1
|
Johny Dathees T, Narmatha G, Prabakaran G, Seenithurai S, Chai JD, Suresh Kumar R, Prabhu J, Nandhakumar R. Salicylaldehyde built fluorescent probe for dual sensing of Al 3+, Zn 2+ ions: Applications in latent fingerprint, bio-imaging & real sample analysis. Food Chem 2024; 441:138362. [PMID: 38219362 DOI: 10.1016/j.foodchem.2024.138362] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/23/2023] [Accepted: 01/03/2024] [Indexed: 01/16/2024]
Abstract
This Schiff base chemosensor (SNN) detected dual ions, Al3+ and Zn2+ ions selectively. Fluorescence spectrum investigations showed that Al3+ ions increased fluorescence intensity, notably at 493 nm. Introducing Zn2+ ions caused a significant blue shift of roughly ∼65 nm at a wavelength of 434 nm, resulting in a notable change in fluorescence intensity. When binding Al3+/Zn2+ ions, the SNN receptor uses three methods. Inhibition of photoinduced electron transfer (PET), excited state intramolecular proton transfer (ESIPT), and restriction of CN isomerization. The jobs plot method found that SNN + Al3+ and SNN + Zn2+ complexations had a 1:1 stoichiometry. DFT, LC-HRMS, and 1H NMR titration confirm this conclusion. The probe SNN's limit of detection (LOD) for Al3+/Zn2+ ions was 3.99 nM and 1.33 nM. Latent fingerprint (LFP), food samples, pharmaceutical products, and E. coli pathogen bio-imaging have all used the SNN probe to identify Al3+ and Zn2+ ions.
Collapse
Affiliation(s)
- T Johny Dathees
- Fluorensic Materials Lab, Division of Physical Science, Karunya Institute of Technology and Sciences, (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, India; PG and Research Center of Chemistry, Jayaraj Annapackiam College for Women (Autonomous), Periyakulam, 625 601 Theni, India
| | - G Narmatha
- Fluorensic Materials Lab, Division of Physical Science, Karunya Institute of Technology and Sciences, (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, India
| | - G Prabakaran
- Fluorensic Materials Lab, Division of Physical Science, Karunya Institute of Technology and Sciences, (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, India
| | - Sonai Seenithurai
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan
| | - Jeng-Da Chai
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan; Center for Theoretical Physics and Center for Quantum Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - J Prabhu
- Fluorensic Materials Lab, Division of Physical Science, Karunya Institute of Technology and Sciences, (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, India
| | - R Nandhakumar
- Fluorensic Materials Lab, Division of Physical Science, Karunya Institute of Technology and Sciences, (Deemed-to-be University), Karunya Nagar, Coimbatore 641 114, India.
| |
Collapse
|
2
|
Guirado-Moreno JC, González-Ceballos L, Carreira-Barral I, Ibeas S, Fernández-Muiño MA, Teresa Sancho M, García JM, Vallejos S. Smart sensory polymer for straightforward Zn(II) detection in pet food samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121820. [PMID: 36116204 DOI: 10.1016/j.saa.2022.121820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/29/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
We report on an innovative method to measure the Zn(II) concentration in commercial pet food samples, both wet and dry food. It is based on a colorimetric sensory polymer prepared from commercial monomers and 0.5 % of a synthetic monomer having a quinoline sensory core (N-(8-(2-azidoacetamido)quinolin-5-yl)methacrylamide). We obtained the sensory polymer as crosslinked films by thermally initiated bulk radical polymerization of the monomers of 100 μm thickness, which we punched into Ø6 mm sensory discs. The immersion of the discs in water solutions containing Zn(II) turned the fluorescence on, allowing for the titration of this cation using the G parameter of a digital picture taken to the discs. The limits of detection and quantification were 29 and 87 µg/L, respectively. Furthermore, we measured the concentration of Zn(II) even in the presence of other cations, detecting no significant interferences. Thus, in a further step, we obtained the concentration of Zn(II) from 15 commercial pet food samples, ranging from 19 to 198 mg/kg, following a simple extraction procedure and contacting the extractant with our sensory discs. These results were contrasted with that obtained by ICP-MS as a reference method.
