1
|
Russavage EM, Hewlett JA, Grunseich JM, Szczepaniec A, Rooney WL, Helms AM, Eubanks MD. Aphid-Induced Volatiles and Subsequent Attraction of Natural Enemies Varies among Sorghum Cultivars. J Chem Ecol 2024; 50:262-275. [PMID: 38647585 DOI: 10.1007/s10886-024-01493-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/07/2024] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
The production of herbivore-induced plant volatiles (HIPVs) is a type of indirect defense used by plants to attract natural enemies and reduce herbivory by insect pests. In many crops little is known about genotypic variation in HIPV production or how this may affect natural enemy attraction. In this study, we identified and quantified HIPVs produced by 10 sorghum (Sorghum bicolor) cultivars infested with a prominent aphid pest, the sorghum aphid (Melanaphis sorghi Theobald). Volatiles were collected using dynamic headspace sampling techniques and identified and quantified using GC-MS. The total amounts of volatiles induced by the aphids did not differ among the 10 cultivars, but overall blends of volatiles differed significantly in composition. Most notably, aphid herbivory induced higher levels of methyl salicylate (MeSA) emission in two cultivars, whereas in four cultivars, the volatile emissions did not change in response to aphid infestation. Dual-choice olfactometer assays were used to determine preference of the aphid parasitoid, Aphelinus nigritus, and predator, Chrysoperla rufilabris, between plants of the same cultivar that were un-infested or infested with aphids. Two aphid-infested cultivars were preferred by natural enemies, while four other cultivars were more attractive to natural enemies when they were free of aphids. The remaining four cultivars elicited no response from parasitoids. Our work suggests that genetic variation in HIPV emissions greatly affects parasitoid and predator attraction to aphid-infested sorghum and that screening crop cultivars for specific predator and parasitoid attractants has the potential to improve the efficacy of biological control.
Collapse
Affiliation(s)
- Emily M Russavage
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, 77843, TX, USA.
| | - Jeremy A Hewlett
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, 77843, TX, USA
| | - John M Grunseich
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, 77843, TX, USA
| | - Adrianna Szczepaniec
- Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA
| | - William L Rooney
- Department of Soil and Crop Science, Texas A&M University, 405 Turk Rd, College Station, TX, 77843, USA
| | - Anjel M Helms
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, 77843, TX, USA
| | - Micky D Eubanks
- Department of Entomology, Texas A&M University, 2475 TAMU, College Station, 77843, TX, USA
- Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA
| |
Collapse
|
2
|
Balawejder M, Piechowiak T, Kapusta I, Chęciek A, Matłok N. In Vitro Analysis of Selected Antioxidant and Biological Properties of the Extract from Large-Fruited Cranberry Fruits. Molecules 2023; 28:7895. [PMID: 38067623 PMCID: PMC10708325 DOI: 10.3390/molecules28237895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
This study investigated the in vitro antioxidant and biological properties of ethanol extracts obtained from the fruits of the highbush cranberry. The produced extracts exhibited a high content of polyphenols (1041.9 mg 100 g d.m.-1) and a high antioxidant activity (2271.2 mg TE g 100 d.m.-1 using the DPPH method, 1781.5 mg TE g 100 d.m.-1 using the ABTS method), as well as a substantial amount of vitamin C (418.2 mg 100 g d.m.-1). These extracts also demonstrated significant in vitro biological activity. Studies conducted on the Saccharomyces cerevisiae cellular model revealed the strong antioxidant effects of the extract, attributed to a significant reduction in the levels of reactive oxygen species (ROS) within the cells, confirming the utility of the extracts in mitigating oxidative stress. Moreover, inhibitory properties were demonstrated against factors activating metabolic processes characteristic of inflammatory conditions. It was observed that the cranberry extract inhibits the activity of cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) non-selectively. Additionally, the extract was found to be a highly active inhibitor of acetylcholinesterase (AChE), potentially suggesting the applicability of this extract in the prevention of neurodegenerative diseases, including Alzheimer's disease.
