1
|
Thompson RA, Malone SC, Peltier D, Six D, Robertson N, Oliveira C, McIntire CD, Pockman WT, McDowell NG, Trowbridge AM, Adams HD. Local carbon reserves are insufficient for phloem terpene induction during drought in Pinus edulis in response to bark beetle-associated fungi. THE NEW PHYTOLOGIST 2024; 244:654-669. [PMID: 39149848 DOI: 10.1111/nph.20051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/24/2024] [Indexed: 08/17/2024]
Abstract
Stomatal closure during drought inhibits carbon uptake and may reduce a tree's defensive capacity. Limited carbon availability during drought may increase a tree's mortality risk, particularly if drought constrains trees' capacity to rapidly produce defenses during biotic attack. We parameterized a new model of conifer defense using physiological data on carbon reserves and chemical defenses before and after a simulated bark beetle attack in mature Pinus edulis under experimental drought. Attack was simulated using inoculations with a consistent bluestain fungus (Ophiostoma sp.) of Ips confusus, the main bark beetle colonizing this tree, to induce a defensive response. Trees with more carbon reserves produced more defenses but measured phloem carbon reserves only accounted for c. 23% of the induced defensive response. Our model predicted universal mortality if local reserves alone supported defense production, suggesting substantial remobilization and transport of stored resin or carbon reserves to the inoculation site. Our results show that de novo terpene synthesis represents only a fraction of the total measured phloem terpenes in P. edulis following fungal inoculation. Without direct attribution of phloem terpene concentrations to available carbon, many studies may be overestimating the scale and importance of de novo terpene synthesis in a tree's induced defense response.
Collapse
Affiliation(s)
- R Alex Thompson
- Department of Life and Environmental Sciences, University of California Merced, Merced, CA, 95343, USA
| | - Shealyn C Malone
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Drew Peltier
- School of Life Sciences, University of Nevada-Las Vegas, Las Vegas, NV, 89154, USA
| | - Diana Six
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Nathan Robertson
- Biology Department, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Celso Oliveira
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | | | - William T Pockman
- Biology Department, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Nate G McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Lab, PO Box 999, Richland, WA, 99352, USA
- School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA, 99164-4236, USA
| | - Amy M Trowbridge
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Henry D Adams
- School of the Environment, Washington State University, PO Box 644236, Pullman, WA, 99164-4236, USA
| |
Collapse
|
2
|
Thompson RA. A neutral theory of plant carbon allocation. TREE PHYSIOLOGY 2024; 44:tpad151. [PMID: 38102767 DOI: 10.1093/treephys/tpad151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023]
Abstract
How plants use the carbon they gain from photosynthesis remains a key area of study among plant ecologists. Although numerous theories have been presented throughout the years, the field lacks a clear null model. To fill this gap, I have developed the first null model, or neutral theory, of plant carbon allocation using probability theory, plant biochemistry and graph theory at the level of a leaf. Neutral theories have been used to establish a null hypothesis in molecular evolution and community assembly to describe how much of an ecological phenomenon can be described by chance alone. Here, the aim of a neutral theory of plant carbon allocation is to ask: how is carbon partitioned between sinks if one assumes plants do not prioritize certain sinks over others? Using the biochemical network of plant carbon metabolism, I show that, if allocation was strictly random, carbon is more likely to be allocated to storage, defense, respiration and finally growth. This 'neutral hierarchy' suggests that a sink's biochemical distance from photosynthesis plays an important role in carbon allocation patterns, highlighting the potentially adaptive role of this biochemical network for plant survival in variable environments. A brief simulation underscores that our ability to measure the carbon allocation from photosynthesis to a given sink is unreliable due to simple probabilistic rules. While neutral theory may not explain all patterns of carbon allocation, its utility is in the minimal assumptions and role as a null model against which future data should be tested.
Collapse
Affiliation(s)
- R Alex Thompson
- School of the Environment, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|