1
|
Li D, Li HY, Zhang JR, Wu YJ, Zhao SX, Liu SS, Pan LL. Plant resistance against whitefly and its engineering. FRONTIERS IN PLANT SCIENCE 2023; 14:1232735. [PMID: 37711302 PMCID: PMC10498545 DOI: 10.3389/fpls.2023.1232735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Plants face constant threats from insect herbivores, which limit plant distribution and abundance in nature and crop productivity in agricultural ecosystems. In recent decades, the whitefly Bemisia tabaci, a group of phloem-feeding insects, has emerged as pests of global significance. In this article, we summarize current knowledge on plant defenses against whitefly and approaches to engineer plant resistance to whitefly. Physically, plants deploy trichome and acylsugar-based strategies to restrain nutrient extraction by whitefly. Chemically, toxic secondary metabolites such as terpenoids confer resistance against whitefly in plants. Moreover, the jasmonate (JA) signaling pathway seems to be the major regulator of whitefly resistance in many plants. We next review advances in interfering with whitefly-plant interface by engineering of plant resistance using conventional and biotechnology-based breeding. These breeding programs have yielded many plant lines with high resistance against whitefly, which hold promises for whitefly control in the field. Finally, we conclude with an outlook on several issues of particular relevance to the nature and engineering of plant resistance against whitefly.
Collapse
Affiliation(s)
- Di Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Heng-Yu Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jing-Ru Zhang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yi-Jie Wu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shi-Xing Zhao
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Li-Long Pan
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- The Rural Development Academy, Zhejiang University, Hangzhou, China
| |
Collapse
|
2
|
Ren J, Peng ZK, Yang ZZ, Tian LX, Liu SN, Wang SL, Wu QJ, Xie W, Zhang YJ. Genome-wide identification and analysis of sulfatase and sulfatase modifying factor genes in Bemisia tabaci (Hemiptera: Aleyrodidae). INSECT SCIENCE 2021; 28:1541-1552. [PMID: 33399267 DOI: 10.1111/1744-7917.12898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/09/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
The invasive pest whitefly (Bemisia tabaci) is a complex species, of which Middle East-Minor Asia 1 (MEAM1) and Mediterranean (MED) are the two most damaging members. Previous research showed that cabbage is frequently infested with MEAM1 but seldomly with MED, and this difference in performance is associated with glucosinolate (GS) content. Some insects can modify GS using glucosinolate sulfatase (SULF), the activity of which is regulated by sulfatase modifying factor 1 (SUMF1); therefore, to increase our understanding of different performances of MEAM1 and MED on cabbage plants, we identified and compared nine putative SULFs and one SUMF in MEAM1 and MED. We found that the lengths of two genes, BtSulf2 and BtSulf4, differed between MEAM1 and MED. The messenger RNA levels of BtSulf4 increased more than 20-fold after MEAM1 and MED adults were exposed to GS, but BtSulf2 expression was only induced by GS in MEAM1. Knockdown of BtSulf2 and BtSulf4 in MEAM1 resulted in a substantial increase in the mortality of GS-treated adults but not in MED. These results indicate that differences in BtSulf2 and BtSulf4 sequences and/or expression may explain why MEAM1 performs better than MED on cabbage. Our results provide a basis for future functional research on SULF and SUMF in B. tabaci.