Collapse
Affiliation(s)
- José Carlos Guirado-Moreno
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Lara González-Ceballos
- Departamento de Biotecnología y Ciencia de los Alimentos, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Israel Carreira-Barral
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Saturnino Ibeas
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - Miguel A Fernández-Muiño
- Departamento de Biotecnología y Ciencia de los Alimentos, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - M Teresa Sancho
- Departamento de Biotecnología y Ciencia de los Alimentos, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain
| | - José M García
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| | - Saúl Vallejos
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, 09001 Burgos, Spain.
| |
Collapse
|
3
|
Sayed MM, Abdel-Hakim M, Mahross MH, Aly KI. Synthesis, physico-chemical characterization, and environmental applications of meso porous crosslinked poly (azomethine-sulfone)s. Sci Rep 2022; 12:12878. [PMID: 35896584 PMCID: PMC9329479 DOI: 10.1038/s41598-022-17042-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/20/2022] [Indexed: 11/09/2022] Open
Abstract
To develop innovative mesoporous crosslinked poly(azomethine- sulfone)s with environmental applications, a simple Schiff base condensation technique based on barbituric acid BA or condensed terephthaldehyde barbituric acid TBA in their structures as monomeric units are applied. Different analysis methodologies and viscosity measurements identify them as having stronger heat stability and an amorphous structure. The photophysical features of the multi stimuli response MSR phenomenon are observable, with white light emission at higher concentrations and blue light emission at lower concentrations. Their emission characteristics make them an excellent metal ions sensor through diverse charge transfer methods. They can have a better inhibition efficiency and be employed as both mixed-type and active corrosion inhibitors according to their fluorescence emission with metals, demonstrating their capacity to bind with diverse metals. The adsorption of two distinct dye molecules, Methylene blue MB cationic and sunset yellow SY anionic, on the mesoporous structures of the polymers is investigated, revealing their selectivity for MB dye adsorption. Quantum studies support these amazing discoveries, demonstrating a crab-like monomeric unit structure for the one that is heavily crosslinked.
Collapse
Affiliation(s)
- Marwa M Sayed
- Chemistry Department, Faculty of Science, New Valley University, El- Kharga, 72511, Egypt.
| | - Mohamed Abdel-Hakim
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Mahmoud H Mahross
- Chemistry Department, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Kamal I Aly
- Polymer Laboratory 122, Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| |
Collapse
|
4
|
Kamaci M, Kaya İ. Fabrication of biodegradable hydrogels based on chitosan and poly(azomethine‐urethane) containing phenyl triazine for drug delivery. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Musa Kamaci
- Faculty of Engineering Piri Reis University Tuzla, Istanbul Turkey
- Polymer Synthesis and Analysis Lab., Department of Chemistry, Faculty of Science and Arts Çanakkale Onsekiz Mart University Çanakkale Turkey
| | - İsmet Kaya
- Polymer Synthesis and Analysis Lab., Department of Chemistry, Faculty of Science and Arts Çanakkale Onsekiz Mart University Çanakkale Turkey
| |
Collapse
|
5
|
Zhu Q, Du J, Feng S, Li J, Yang R, Qu L. Highly selective and sensitive detection of glutathione over cysteine and homocysteine with a turn-on fluorescent biosensor based on cysteamine-stabilized CdTe quantum dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120492. [PMID: 34666265 DOI: 10.1016/j.saa.2021.120492] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 08/03/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
In this work, cysteamine (CA) stabilized CdTe quantum dots (QDs) (CA-CdTe QDs) and sodium citrate stabilized gold nanoparticles (AuNPs) were prepared. Because of the strong electrostatic interaction and spectral overlap of emission spectrum of CA-CdTe QDs and absorption spectrum of AuNPs, a highly effective fluorescence resonance energy transfer (FRET) system was formed and the fluorescence of CA-CdTe QDs was strongly quenched. The synthesized CA-CdTe and AuNPs were self-assembled to large clusters due to the electrostatic attraction and the fluorescence of CA-CdTe was sharply quenched as a result of FRET. Under the optimum pH of 5.5, the positive GSH could assemble with negative AuNPs through electrostatic interaction and destroy the FRET system of CA-CdTe and AuNPs, due to the red shift of absorption wavelength of AuNPs caused by aggregation. The fluorescence of CA-CdTe recovered, and the recovered fluorescence efficiency shows a linear function against the GSH concentrations from 6.7 nM to 0.40 μM, with a detecting limit of 3.3 nM. The quenched emission of CA-CdTe could be recovered attributed to the aggregation of AuNPs by GSH. Under optimal conditions, the sensing system was successfully applied in the detection of GSH in real human blood plasma samples with a recovery of 99.5-102.3%, showing a promising future for the highly sensitive and selective GSH detection in the human blood plasma samples.
