory tests. Silkbay and camphor tree attracted the highest numbers of the beetle in the field, and lancewood and spicebush the lowest, whereas boring activity was greatest on silkbay, bay laurel, swampbay, and redbay, and lowest on lancewood, spicebush, and camphor tree. The Guatemalan cultivar of avocado was more attractive than those of the other races, but boring response among the three was equivalent. The results suggest that camphor tree may contain a chemical deterrent to boring, and that different cues are associated with host location and host acceptance. Emissions of α-cubebene, α-copaene, α-humulene, and calamenene were positively correlated with attraction, and EAG analyses confirmed chemoreception of terpenoids by antennal receptors of X. glabratus.
Collapse
Affiliation(s)
- Paul E. Kendra
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station, Miami, Florida, United States of America
| | - Wayne S. Montgomery
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station, Miami, Florida, United States of America
| | - Jerome Niogret
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station, Miami, Florida, United States of America
| | - Grechen E. Pruett
- Archbold Biological Station, Lake Placid, Florida, United States of America
| | - Albert E. Mayfield
- United States Department of Agriculture, Forest Service, Southern Research Station, Asheville, North Carolina, United States of America
| | - Martin MacKenzie
- United States Department of Agriculture, Forest Service, Forest Health Protection, Stanislaus National Forest, Sonora, California, United States of America
| | - Mark A. Deyrup
- Archbold Biological Station, Lake Placid, Florida, United States of America
| | - Gary R. Bauchan
- United States Department of Agriculture, Agricultural Research Service, Beltsville Area Research Center, Electron and Confocal Microscopy Unit, Beltsville, Maryland, United States of America
| | - Randy C. Ploetz
- University of Florida, Tropical Research and Education Center, Homestead, Florida, United States of America
| | - Nancy D. Epsky
- United States Department of Agriculture, Agricultural Research Service, Subtropical Horticulture Research Station, Miami, Florida, United States of America
| |
Collapse
|
16
|
Terpenoid variations within and among half-sibling avocado trees, Persea americana Mill. (Lauraceae). PLoS One 2013; 8:e73601. [PMID: 24039994 PMCID: PMC3767776 DOI: 10.1371/journal.pone.0073601] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 07/26/2013] [Indexed: 11/19/2022] Open
Abstract
Chemical analyses were conducted to determine the qualitative and quantitative differences in monoterpenes and sesquiterpenes in plant material from avocado trees, Persea americana Mill. (Lauraceae). The initial study analyzed plant material sampled from the trunk to the leaves through different branch diameters to quantify proximo-distal spatial differences within a tree. All trees were seedlings initiated from a single maternal tree. Two-way analysis of variance was conducted on 34 chemicals that comprised at least 3% of the total chemical content of at least one tree and/or location within a tree. There were significant interactions between genotype and location sampled for most chemicals. Parentage analysis using microsatellite molecular markers (SSR's) determined that the four trees had three fathers and that they represented two full-siblings and two half-sibling trees. Descriptive discriminant analysis found that both genotype and location within a tree could be separated based on chemical content, and that the chemical content from full-siblings tended to be more similar than chemical content from half-siblings. To further explore the relationship between genetic background and chemical content, samples were analyzed from leaf material from 20 trees that included two sets of full-sibling seedling trees, the maternal tree and the surviving paternal tree. Descriptive discriminant analysis found good separation between the two full-sibling groups, and that the separation was associated with chemistry of the parental trees. Six groups of chemicals were identified that explained the variation among the trees. We discuss the results in relation to the discrimination process used by wood-boring insects for site-selection on host trees, for tree selection among potential host trees, and the potential use of terpenoid chemical content in chemotaxonomy of avocado trees.
Collapse
|
17
|
Kendra PE, Montgomery WS, Niogret J, Epsky ND. An Uncertain Future for American Lauraceae: A Lethal Threat from Redbay Ambrosia Beetle and Laurel Wilt Disease (A Review). ACTA ACUST UNITED AC 2013. [DOI: 10.4236/ajps.2013.43a092] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Somwong P, Suttisri R, Buakeaw A. New sesquiterpenes and phenolic compound from Ficus foveolata. Fitoterapia 2012; 85:1-7. [PMID: 23274776 DOI: 10.1016/j.fitote.2012.12.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/17/2012] [Accepted: 12/19/2012] [Indexed: 11/15/2022]
Abstract
Two new eudesmane-type sesquiterpenes, named foveolide A (1) and foveoeudesmenone (2), one new sesquiterpenoid dimer, foveolide B (3) and a new phenolic compound, foveospirolide (4), were isolated along with six known compounds, including 4(15)-eudesmene-1β, 6α-diol (5), 4(15)-eudesmene-1β, 5α-diol (6), friedelin, taraxerol, betulin and ethyl rosmarinate, from the stems of Ficus foveolata. The structures of these new compounds were characterized by spectroscopic methods (IR, MS and NMR). Compound 1 exhibited moderate cytotoxicity against SW620, HepG2, BT474 and KATO-III cancer cell lines, whereas compound 3 was specifically cytotoxic toward SW620 cell line.