Collapse
Affiliation(s)
- Jun Ren
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zheng-Ke Peng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ze-Zhong Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Li-Xia Tian
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shao-Nan Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shao-Li Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qing-Jun Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - You-Jun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
3
|
Li J, Qian HM, Pan LL, Wang QM, Liu SS. Performance of two species of whiteflies is unaffected by glucosinolate profile in Brassica plants. PEST MANAGEMENT SCIENCE 2021; 77:4313-4320. [PMID: 33942969 DOI: 10.1002/ps.6460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND While plant glucosinolates are known to impart resistance to many insects, their role in the interactions between plants and many phloem-feeding insects such as whiteflies are poorly understood. The whitefly Bemisia tabaci complex comprises many cryptic species that differ in the ability to utilize Brassica plants. However, whether Brassica plants-specific traits such as glucosinolates determine differences of whiteflies in colonizing Brassica plants remains in question. RESULTS We first observed performance of two whitefly species MEAM1 and Asia II 3, which differ obviously in their ability to colonize Brassica plants, on four cultivars of three Brassica species that vary in glucosinolate profile. We found that the life history characteristics of each of the two whitefly species seems to be only marginally affected by cultivar. We next used wild-type Arabidopsis plants and mutants defective in glucosinolate biosynthesis or hydrolysis to explore the effects of glucosinolates on the whitefly. We found that fecundity and development of immature stages of neither of the two whitefly species differ significantly between wild-type and mutants. CONCLUSION The data suggest that glucosinolates may have little effect on the oviposition by adults and the survival and development of immature stages of MEAM1 and Asia II 3 whiteflies. The marked differences in colonizing Brassica crops between the two whitefly species are likely due to plant traits other than glucosinolates. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jie Li
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Hong-Mei Qian
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Li-Long Pan
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qiao-Mei Wang
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Easson MLAE, Malka O, Paetz C, Hojná A, Reichelt M, Stein B, van Brunschot S, Feldmesser E, Campbell L, Colvin J, Winter S, Morin S, Gershenzon J, Vassão DG. Activation and detoxification of cassava cyanogenic glucosides by the whitefly Bemisia tabaci. Sci Rep 2021; 11:13244. [PMID: 34168179 PMCID: PMC8225905 DOI: 10.1038/s41598-021-92553-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/10/2021] [Indexed: 11/19/2022] Open
Abstract
Two-component plant defenses such as cyanogenic glucosides are produced by many plant species, but phloem-feeding herbivores have long been thought not to activate these defenses due to their mode of feeding, which causes only minimal tissue damage. Here, however, we report that cyanogenic glycoside defenses from cassava (Manihot esculenta), a major staple crop in Africa, are activated during feeding by a pest insect, the whitefly Bemisia tabaci, and the resulting hydrogen cyanide is detoxified by conversion to beta-cyanoalanine. Additionally, B. tabaci was found to utilize two metabolic mechanisms to detoxify cyanogenic glucosides by conversion to non-activatable derivatives. First, the cyanogenic glycoside linamarin was glucosylated 1–4 times in succession in a reaction catalyzed by two B. tabaci glycoside hydrolase family 13 enzymes in vitro utilizing sucrose as a co-substrate. Second, both linamarin and the glucosylated linamarin derivatives were phosphorylated. Both phosphorylation and glucosidation of linamarin render this plant pro-toxin inert to the activating plant enzyme linamarase, and thus these metabolic transformations can be considered pre-emptive detoxification strategies to avoid cyanogenesis.
Collapse
Affiliation(s)
| | - Osnat Malka
- The Hebrew University of Jerusalem, 7610001, Rehovot, Israel.
| | - Christian Paetz
- Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Anna Hojná
- Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | | | - Beate Stein
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38104, Braunschweig, Germany
| | - Sharon van Brunschot
- Natural Resources Institute, University of Greenwich, Chatham Maritime, ME4 4TB, Kent, UK.,University of Queensland, Brisbane, QLD, 4072, Australia
| | | | - Lahcen Campbell
- EMBL-European Bioinformatics Institute, Cambridge, CB10 1SD, UK
| | - John Colvin
- Natural Resources Institute, University of Greenwich, Chatham Maritime, ME4 4TB, Kent, UK
| | - Stephan Winter
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38104, Braunschweig, Germany
| | - Shai Morin
- The Hebrew University of Jerusalem, 7610001, Rehovot, Israel
| | | | - Daniel G Vassão
- Max Planck Institute for Chemical Ecology, 07745, Jena, Germany.