Collapse
Affiliation(s)
- Maciej Balawejder
- Department of Chemistry and Food Toxicology, University of Rzeszow, St. Ćwiklińskiej 1a, 35-601 Rzeszow, Poland; (M.B.); (T.P.); (A.C.)
| | - Tomasz Piechowiak
- Department of Chemistry and Food Toxicology, University of Rzeszow, St. Ćwiklińskiej 1a, 35-601 Rzeszow, Poland; (M.B.); (T.P.); (A.C.)
| | - Ireneusz Kapusta
- Department of Food Technology and Human Nutrition, University of Rzeszow, St. Zelwerowicza 4, 35-601 Rzeszow, Poland;
| | - Aleksandra Chęciek
- Department of Chemistry and Food Toxicology, University of Rzeszow, St. Ćwiklińskiej 1a, 35-601 Rzeszow, Poland; (M.B.); (T.P.); (A.C.)
| | - Natalia Matłok
- Department of Food and Agriculture Production Engineering, University of Rzeszow, St. Zelwerowicza 4, 35-601 Rzeszow, Poland
| |
Collapse
|
3
|
Ceballos R, Palma-Millanao R, Navarro PD, Urzúa J, Alveal J. Positive Chemotaxis of the Entomopathogenic Nematode Steinernema australe (Panagrolaimorpha: Steinenematidae) towards High-Bush Blueberry ( Vaccinium corymbosum) Root Volatiles. Int J Mol Sci 2023; 24:10536. [PMID: 37445712 DOI: 10.3390/ijms241310536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/03/2023] [Accepted: 05/04/2023] [Indexed: 07/15/2023] Open
Abstract
The foraging behavior of the infective juveniles (IJs) of entomopathogenic nematodes (EPNs) relies on host-derived compounds, but in a tri-trophic context, herbivore-induced root volatiles act as signals enhancing the biological control of insect pests by recruiting EPNs. In southern Chile, the EPN Steinernema australe exhibits the potential to control the raspberry weevil, Aegorhinus superciliosus, a key pest of blueberry Vaccinium corymbosum. However, there is no information on the quality of the blueberry root volatile plume or the S. australe response to these chemicals as putative attractants. Here, we describe the root volatile profile of blueberries and the chemotaxis behavior of S. australe towards the volatiles identified from Vaccinium corymbosum roots, infested or uninfested with A. superciliosus larvae. Among others, we found linalool, α-terpineol, limonene, eucalyptol, 2-carene, 1-nonine, 10-undecyn-1-ol, and methyl salicylate in root volatiles and, depending on the level of the emissions, they were selected for bioassays. In the dose-response tests, S. australe was attracted to all five tested concentrations of methyl salicylate, 1-nonine, α-terpineol, and 2-carene, as well as to 100 µg mL-1 of 10-undecyn-1-ol, 0.1 and 100 µg mL-1 of linalool, and 100 µg mL-1 of limonene, whereas eucalyptol elicited no attraction or repellency. These results suggest that some volatiles released from damaged roots attract S. australe and may have implications for the biocontrol of subterranean pests.
Collapse
Affiliation(s)
- Ricardo Ceballos
- Laboratory of Insects Chemical Ecology, Instituto de Investigaciones Agropecuarias, INIA Quilamapu, Av. Vicente Méndez 515, Chillán 3800062, Chile
| | - Rubén Palma-Millanao
- Laboratory of Insects Science, Instituto de Investigaciones Agropecuarias, INIA Carillanca, Km 10, Camino Cajón-Vilcún, Temuco 4800000, Chile
- Vicerrectoría de Investigación y Postgrado, Universidad de La Frontera, Temuco 4811230, Chile
| | - Patricia D Navarro
- Laboratory of Insects Science, Instituto de Investigaciones Agropecuarias, INIA Carillanca, Km 10, Camino Cajón-Vilcún, Temuco 4800000, Chile
| | - Julio Urzúa
- Laboratory of Insects Chemical Ecology, Instituto de Investigaciones Agropecuarias, INIA Quilamapu, Av. Vicente Méndez 515, Chillán 3800062, Chile
| | - Juan Alveal
- Laboratory of Insects Chemical Ecology, Instituto de Investigaciones Agropecuarias, INIA Quilamapu, Av. Vicente Méndez 515, Chillán 3800062, Chile
| |
Collapse
|
4
|
Chen X, Wang MY, Deng CH, Beatson RA, Templeton KR, Atkinson RG, Nieuwenhuizen NJ. The hops (Humulus lupulus) genome contains a mid-sized terpene synthase family that shows wide functional and allelic diversity. BMC PLANT BIOLOGY 2023; 23:280. [PMID: 37231379 DOI: 10.1186/s12870-023-04283-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 05/14/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND Hops (Humulus lupulus L.) are a dioecious climbing perennial, with the dried mature "cones" (strobili) of the pistillate/female inflorescences being widely used as both a bittering agent and to enhance the flavour of beer. The glandular trichomes of the bract and bracteole flowering