Collapse
Affiliation(s)
- Qianqian Zhu
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Jingjing Du
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Suxiang Feng
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, China
| | - Jianjun Li
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Ran Yang
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, China.
| | - Lingbo Qu
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, China
| |
Collapse
|
6
|
Wu S, Jiang P, Ding N, Hu Q, Yan X, Liu J, Wang Y, Zhang H, Yuan P, Yang Q. Novel multi-stimuli-responsive supramolecular gel based on quinoline for the fluorescence ultrasensitive detection of Fe 3+and Cu 2. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120078. [PMID: 34147737 DOI: 10.1016/j.saa.2021.120078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/27/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
A novel gelator molecular based on quinolone (MN) has been successfully designed and synthesized. The gelator MN could self-assemble to form a supramolecular gel (OMN), which showed obvious aggregation-induced emission (AIE) in iso-Propyl alcohol (i-PrOH). Furthermore, the supramolecular organogel OMN realized ultrasensitive detection of Fe3+ and Cu2+ in aqueous medium and fluorescent quenching at 427 nm. The sensing mechanism between supramolecular gel and metal ions was fully investigated via FE-SEM, FT-IR, XRD and XPS. Meanwhile, a thin film based on responsive supramolecular gel OMN was prepared, which could be used as multi-stimuli-responsive fluorescent display materials for the detection of Fe3+ and Cu2+.
Collapse
Affiliation(s)
- Shang Wu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environmental Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, People's Republic of China.
| | - Pengwei Jiang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environmental Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, People's Republic of China
| | - Ning Ding
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environmental Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, People's Republic of China
| | - Qiang Hu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environmental Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, People's Republic of China
| | - Xiangtao Yan
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environmental Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, People's Republic of China
| | - Jutao Liu
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environmental Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, People's Republic of China
| | - Yanbin Wang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environmental Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, People's Republic of China
| | - Hong Zhang
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environmental Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, People's Republic of China.
| | - Peilin Yuan
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Key Laboratory for Utility of Environmental Friendly Composite Materials and Biomass in University of Gansu Province, College of Chemical Engineering, Northwest Minzu University, Lanzhou 730030, People's Republic of China
| | - Quanlu Yang
- College of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
7
|
Duru Kamaci U, Kamaci M, Peksel A. A dual responsive colorimetric sensor based on polyazomethine and ascorbic acid for the detection of Al (III) and Fe (II) ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 254:119650. [PMID: 33744699 DOI: 10.1016/j.saa.2021.119650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/10/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
In the present paper, a novel double cation target colorimetric sensor was developed for the detection of Al (III), and Fe (II) ions. It was composed of ascorbic acid in a polyazomethine matrix, and polyazomethine was used to form a homogenous matrix for mixing ascorbic acid. The photophysical properties of the colorimetric sensor were clarified by using UV-Vis and fluorescence spectrophotometers. It was found that the developed sensor was exhibited good naked eye selectivity, and sensitivity toward Al (III), and Fe (II) ions with excellent photostability. Furthermore, the detection limit of the sensor was calculated as 0.398 µM (0.096 ppm) and 0.185 µM (0.051 ppm) for Al (III), and Fe (II), respectively. The applicability of the colorimetric sensor in environmental (tap and sea waters) and biological (Bovine serum albumin) solutions was also studied, and the results exhibited that the developed sensor could be successfully applied to monitoring environmental and biological samples.