| |
Collapse
|
5
|
Manivannan A, Israni B, Luck K, Götz M, Seibel E, Easson MLAE, Kirsch R, Reichelt M, Stein B, Winter S, Gershenzon J, Vassão DG. Identification of a Sulfatase that Detoxifies Glucosinolates in the Phloem-Feeding Insect Bemisia tabaci and Prefers Indolic Glucosinolates. FRONTIERS IN PLANT SCIENCE 2021; 12:671286. [PMID: 34149771 PMCID: PMC8212129 DOI: 10.3389/fpls.2021.671286] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Cruciferous plants in the order Brassicales defend themselves from herbivory using glucosinolates: sulfur-containing pro-toxic metabolites that are activated by hydrolysis to form compounds, such as isothiocyanates, which are toxic to insects and other organisms. Some herbivores are known to circumvent glucosinolate activation with glucosinolate sulfatases (GSSs), enzymes that convert glucosinolates into inactive desulfoglucosinolates. This strategy is a major glucosinolate detoxification pathway in a phloem-feeding insect, the silverleaf whitefly Bemisia tabaci, a serious agricultural pest of cruciferous vegetables. In this study, we identified and characterized an enzyme responsible for glucosinolate desulfation in the globally distributed B. tabaci species MEAM1. In in vitro assays, this sulfatase showed a clear preference for indolic glucosinolates compared with aliphatic glucosinolates, consistent with the greater representation of desulfated indolic glucosinolates in honeydew. B. tabaci might use this detoxification strategy specifically against indolic glucosinolates since plants may preferentially deploy indolic glucosinolates against phloem-feeding insects. In vivo silencing of the expression of the B. tabaci GSS gene via RNA interference led to lower levels of desulfoglucosinolates in honeydew. Our findings expand the knowledge on the biochemistry of glucosinolate detoxification in phloem-feeding insects and suggest how detoxification pathways might facilitate plant colonization in a generalist herbivore.
Collapse
Affiliation(s)
| | - Bhawana Israni
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Katrin Luck
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Monika Götz
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Elena Seibel
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Roy Kirsch
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Beate Stein
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Stephan Winter
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | | | | |
Collapse
|
6
|
Malka O, Easson MLAE, Paetz C, Götz M, Reichelt M, Stein B, Luck K, Stanišić A, Juravel K, Santos-Garcia D, Mondaca LL, Springate S, Colvin J, Winter S, Gershenzon J, Morin S, Vassão DG. Glucosylation prevents plant defense activation in phloem-feeding insects. Nat Chem Biol 2020; 16:1420-1426. [PMID: 32989301 DOI: 10.1038/s41589-020-00658-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022]
Abstract
The metabolic adaptations by which phloem-feeding insects counteract plant defense compounds are poorly known. Two-component plant defenses, such as glucosinolates, consist of a glucosylated protoxin that is activated by a glycoside hydrolase upon plant damage. Phloem-feeding herbivores are not generally believed to be negatively impacted by two-component defenses due to their slender piercing-sucking mouthparts, which minimize plant damage. However, here we document that glucosinolates are indeed activated during feeding by the whitefly Bemisia tabaci. This phloem feeder was also found to detoxify the majority of the glucosinolates it ingests by the stereoselective addition of glucose moieties, which prevents hydrolytic activation of these defense compounds. Glucosylation of glucosinolates in B. tabaci was accomplished via a transglucosidation mechanism, and two glycoside hydrolase family 13 (GH13) enzymes were shown to catalyze these reactions. This detoxification reaction was also found in a range of other phloem-feeding herbivores.
Collapse
Affiliation(s)
- Osnat Malka
- The Hebrew University of Jerusalem, Rehovot, Israel.
| | | | | | - Monika Götz
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | | | - Beate Stein
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Katrin Luck
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Ksenia Juravel
- The Hebrew University of Jerusalem, Rehovot, Israel
- Ludwig Maximilian University, Munich, Germany
| | | | | | - Simon Springate
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, UK
| | - John Colvin
- Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, UK
| | - Stephan Winter
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | | | - Shai Morin
- The Hebrew University of Jerusalem, Rehovot, Israel
| | | |
Collapse
|
7
|
Hu J, Yang JJ, Liu BM, Cui HY, Zhang YJ, Jiao XG. Feeding behavior explains the different effects of cabbage on MEAM1 and MED cryptic species of Bemisia tabaci. INSECT SCIENCE 2020; 27:1276-1284. [PMID: 31769205 DOI: 10.1111/1744-7917.12739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
MEAM1 (Middle East-Asia Minor 1, "B" biotype) and MED (Mediterranean, "Q" biotype) are the two most destructive cryptic species of the Bemisia tabaci complex on the planet. Our previous studies have shown that MEAM1 outcompetes MED on cabbage; the underlying mechanism is unknown. In the Brassicaceae family, the glucosinolate-myrosinase defense system plays a crucial role in deterring feeding, inhibiting growth, and causing acute toxicity against a wide range of generalist herbivores. In the present study, we first compared the survival of MEAM1 and MED exposed to sinigrin (a glucosinolate) and myrosinase (an enzyme that degrades glucosinolates); we found that survival of both species was high in response to sinigrin alone but was near zero in response to sinigrin + myrosinase. We then used electropenetrography (electrical penetration graphs, EPG) to assess the feeding behaviors of MEAM1 and MED whiteflies on cabbage. The EPG results revealed that the mean duration of each potential drop (pd, indicating an intracellular puncture) was substantially longer for MED than MEAM1 on cabbage, indicating that the exposure to the toxic hydrolysates of glucosinolate and myrosinase is greater for MED than for MEAM1. We therefore conclude that differences in penetrating behaviors may help explain the different effects of cabbage on MEAM1 and MED whitefly species.