structures of the cones produce an abundance of secondary metabolites, such as terpenoids, bitter acids and prenylated phenolics depending on plant genetics, developmental stage and environment. More knowledge is required on the functional and allelic diversity of terpene synthase (TPS) genes responsible for the biosynthesis of volatile terpenes to assist in flavour-directed hop breeding. RESULTS Major volatile terpene compounds were identified using gas chromatography-mass spectrometry (GC-MS) in the ripe cones of twenty-one hop cultivars grown in New Zealand. All cultivars produced the monoterpene β-myrcene and the sesquiterpenes α-humulene and β-caryophyllene, but the quantities varied broadly. Other terpenes were found in large quantities in only a smaller subset of cultivars, e.g. β-farnesene (in seven cultivars) and α-pinene (in four). In four contrasting cultivars (Wakatu™, Wai-iti™, Nelson Sauvin™, and 'Nugget'), terpene production during cone development was investigated in detail, with concentrations of some of the major terpenes increasing up to 1000-fold during development and reaching maximal levels from 50-60 days after flowering. Utilising the published H. lupulus genome, 87 putative full-length and partial terpene synthase genes were identified. Alleles corresponding to seven TPS genes were amplified from ripe cone cDNA from multiple cultivars and subsequently functionally characterised by transient expression in planta. Alleles of the previously characterised HlSTS1 produced humulene/caryophyllene as the major terpenes. HlRLS alleles produced (R)-(-)-linalool, whilst alleles of two sesquiterpene synthase genes, HlAFS1 and HlAFS2 produced α-farnesene. Alleles of HlMTS1, HlMTS2 and HlTPS1 were inactive in all the hop cultivars studied. CONCLUSIONS Alleles of four TPS genes were identified and shown to produce key aroma volatiles in ripe hop cones. Multiple expressed but inactive TPS alleles were also identified, suggesting that extensive loss-of-function has occurred during domestication and breeding of hops. Our results can be used to develop hop cultivars with novel/improved terpene profiles using marker-assisted breeding strategies to select for, or against, specific TPS alleles.
Collapse
Affiliation(s)
- Xiuyin Chen
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Mindy Y Wang
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Cecilia H Deng
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Ron A Beatson
- PFR, 55 Old Mill Road, RD 3, Motueka, 7198, New Zealand
| | | | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand
| | - Niels J Nieuwenhuizen
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag 92169, Auckland, 1142, New Zealand.
| |
Collapse
|
5
|
Yu H, Kivimäenpää M, Blande JD. Volatile-mediated between-plant communication in Scots pine and the effects of elevated ozone. Proc Biol Sci 2022; 289:20220963. [PMID: 36069014 PMCID: PMC9449471 DOI: 10.1098/rspb.2022.0963] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Conifers are dominant tree species in boreal forests, but are susceptible to attack by bark beetles. Upon bark beetle attack, conifers release substantial quantities of volatile organic compounds known as herbivore-induced plant volatiles (HIPVs). Earlier studies of broadleaved plants have shown that HIPVs provide information to neighbouring plants, which may enhance their defences. However, the defence responses of HIPV-receiver plants have not been described for conifers. Here we advance knowledge of plant-plant communication in conifers by documenting a suite of receiver-plant responses to bark-feeding-induced volatiles. Scots pine seedlings exposed to HIPVs were more resistant to subsequent weevil feeding and received less damage. Receiver plants had both induced and primed volatile emissions and their resin ducts had an increased epithelial cell (EC) mean area and an increased number of cells located in the second EC layer. Importantly, HIPV exposure increased stomatal conductance and net photosynthesis rate of receiver plants. Receiver-plant responses were also examined under elevated ozone conditions and found to be significantly altered. However, the final defence outcome was not affected. These findings demonstrate that HIPVs modulate conifer metabolism through responses spanning photosynthesis and chemical defence. The responses are adjusted under ozone stress, but the defence benefits remain intact.