Collapse
Affiliation(s)
- Pathom Somwong
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | |
Collapse
|
19
|
Kendra PE, Niogret J, Montgomery WS, Sanchez JS, Deyrup MA, Pruett GE, Ploetz RC, Epsky ND, Heath RR. Temporal analysis of sesquiterpene emissions from manuka and phoebe oil lures and efficacy for attraction of Xyleborus glabratus (Coleoptera: Curculionidae: Scolytinae). JOURNAL OF ECONOMIC ENTOMOLOGY 2012; 105:659-669. [PMID: 22606839 DOI: 10.1603/ec11398] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Redbay ambrosia beetle, Xyleborus glabratus Eichhoff, is an exotic wood-borer that vectors the fungal agent (Raffaelea lauricola) responsible for laurel wilt. Laurel wilt has had severe impact on forest ecosystems in the southeastern United States, killing a large proportion of native Persea trees, particularly redbay (P. borbonia) and swampbay (P. palustris), and currently poses an economic threat to avocado (P. americana) in Florida. To control the spread of this lethal disease, effective attractants are needed for early detection of the vector. Two 12-wk field tests were conducted in Florida to evaluate efficacy and longevity of manuka and phoebe oil lures, and to relate captures of X. glabratus to release rates of putative sesquiterpene attractants. Two trap types were also evaluated, Lindgren funnel traps and sticky panel traps. To document lure emissions over time, a separate set of lures was aged outdoors for 12 wk and sampled periodically to quantify volatile sesquiterpenes using super-Q adsorbant and gas chromatography-mass spectroscopy analysis. Phoebe lures captured significantly more X. glabratus than manuka lures, and sticky traps captured more beetles than funnel traps. Phoebe lures captured X. glabratus for 10-12 wk, but field life of manuka lures was 2-3 wk. Emissions of alpha-copaene, alpha-humulene, and cadinene were consistently higher from phoebe lures, particularly during the 2-3 wk window when manuka lures lost efficacy, suggesting that these sesquiterpenes are primary kairomones used by host-seeking females. Results indicate that the current monitoring system is suboptimal for early detection of X. glabratus because of rapid depletion of sesquiterpenes from manuka lures.
Collapse
Affiliation(s)
- Paul E Kendra
- USDA-ARS, Subtropical Horticulture Research Station, 13601 Old Cutler Road, Miami, FL 33158, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kendra PE, Montgomery WS, Niogret J, Peña JE, Capinera JL, Brar G, Epsky ND, Heath RR. Attraction of the redbay ambrosia beetle, Xyleborus glabratus, to avocado, lychee, and essential oil Lures. J Chem Ecol 2011; 37:932-42. [PMID: 21789550 DOI: 10.1007/s10886-011-9998-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 06/30/2011] [Accepted: 07/07/2011] [Indexed: 11/24/2022]
Abstract
The redbay ambrosia beetle, Xyleborus glabratus Eichhoff, is an exotic wood-boring insect that vectors the mycopathogen responsible for laurel wilt, a lethal vascular disease of trees in the Lauraceae. High mortality has occurred in native Persea species in the southeastern U.S., and the vector-pathogen complex poses an imminent threat to the production of commercial avocado, P. americana, in south Florida. There is a critical need for effective attractants to detect, monitor, and control this invasive pest. This study combined field tests and laboratory bioassays to evaluate the response of female X. glabratus to host-based volatiles from wood of avocado (cultivars of West Indian, Guatemalan, and Mexican races); from wood of lychee (Litchi chinensis, a presumed non-host that is high in the sesquiterpene α-copaene, a putative attractant); and to commercial lures containing manuka and phoebe oils, two reported attractive baits. Volatile collections and GC-MS analyses were performed to quantify the sesquiterpene content of test substrates. In the field, traps baited with lychee wood captured more beetles than those with wood from avocado cultivars; traps baited with phoebe oil lures captured more beetles than those with manuka oil lures (the current monitoring tool). In field and laboratory tests, X. glabratus did not show a preference among avocado races in either attraction or host acceptance (initiation of boring). In choice tests, lychee was more attractive than avocado initially, but a higher percentage of beetles bored into avocado, suggesting that lychee emits more powerful olfactory/visual cues, but that avocado contains more of the secondary cues necessary for host recognition. Emissions of α-copaene, β-caryophyllene, and α-humulene were correlated with field captures, and lychee wood may be a source of additional semiochemicals for X. glabratus.
Collapse
Affiliation(s)
- Paul E Kendra
- USDA-ARS, Subtropical Horticulture Research Station, Miami, FL 33158, USA.
| | | | | | | | | | | | | | | |
Collapse
|