Collapse
Affiliation(s)
- Jie Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Center for Behavioral Ecology & Evolution, School of Life Sciences, Hubei University, Wuhan, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jin-Jian Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Center for Behavioral Ecology & Evolution, School of Life Sciences, Hubei University, Wuhan, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bai-Ming Liu
- Tianjin Institute of Plant Protection, Tianjin, China
| | - Hong-Ying Cui
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - You-Jun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiao-Guo Jiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Center for Behavioral Ecology & Evolution, School of Life Sciences, Hubei University, Wuhan, China
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Guo L, Xie W, Yang Z, Xu J, Zhang Y. Genome-Wide Identification and Expression Analysis of Udp-Glucuronosyltransferases in the Whitefly Bemisia Tabaci (Gennadius) (HemipterA: Aleyrodidae). Int J Mol Sci 2020; 21:ijms21228492. [PMID: 33187355 PMCID: PMC7697561 DOI: 10.3390/ijms21228492] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is an important agricultural pest worldwide. Uridine diphosphate (UDP)-glucuronosyltransferases (UGTs) are one of the largest and most ubiquitous groups of proteins. Because of their role in detoxification, insect UGTs are attracting increasing attention. In this study, we identified and analyzed UGT genes in B. tabaci MEAM1 to investigate their potential roles in host adaptation and reproductive capacity. Based on phylogenetic and structural analyses, we identified 76 UGT genes in the B. tabaci MEAM1 genome. RNA-seq and real-time quantitative PCR (RT-qPCR) revealed differential expression patterns of these genes at different developmental stages and in association with four host plants (cabbage, cucumber, cotton and tomato). RNA interference results of selected UGTs showed that, when UGT352A1, UGT352B1, and UGT354A1 were respectively silenced by feeding on dsRNA, the fecundity of B. tabaci MEAM1 was reduced, suggesting that the expressions of these three UGT genes in this species may be associated with host-related fecundity. Together, our results provide detailed UGTs data in B.tabaci and help guide future studies on the mechanisms of host adaptation by B.tabaci.
Collapse
Affiliation(s)
- Litao Guo
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China;
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (W.X.); (Z.Y.)
| | - Wen Xie
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (W.X.); (Z.Y.)
| | - Zezhong Yang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (W.X.); (Z.Y.)
| | - Jianping Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China;
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
- Correspondence: (J.X.); (Y.Z.)
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (W.X.); (Z.Y.)
- Correspondence: (J.X.); (Y.Z.)
| |
Collapse
|
9
|
Batyrshina ZS, Yaakov B, Shavit R, Singh A, Tzin V. Comparative transcriptomic and metabolic analysis of wild and domesticated wheat genotypes reveals differences in chemical and physical defense responses against aphids. BMC PLANT BIOLOGY 2020; 20:19. [PMID: 31931716 PMCID: PMC6958765 DOI: 10.1186/s12870-019-2214-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/22/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND Young wheat plants are continuously exposed to herbivorous insect attack. To reduce insect damage and maintain their growth, plants evolved different defense mechanisms, including the biosynthesis of deterrent compounds named benzoxazinoids, and/or trichome formation that provides physical barriers. It is unclear whether both of these mechanisms are equally critical in providing an efficient defense for wheat seedlings against aphids-an economically costly pest in cereal production. RESULTS In this study, we compared the transcriptome, metabolome, benzoxazinoids, and trichome density of three selected wheat genotypes, with a focus on differences related to defense mechanisms. We chose diverse wheat genotypes: two tetraploid wheat genotypes, domesticated durum 'Svevo' and wild emmer 'Zavitan,' and one hexaploid bread wheat, 'Chinese Spring.' The full transcriptomic analysis revealed a major difference between the three genotypes, while the clustering of significantly different genes suggested a higher similarity between the two domesticated wheats than between either and the wild wheat. A pathway enrichment analysis indicated that the genes associated with primary metabolism, as well as the pathways associated with defense such as phytohormones and specialized metabolites, were different between the three genotypes. Measurement of benzoxazinoid levels at the three time points (11, 15, and 18 days after germination) revealed high levels in the two domesticated genotypes, while in wild emmer wheat, they were below detection level. In contrast to the benzoxazinoid levels, the trichome density was dramatically higher in the wild emmer than in the domesticated wheat. Lastly, we tested the bird cherry-oat aphid's (Rhopalosiphum padi) performance and found that Chinese Spring is more resistant than the tetraploid genotypes. CONCLUSIONS Our results show that benzoxazinoids play a more significant defensive role than trichomes. Differences between the abundance of defense mechanisms in the wild and domesticated plants were observed in which wild emmer possesses high physical defenses while the domesticated wheat genotypes have high chemical defenses. These findings provide new insights into the defense adaptations of wheat plants against aphids.