Collapse
Affiliation(s)
- Hao Yu
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland
| | - Minna Kivimäenpää
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland
| | - James D Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 1627, 70211 Kuopio, Finland
| |
Collapse
|
6
|
Rodriguez-Saona C, Polashock JJ, Kyryczenko-Roth V, Holdcraft R, Jimenez-Gonzalez G, De Moraes CM, Mescher MC. Application of Plant Defense Elicitors Fails to Enhance Herbivore Resistance or Mitigate Phytoplasma Infection in Cranberries. FRONTIERS IN PLANT SCIENCE 2021; 12:700242. [PMID: 34456943 PMCID: PMC8387625 DOI: 10.3389/fpls.2021.700242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Synthetic elicitors of the salicylic acid (SA) and jasmonic acid (JA) plant defense pathways can be used to increase crop protection against herbivores and pathogens. In this study, we tested the hypothesis that elicitors of plant defenses interact with pathogen infection to influence crop resistance against vector and nonvector herbivores. To do so, we employed a trophic system comprising of cranberries (Vaccinium macrocarpon), the phytoplasma that causes false blossom disease, and two herbivores-the blunt-nosed leafhopper (Limotettix vaccinii), the vector of false blossom disease, and the nonvector gypsy moth (Lymantria dispar). We tested four commercial elicitors, including three that activate mainly SA-related plant defenses (Actigard, LifeGard, and Regalia) and one activator of JA-related defenses (Blush). A greenhouse experiment in which phytoplasma-infected and uninfected plants received repeated exposure to elicitors revealed that both phytoplasma infection and elicitor treatment individually improved L. vaccinii and L. dispar mass compared to uninfected, untreated controls; however, SA-based elicitor treatments reduced L. vaccinii mass on infected plants. Regalia also improved L. vaccinii survival. Phytoplasma infection reduced plant size and mass, increased levels of nitrogen (N) and SA, and lowered carbon/nitrogen (C/N) ratios compared to uninfected plants, irrespective of elicitor treatment. Although none of our elicitor treatments influenced transcript levels of a phytoplasma-specific marker gene, all of them increased N and reduced C/N levels; the three SA activators also reduced JA levels. Taken together, our findings reveal positive effects of both phytoplasma infection and elicitor treatment on the performance of L. vaccinii and L. dispar in cranberries, likely via enhancement of plant nutrition and changes in phytohormone profiles, specifically increases in SA levels and corresponding decreases in levels of JA. Thus, we found no evidence that the tested elicitors of plant defenses increase resistance to insect herbivores or reduce disease incidence in cranberries.
Collapse
Affiliation(s)
| | - James J Polashock
- Genetic Improvement of Fruits and Vegetables Lab, United States Department of Agriculture-Agricultural Research Service, Chatsworth, NJ, United States
| | - Vera Kyryczenko-Roth
- P.E. Marucci Center, Rutgers University, Lake Oswego, Chatsworth, NJ, United States
| | - Robert Holdcraft
- P.E. Marucci Center, Rutgers University, Lake Oswego, Chatsworth, NJ, United States
| | - Giovanna Jimenez-Gonzalez
- Escuela de Ciencias Agrícolas, Pecuarias y del Medio Ambiente (ECAPMA), Universidad Nacional Abierta y a Distancia (UNAD), Bogotá, Colombia
| | | | - Mark C Mescher
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
7
|
Naranjo SE, Hagler JR, Byers JA. Methyl Salicylate Fails to Enhance Arthropod Predator Abundance or Predator to Pest Ratios in Cotton. ENVIRONMENTAL ENTOMOLOGY 2021; 50:293-305. [PMID: 33399185 DOI: 10.1093/ee/nvaa175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Indexed: 06/12/2023]
Abstract
Conservation biological control is a fundamental tactic in integrated pest management (IPM). Greater biological control services can be achieved by enhancing agroecosystems to be more favorable to the presence, survival, and growth of natural enemy populations. One approach that has been tested in numerous agricultural systems is the deployment of synthetic chemicals that mimic those produced by the plant when under attack by pests. These signals may attract arthropod natural enemies to crop habitats and thus potentially improve biological control activity locally. A 2-yr field study was conducted in the cotton agroecosystem to evaluate the potential of synthetic methyl salicylate (MeSA) to attract native arthropod natural enemies and to enhance biological control services on two key pests. Slow-release packets of MeSA were deployed in replicated cotton plots season long. The abundance of multiple taxa of natural enemies and two major pests were monitored weekly by several sampling methods. The deployment of MeSA failed to increase natural enemy abundance and pest densities did not decline. Predator to prey ratios, used as a proxy to estimate biological control function, also largely failed to increase with MeSA deployment. One exception was a season-long increase in the ratio of Orius tristicolor (White) (Hemiptera: Anthocoridae) to Bemisia argentifolii Bellows and Perring (= Bemisia tabaci MEAM1) (Hemiptera: Aleyrodidae) adults within the context of biological control informed action thresholds. Overall results suggest that MeSA would not likely enhance conservation biological control by the natural enemy community typical of U.S. western cotton production systems.