Collapse
Affiliation(s)
- Umran Duru Kamaci
- Faculty of Arts and Sciences, Department of Chemistry, Yildiz Technical University, Esenler, 34220 Istanbul, Turkey
| | - Musa Kamaci
- Piri Reis University, Tuzla, 34940 Istanbul, Turkey.
| | - Aysegul Peksel
- Faculty of Arts and Sciences, Department of Chemistry, Yildiz Technical University, Esenler, 34220 Istanbul, Turkey.
| |
Collapse
|
8
|
Arjmand F, Salami‐Kalajahi M, Roghani‐Mamaqani H. Fabrication of acid‐labile poly(2‐hydroxyethyl methacrylate) nanoparticles using aldazine‐based crosslinker as
pH
‐sensitive drug nanocarriers. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Fereshteh Arjmand
- Faculty of Polymer Engineering Sahand University of Technology Tabriz Iran
- Institute of Polymeric Materials Sahand University of Technology Tabriz Iran
| | - Mehdi Salami‐Kalajahi
- Faculty of Polymer Engineering Sahand University of Technology Tabriz Iran
- Institute of Polymeric Materials Sahand University of Technology Tabriz Iran
| | - Hossein Roghani‐Mamaqani
- Faculty of Polymer Engineering Sahand University of Technology Tabriz Iran
- Institute of Polymeric Materials Sahand University of Technology Tabriz Iran
| |
Collapse
|
9
|
El-Sonbati A, Mahmoud W, Mohamed GG, Diab M, Morgan S, Abbas S. Synthesis, characterization of Schiff base metal complexes and their biological investigation. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5048] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- A.Z. El-Sonbati
- Chemistry Department, Faculty of Science; Damietta University; Egypt
| | - W.H. Mahmoud
- Chemistry Department, Faculty of Science; Cairo University; Giza 12613 Egypt
| | - Gehad G. Mohamed
- Chemistry Department, Faculty of Science; Cairo University; Giza 12613 Egypt
- Egypt Nanotechnology Center; Cairo University; El-Sheikh Zayed, 6 October 12588 Egypt
| | - M.A. Diab
- Chemistry Department, Faculty of Science; Damietta University; Egypt
| | - Sh.M. Morgan
- Environmental Monitoring Laboratory, Ministry of Health; Port Said Egypt
| | - S.Y. Abbas
- Chemistry Department, Faculty of Science; Damietta University; Egypt
| |
Collapse
|
10
|
Luminescence Sensitization of Eu(III) Complexes with Aromatic Schiff Base and N,N’-Donor Heterocyclic Ligands: Synthesis, Luminescent Properties and Energy Transfer. J Fluoresc 2018; 29:111-120. [DOI: 10.1007/s10895-018-2315-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 10/15/2018] [Indexed: 01/17/2023]
|
11
|
Reaction conditions, photophysical, electrochemical, conductivity, and thermal properties of polyazomethines. Macromol Res 2017. [DOI: 10.1007/s13233-017-5072-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
A highly selective, sensitive and stable fluorescent chemosensor based on Schiff base and poly(azomethine-urethane) for Fe3+ ions. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2016.10.035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
13
|
Duru Kamaci U, Kamaci M, Peksel A. Thermally Stable Schiff Base and its Metal Complexes: Molecular Docking and Protein Binding Studies. J Fluoresc 2017; 27:805-817. [DOI: 10.1007/s10895-016-2016-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/29/2016] [Indexed: 01/30/2023]
|
14
|
Dineshkumar S, Muthusamy A, Chandrasekaran J. Temperature and frequency dependent dielectric properties of electrically conducting oxidatively synthesized polyazomethines and their structural, optical, and thermal characterizations. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.09.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Kamacı M, Kaya İ. New low-band gap polyurethanes containing azomethine bonding: Photophysical, electrochemical, thermal and morphological properties. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2015.08.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|