Collapse
Affiliation(s)
- Zhaniya S Batyrshina
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreseht Ben Gurion, Beer-Sheva, Israel
| | - Beery Yaakov
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreseht Ben Gurion, Beer-Sheva, Israel
| | - Reut Shavit
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreseht Ben Gurion, Beer-Sheva, Israel
| | - Anuradha Singh
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreseht Ben Gurion, Beer-Sheva, Israel
| | - Vered Tzin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreseht Ben Gurion, Beer-Sheva, Israel.
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
10
|
Broekgaarden C, Pelgrom KTB, Bucher J, van Dam NM, Grosser K, Pieterse CMJ, van Kaauwen M, Steenhuis G, Voorrips RE, de Vos M, Vosman B, Worrich A, van Wees SCM. Combining QTL mapping with transcriptome and metabolome profiling reveals a possible role for ABA signaling in resistance against the cabbage whitefly in cabbage. PLoS One 2018; 13:e0206103. [PMID: 30399182 PMCID: PMC6219772 DOI: 10.1371/journal.pone.0206103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/05/2018] [Indexed: 11/18/2022] Open
Abstract
Whiteflies are among the world's most significant agricultural pests and chemical insecticides are extensively used to reduce crop damage to acceptable levels. However, nearly all insecticides pose a threat to the environment and alternative control methods, such as breeding of crop varieties that are inherently insect-resistant, are needed. Previously, a strong source of plant-age dependent resistance to the cabbage whitefly (Aleyrodes proletella) has been identified in the modern white cabbage (Brassica oleracea var. capitata) variety Rivera. However, nothing is known about the molecular mechanisms or the genes involved in this resistance. In the present study, a multidisciplinary approach combining transcriptome and metabolome profiling with genetic mapping was used to identify the molecular players of whitefly resistance in cabbage. Transcriptome profiles of young (susceptible) and older (resistant) Rivera plants were analyzed using RNA sequencing. While many genes involved in general processes were differentially expressed between both ages, several defense-related processes were overrepresented in the transcriptome profile of older plants. Hormone measurements revealed that jasmonic acid (JA) levels decreased upon whitefly infestation at both plant ages. Interestingly, abscisic acid (ABA) levels showed contrasting effects in response to whitefly infestation: ABA levels were reduced in young plants but induced in older plants upon whitefly feeding. Auxin levels were significantly lower in older plants compared with young plants, independent of whitefly presence, while glucosinolate levels were higher. Additionally, whitefly performance was monitored in an F2 population derived from a cross between Rivera and the susceptible white cabbage variety Christmas Drumhead. Significant QTL intervals were mapped on chromosome 2 and 9 for oviposition rate and whitefly adult survival, respectively. Several genes that were higher expressed in older plants and located in the identified QTL intervals were orthologous to Arabidopsis genes that have been related to ABA signaling, suggesting a role for ABA in the regulation of resistance towards whiteflies. Our results show that combining different omics approaches is a useful strategy to identify candidate genes underlying insect resistance.