Collapse
Affiliation(s)
| | - James R Hagler
- USDA-ARS, Arid-Land Agricultural Research Center, Maricopa, AZ
| | - John A Byers
- USDA-ARS, Arid-Land Agricultural Research Center, Maricopa, AZ
| |
Collapse
|
8
|
Interactive Effects of an Herbivore-Induced Plant Volatile and Color on an Insect Community in Cranberry. INSECTS 2020; 11:insects11080524. [PMID: 32806513 PMCID: PMC7469195 DOI: 10.3390/insects11080524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/29/2020] [Accepted: 08/10/2020] [Indexed: 11/17/2022]
Abstract
Simple Summary Plants often increase their odor emissions after herbivore feeding damage, which in turn attract natural enemies of the herbivores such as insect predators. Synthetic versions of these so-called herbivore-induced plant volatiles (HIPVs) can be used to monitor populations of beneficial insects in agriculture. In addition, HIPVs can potentially attract the herbivores themselves. However, whether synthetic HIPVs interact with color to affect insect communities in farms is unknown. In this study, we tested a lure containing the HIPV methyl salicylate (named ‘PredaLure’) in combination with five different colored sticky traps to monitor insect populations in cranberry fields (also known as bogs). We found that hoverflies (also called flower flies or syrphid flies), whose larvae are predators of several insect pests including aphids and thrips, were attracted to PredaLure but this attraction was affected by the color of the trap. In fact, the numbers of hoverflies were 2–4 higher on yellow and white traps baited with PredaLure than on unbaited traps. Irrespective of trap color, plant-feeding thrips were also more attracted to PredaLure-baited than unbaited traps. Our study provides guidelines for the use of odor-baited colored sticky traps to monitor natural enemies such as hoverflies in an agricultural system like cranberries. Abstract Synthetic herbivore-induced plant volatiles (HIPVs) could be used to monitor insect populations in agroecosystems, including beneficial insects such as natural enemies of herbivores. However, it is unknown whether insect responses to HIPVs are influenced by visual cues, e.g., color. We hypothesized that the HIPV methyl salicylate (MeSA) interacts with color to affect insect captures on sticky traps. To test this, we conducted a 5 × 2 factorial field experiment in a commercial cranberry farm to monitor numbers of insect predators, parasitoids, and herbivores by using five colored sticky traps that were either baited with a MeSA lure (named ‘PredaLure’) or unbaited. At the community level, PredaLure increased captures of predators. At the individual-taxon level, captures of the hoverfly Toxomerus marginatus (Diptera: Syrphidae) and thrips (Thysanoptera: Thripidae) were higher on PredaLure-baited traps. However, only captures of T. marginatus on PredaLure-baited traps interacted significantly with color such that the numbers of this hoverfly on yellow and white traps were 2–4 times higher when baited with PredaLure. This study is the first to document the interactive effects of synthetic HIPVs and color on an insect community. Our findings have implications for optimal selection of HIPV-baited colored traps to monitor natural enemy populations in agroecosystems.
Collapse
|
9
|
Iost Filho FH, Heldens WB, Kong Z, de Lange ES. Drones: Innovative Technology for Use in Precision Pest Management. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:1-25. [PMID: 31811713 DOI: 10.1093/jee/toz268] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Indexed: 06/10/2023]
Abstract
Arthropod pest outbreaks are unpredictable and not uniformly distributed within fields. Early outbreak detection and treatment application are inherent to effective pest management, allowing management decisions to be implemented before pests are well-established and crop losses accrue. Pest monitoring is time-consuming and may be hampered by lack of reliable or cost-effective sampling techniques. Thus, we argue that an important research challenge associated with enhanced sustainability of pest management in modern agriculture is developing and promoting improved crop monitoring procedures. Biotic stress, such as herbivory by arthropod pests, elicits physiological defense responses in plants, leading to changes in leaf reflectance. Advanced imaging technologies can detect such changes, and can, therefore, be used as noninvasive crop monitoring methods. Furthermore, novel methods of treatment precision application are required. Both sensing and actuation technologies can be mounted on equipment moving through fields (e.g., irrigation equipment), on (un)manned driving vehicles, and on small drones. In this review, we focus specifically on use of small unmanned aerial robots, or small drones, in agricultural systems. Acquired and processed canopy reflectance data obtained with sensing drones could potentially be transmitted as a digital map to guide a second type of drone, actuation drones, to deliver solutions to the identified pest hotspots, such as precision releases of natural enemies and/or precision-sprays of pesticides. We emphasize how sustainable pest management in 21st-century agriculture will depend heavily on novel technologies, and how this trend will lead to a growing need for multi-disciplinary research collaborations between agronomists, ecologists, software programmers, and engineers.
Collapse
Affiliation(s)
- Fernando H Iost Filho
- Department of Entomology and Acarology, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Wieke B Heldens
- German Aerospace Center (DLR), Earth Observation Center, German Remote Sensing Data Center (DFD), Oberpfaffenhofen, Wessling, Germany
| | - Zhaodan Kong
- Department of Mechanical and Aerospace Engineering, University of California Davis, Davis, CA
| | - Elvira S de Lange
- Department of Entomology and Nematology, University of California Davis, Davis, CA
| |
Collapse
|
10
|
De Lange ES, Laplanche D, Guo H, Xu W, Vlimant M, Erb M, Ton J, Turlings TCJ. Spodoptera frugiperda Caterpillars Suppress Herbivore-Induced Volatile Emissions in Maize. J Chem Ecol 2020; 46:344-360. [PMID: 32002720 DOI: 10.1007/s10886-020-01153-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 01/14/2023]
Abstract
The vast spectrum of inducible plant defenses can have direct negative effects on herbivores, or indirect effects, for instance in the form of herbivore-induced plant volatiles (HIPVs) that attract natural enemies. Various arthropods have evolved ways to suppress plant defenses. To test whether this is the case for caterpillar-induced HIPVs, we compared the volatile induction by Spodoptera frugiperda (Lepidoptera: Noctuidae), which is particularly well adapted to feed on maize (Zea mays), with the induction by three more generalist noctuid larvae. We tested the hypothesis that S. frugiperda suppresses HIPV emissions in maize, and thereby reduces attractiveness to natural enemies. HIPV emissions triggered by S. frugiperda when feeding on maize were indeed found to be significantly weaker than by Spodoptera littoralis, Spodoptera exigua, and Helicoverpa armigera. The suppression seems specific for maize, as we found no evidence for this when S. frugiperda caterpillars fed on cotton (Gossypium herbaceum). Artificially damaged maize plants treated with larval regurgitant revealed that HIPV suppression may be related to factors in the caterpillars' oral secretions. We also found evidence that differential physical damage that the caterpillars inflict on maize leaves may play a role. The suppressed induction of HIPVs had no apparent consequences for the attraction of a common parasitoid of S. frugiperda, Cotesia marginiventris (Hymenoptera: Braconidae). Nevertheless, the ability to manipulate the defenses of its main host plant may have contributed to the success of S. frugiperda as a major pest of maize, especially in Africa and Asia, which it has recently invaded.
Collapse
Affiliation(s)
- Elvira S De Lange
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland.,Department of Entomology and Nematology, University of California Davis, 1 Shields Avenue, 367 Briggs Hall, Davis, CA, 95616, USA
| | - Diane Laplanche
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Huijuan Guo
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland.,State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Xu
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland.,College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Michèle Vlimant
- Laboratory of Animal Physiology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Matthias Erb
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland.,Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| | - Jurriaan Ton
- Plant Production & Protection Institute of Plant and Soil Biology, Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ted C J Turlings
- Laboratory of Fundamental and Applied Research in Chemical Ecology, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland.