Collapse
Affiliation(s)
- Colette Broekgaarden
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, the Netherlands
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Wageningen, the Netherlands
- Keygene N.V., Wageningen, the Netherlands
| | - Koen T. B. Pelgrom
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Wageningen, the Netherlands
| | - Johan Bucher
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Wageningen, the Netherlands
| | - Nicole M. van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Friedrich Schiller University Jena, Institute of Biodiversity, Jena, Germany
| | - Katharine Grosser
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Friedrich Schiller University Jena, Institute of Biodiversity, Jena, Germany
| | - Corné M. J. Pieterse
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, the Netherlands
| | - Martijn van Kaauwen
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Wageningen, the Netherlands
| | - Greet Steenhuis
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Wageningen, the Netherlands
| | - Roeland E. Voorrips
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Wageningen, the Netherlands
| | | | - Ben Vosman
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Wageningen, the Netherlands
| | - Anja Worrich
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Friedrich Schiller University Jena, Institute of Biodiversity, Jena, Germany
| | - Saskia C. M. van Wees
- Plant-Microbe Interactions, Department of Biology, Science4Life, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
11
|
Eakteiman G, Moses-Koch R, Moshitzky P, Mestre-Rincon N, Vassão DG, Luck K, Sertchook R, Malka O, Morin S. Targeting detoxification genes by phloem-mediated RNAi: A new approach for controlling phloem-feeding insect pests. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 100:10-21. [PMID: 29859812 DOI: 10.1016/j.ibmb.2018.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/29/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Many phloem-feeding insects are considered severe pests of agriculture and are controlled mainly by chemical insecticides. Continued extensive use of these inputs is environmentally undesirable, and also leads to the development of insecticide resistance. Here, we used a plant-mediated RNA interference (RNAi) approach, to develop a new control strategy for phloem-feeding insects. The approach aims to silence "key" detoxification genes, involved in the insect's ability to neutralize defensive and toxic plant chemistry. We targeted a glutathione S-transferase (GST) gene, BtGSTs5, in the phloem-feeding whitefly Bemisia tabaci, a devastating global agricultural pest. We report three major findings. First, significant down regulation of the BtGSTs5 gene was obtained in the gut of B. tabaci when the insects were fed on Arabidopsis thaliana transgenic plants expressing dsRNA against BtGSTs5 under a phloem-specific promoter. This brings evidence that phloem-feeding insects can be efficiently targeted by plant-mediated RNAi. Second, in-silico and in-vitro analyses indicated that the BtGSTs5 enzyme can accept as substrates, hydrolyzed aliphatic- and indolic-glucosinolates, and produce their corresponding detoxified conjugates. Third, performance assays suggested that the BtGSTs5 gene silencing prolongs the developmental period of B. tabaci nymphs. Taken together, these findings suggest that BtGSTs5 is likely to play an important role in enabling B. tabaci to successfully feed on glucosinolate-producing plants. Targeting the gene by RNAi in Brassicaceae cropping systems, will likely not eliminate the pest populations from the fields but will significantly reduce their success over the growing season, support prominent activity of natural enemies, eventually allowing the establishment of stable and sustainable agroecosystem.
Collapse
Affiliation(s)
- Galit Eakteiman
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, 76100 Israel.
| | - Rita Moses-Koch
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, 76100 Israel
| | - Pnina Moshitzky
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, 76100 Israel
| | | | - Daniel G Vassão
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Katrin Luck
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | | | - Osnat Malka
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, 76100 Israel
| | - Shai Morin
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, 76100 Israel
| |
Collapse
|
12
|
Cui H, Guo L, Wang S, Xie W, Jiao X, Wu Q, Zhang Y. The ability to manipulate plant glucosinolates and nutrients explains the better performance of Bemisia tabaci Middle East-Asia Minor 1 than Mediterranean on cabbage plants. Ecol Evol 2017; 7:6141-6150. [PMID: 28861220 PMCID: PMC5574797 DOI: 10.1002/ece3.2921] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 02/13/2017] [Accepted: 02/21/2017] [Indexed: 11/25/2022] Open
Abstract
The performance of herbivorous insects is greatly affected by host chemical defenses and nutritional quality. Some herbivores have developed the ability to manipulate plant defenses via signaling pathways. It is currently unclear, however, whether a herbivore can benefit by simultaneously reducing plant defenses and enhancing plant nutritional quality. Here, we show that the better performance of the whitefly Bemisia tabaci Middle East‐Asia Minor 1 (MEAM1; formerly the “B” biotype) than Mediterranean (MED; formerly the “Q” biotype) on cabbage is associated with a suppression of glucosinolate (GS) content and an increase in amino acid supply in MEAM1‐infested cabbage compared with MED‐infested cabbage. MEAM1 had higher survival, higher fecundity, higher intrinsic rate of increase (rm), a longer life span, and a shorter developmental time than MED on cabbage plants. Amino acid content was higher in cabbage infested with MEAM1 than MED. Although infestation by either biotype decreased the levels of total GS, aliphatic GS, glucoiberin, sinigrin, glucobrassicin, and 4OH‐glucobrassicin, and the expression of related genes in cabbage, MED infestation increased the levels of 4ME‐glucobrassicin, neoglucobrassicin, progoitrin, and glucoraphanin. The GS content and expression of GS‐related genes were higher in cabbage infested with MED than with MEAM1. Our results suggest that MEAM1 performs better than MED on cabbage by manipulating host defenses and nutritional quality.