| |
Collapse
|
11
|
Pradit N, Mescher MC, De Moraes CM, Rodriguez-Saona C. Phytoplasma Infection of Cranberry Affects Development and Oviposition, but Not Host-Plant Selection, of the Insect Vector Limotettix vaccinii. J Chem Ecol 2019; 46:722-734. [DOI: 10.1007/s10886-019-01137-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/11/2019] [Accepted: 12/09/2019] [Indexed: 01/30/2023]
|
12
|
Salamanca J, Souza B, Kyryczenko-Roth V, Rodriguez-Saona C. Methyl Salicylate Increases Attraction and Function of Beneficial Arthropods in Cranberries. INSECTS 2019; 10:E423. [PMID: 31775223 PMCID: PMC6955811 DOI: 10.3390/insects10120423] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 11/22/2022]
Abstract
Methyl salicylate (MeSA) is an herbivore-induced plant volatile (HIPV) known to attract the natural enemies of herbivores in agro-ecosystems; however, whether this attraction leads to an increase in natural enemy functioning, i.e., predation, remains largely unknown. Here, we monitored for 2 years (2011-2012) the response of herbivores and natural enemies to MeSA lures (PredaLure) by using sticky and pitfall traps in cranberry bogs. In addition, European corn borer, Ostrinia nubilalis, egg masses were used to determine whether natural enemy attraction to MeSA leads to higher predation. In both years, MeSA increased adult hoverfly captures on sticky traps and augmented predation of O. nubilalis eggs. However, MeSA also attracted more phytophagous thrips and, in 2012, more plant bugs (Miridae) to sticky traps. Furthermore, we used surveillance cameras to record the identity of natural enemies attracted to MeSA and measure their predation rate. Video recordings showed that MeSA lures increase visitation by adult lady beetles, adult hoverflies, and predatory mites to sentinel eggs, and predation of these eggs doubled compared to no-lure controls. Our data indicate that MeSA lures increase predator attraction, resulting in increased predation; thus, we provide evidence that attraction to HIPVs can increase natural enemy functioning in an agro-ecosystem.
Collapse
Affiliation(s)
- Jordano Salamanca
- Escuela de Ciencias Agrícolas, Pecuarias y del Medio Ambiente (ECAPMA), Universidad Nacional Abierta y a Distancia (UNAD), Bogotá 110111, Colombia
| | - Brígida Souza
- Departamento de Entomologia, Universidade Federal de Lavras, Lavras 37200-000, Minas Gerais, Brasil;
| | - Vera Kyryczenko-Roth
- P.E. Marucci Center for Blueberry & Cranberry Research, Rutgers University, Chatsworth, NJ 08019, USA; (V.K.-R.); (C.R.-S.)
| | - Cesar Rodriguez-Saona
- P.E. Marucci Center for Blueberry & Cranberry Research, Rutgers University, Chatsworth, NJ 08019, USA; (V.K.-R.); (C.R.-S.)
| |
Collapse
|
13
|
De Lange ES, Rodriguez-Saona C. Does enhanced nutrient availability increase volatile emissions in cranberry? PLANT SIGNALING & BEHAVIOR 2019; 14:1616517. [PMID: 31131703 PMCID: PMC6619975 DOI: 10.1080/15592324.2019.1616517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Nutrient availability impacts plant indirect defenses, such as emissions of herbivore-induced plant volatiles (HIPVs) that attract natural enemies of herbivores. However, the effects are variable depending on the cropping system, and emissions may increase, decrease, or be not affected by nutrient availability. Here, we evaluated the effects of different fertilizer regimes, which varied nitrogen (N), phosphorus (P), and potassium (K) availability, on HIPV emissions in cranberry, Vaccinium macrocarpon Ait. Plants included six cranberry varieties that were subjected to four different fertilizer regimes and either noninduced or induced with methyl jasmonate (MeJA), an elicitor of HIPVs, in a 6 × 4 × 2 factorial design. Results show that enhanced NPK fertilizer applications increased total HIPV emissions in MeJA-treated cranberries, regardless of variety. This effect was due to an increase in plant fresh weight. Although the ecological effects of increased HIPV emissions need to be investigated, these findings may have implications for natural enemy manipulation in agro-ecosystems.
Collapse
Affiliation(s)
- Elvira S. De Lange
- Department of Entomology and Nematology, University of California Davis, Davis, CA, USA
- CONTACT Elvira S. de Lange Department of Entomology and Nematology, University of California Davis, Davis, CA, USA
| | - Cesar Rodriguez-Saona
- P.E. Marucci Center for Blueberry and Cranberry Research and Extension, Rutgers University, Chatsworth, NJ, USA
| |
Collapse
|