Collapse
Affiliation(s)
- Hongying Cui
- Department of Plant Protection Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing China
| | - Litao Guo
- Department of Plant Protection Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing China
| | - Shaoli Wang
- Department of Plant Protection Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing China
| | - Wen Xie
- Department of Plant Protection Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing China
| | - Xiaoguo Jiao
- College of Life Science Hubei University Wuhan China
| | - Qingjun Wu
- Department of Plant Protection Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing China
| | - Youjun Zhang
- Department of Plant Protection Institute of Vegetables and Flowers Chinese Academy of Agricultural Sciences Beijing China
| |
Collapse
|
13
|
Lee G, Joo Y, Diezel C, Lee EJ, Baldwin IT, Kim SG. Trichobaris weevils distinguish amongst toxic host plants by sensing volatiles that do not affect larval performance. Mol Ecol 2016; 25:3509-19. [PMID: 27146082 DOI: 10.1111/mec.13686] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/24/2016] [Accepted: 04/27/2016] [Indexed: 11/27/2022]
Abstract
Herbivorous insects use plant metabolites to inform their host plant selection for oviposition. These host-selection behaviours are often consistent with the preference-performance hypothesis; females oviposit on hosts that maximize the performance of their offspring. However, the metabolites used for these oviposition choices and those responsible for differences in offspring performance remain unknown for ecologically relevant interactions. Here, we examined the host-selection behaviours of two sympatric weevils, the Datura (Trichobaris compacta) and tobacco (T. mucorea) weevils in field and glasshouse experiments with transgenic host plants specifically altered in different components of their secondary metabolism. Adult females of both species strongly preferred to feed on D. wrightii rather than on N. attenuata leaves, but T. mucorea preferred to oviposit on N. attenuata, while T. compacta oviposited only on D. wrightii. These oviposition behaviours increased offspring performance: T. compacta larvae only survived in D. wrightii stems and T. mucorea larvae survived better in N. attenuata than in D. wrightii stems. Choice assays with nicotine-free, JA-impaired, and sesquiterpene-over-produced isogenic N. attenuata plants revealed that although half of the T. compacta larvae survived in nicotine-free N. attenuata lines, nicotine did not influence the oviposition behaviours of both the nicotine-adapted and nicotine-sensitive species. JA-induced sesquiterpene volatiles are key compounds influencing T. mucorea females' oviposition choices, but these sesquiterpenes had no effect on larval performance. We conclude that adult females are able to choose the best host plant for their offspring and use chemicals different from those that influence larval performance to inform their oviposition decisions.
Collapse
Affiliation(s)
- Gisuk Lee
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
- School of Biological Science, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Youngsung Joo
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Celia Diezel
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Eun Ju Lee
- School of Biological Science, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| | - Sang-Gyu Kim
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, Jena, D-07745, Germany
| |
Collapse
|
14
|
Glucosinolate Desulfation by the Phloem-Feeding Insect Bemisia tabaci. J Chem Ecol 2016; 42:230-5. [DOI: 10.1007/s10886-016-0675-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/27/2015] [Accepted: 02/16/2016] [Indexed: 01/04/2023]
|
15
|
Broekgaarden C, Bucher J, Bac-Molenaar J, Keurentjes JJB, Kruijer W, Voorrips RE, Vosman B. Novel Genes Affecting the Interaction between the Cabbage Whitefly and Arabidopsis Uncovered by Genome-Wide Association Mapping. PLoS One 2015; 10:e0145124. [PMID: 26699853 PMCID: PMC4689410 DOI: 10.1371/journal.pone.0145124] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 11/29/2015] [Indexed: 01/22/2023] Open
Abstract
Plants have evolved a variety of ways to defend themselves against biotic attackers. This has resulted in the presence of substantial variation in defense mechanisms among plants, even within a species. Genome-wide association (GWA) mapping is a useful tool to study the genetic architecture of traits, but has so far only had limited exploitation in studies of plant defense. Here, we study the genetic architecture of defense against the phloem-feeding insect cabbage whitefly (Aleyrodes proletella) in Arabidopsis thaliana. We determined whitefly performance, i.e. the survival and reproduction of whitefly females, on 360 worldwide selected natural accessions and subsequently performed GWA mapping using 214,051 SNPs. Substantial variation for whitefly adult survival and oviposition rate (number of eggs laid per female per day) was observed between the accessions. We identified 39 candidate SNPs for either whitefly adult survival or oviposition rate, all with relatively small effects, underpinning the complex architecture of defense traits. Among the corresponding candidate genes, i.e. genes in linkage disequilibrium (LD) with candidate SNPs, none have previously been identified as a gene playing a role in the interaction between plants and phloem-feeding insects. Whitefly performance on knock-out mutants of a number of candidate genes was significantly affected, validating the potential of GWA mapping for novel gene discovery in plant-insect interactions. Our results show that GWA analysis is a very useful tool to gain insight into the genetic architecture of plant defense against herbivorous insects, i.e. we identified and validated several genes affecting whitefly performance that have not previously been related to plant defense against herbivorous insects.
Collapse
Affiliation(s)
- Colette Broekgaarden
- Wageningen UR Plant Breeding, Wageningen University, Wageningen, The Netherlands
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Johan Bucher
- Wageningen UR Plant Breeding, Wageningen University, Wageningen, The Netherlands
| | - Johanna Bac-Molenaar
- Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands
- Laboratory of Genetics, Wageningen University, Wageningen, Wageningen, The Netherlands
| | | | - Willem Kruijer
- Biometris–Applied Statistics, Department of Plant Science, Wageningen University, Wageningen, The Netherlands
| | - Roeland E. Voorrips
- Wageningen UR Plant Breeding, Wageningen University, Wageningen, The Netherlands
| | - Ben Vosman
- Wageningen UR Plant Breeding, Wageningen University, Wageningen, The Netherlands
- * E-mail:
| |
Collapse
|
16
|
Witzel K, Hanschen FS, Klopsch R, Ruppel S, Schreiner M, Grosch R. Verticillium longisporum infection induces organ-specific glucosinolate degradation in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2015; 6:508. [PMID: 26217360 PMCID: PMC4498036 DOI: 10.3389/fpls.2015.00508] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 06/25/2015] [Indexed: 05/03/2023]
Abstract
The species Verticillium represents a group of highly destructive fungal pathogens, responsible for vascular wilt in a number of crops. The host response to infection by Verticillium longisporum at the level of secondary plant metabolites has not been well explored. Natural variation in the glucosinolate (GLS) composition of four Arabidopsis thaliana accessions was characterized: the accessions Bur-0 and Hi-0 accumulated alkenyl GLS, while 3-hydroxypropyl GLS predominated in Kn-0 and Ler-0. With respect to GLS degradation products, Hi-0 and Kn-0 generated mainly isothiocyanates, whereas Bur-0 released epithionitriles and Ler-0 nitriles. An analysis of the effect on the composition of both GLS and its breakdown products in the leaf and root following the plants' exposure to V. longisporum revealed a number of organ- and accession-specific alterations. In the less disease susceptible accessions Bur-0 and Ler-0, colonization depressed the accumulation of GLS in the rosette leaves but accentuated it in the roots. In contrast, in the root, the level of GLS breakdown products in three of the four accessions fell, suggestive of their conjugation or binding to a fungal target molecule(s). The plant-pathogen interaction influenced both the organ- and accession-specific formation of GLS degradation products.
Collapse
Affiliation(s)
- Katja Witzel
- *Correspondence: Katja Witzel, Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979 Grossbeeren, Germany,
| | | | | | | | | | | |
Collapse
|