1
|
Huang XM, Guo YX, Pang QL, Yan XY, Yan H, Li JY, Tang GL, Jiang HX, Zhang HL. Combination of DMDD with Nanoparticles Effective Against Diabetic Kidney Disease in vitro. Int J Nanomedicine 2024; 19:12439-12460. [PMID: 39611006 PMCID: PMC11602433 DOI: 10.2147/ijn.s475840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/14/2024] [Indexed: 11/30/2024] Open
Abstract
Purpose 2-Dodecyl-6-methoxy-2,5-diene-1,4-cyclohexanedione (DMDD), isolated from Averrhoa carambola L. root, has demonstrated the potential to reduce blood sugar levels. However, DMDD has poor solubility and bioavailability. This study aimed to formulate DMDD-loaded nanoparticles (DMDD-NPs) using chitosan crosslinked with sodium tripolyphosphate through the ionic crosslinking method and to investigate their effect on diabetic kidney disease (DKD) treatment by inhibiting the development of the epithelial-mesenchymal transition (EMT). Methods DMDD-NPs were prepared by ionic crosslinking with sodium tripolyphosphate, optimizing six factors that affect nanoparticle characteristics, including particle size and zeta potential. Encapsulation efficiency (EE) and drug loading rate (DL) were optimized using a Box-Behnken design. The structure and characteristics of DMDD-NPs, including size, EE, DL, and release rates, were analyzed. Cytotoxicity was assessed using the Cell Counting Kit-8 (CCK-8) assay, while the migration capacity of HK-2 cells was evaluated through scratch-wound assays. The expression of EMT-related markers (E-cadherin, Vimentin, and TGF-β1) was assessed by qRT-PCR. Results The optimized formulation for DMDD-NPs was CS:TPP:DMDD = 10:3:3 (w), at pH 3.5, with 1.0 mg/mL of CS and stirring at 500 rpm for 30 min. In these conditions, the nanoparticles had a particle size of 320.37 ± 2.93 nm, an EE of 85.09 ± 1.43%, and a DL of 15.88 ± 0.51%. The DMDD-NPs exhibited a spherical shape, no leakage and minimal adhesion. The optimal freeze-drying protectant was a combination of 0.025% mannitol and 0.025% lactose. The drug release followed the Higuchi model. DMDD-NPs improved HK-2 cell proliferation at lower concentrations (<24 μg/mL) and showed greater cell migration inhibition than DMDD. DMDD-NPs promoted E-cadherin expression and inhibited vimentin and TGF-β1 expression, suggesting their potential role in preventing EMT for DKD treatment.
Collapse
Affiliation(s)
- Xiao-Man Huang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Yan-Xiang Guo
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Qiu-Ling Pang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Xiao-Yi Yan
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Hui Yan
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Jing-Yi Li
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Gan-Ling Tang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Hui-Xian Jiang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Hong-Liang Zhang
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| |
Collapse
|
2
|
Cui J, Wang Y, Liang X, Zhao J, Ji Y, Tan W, Dong F, Guo Z. Synthesis, antimicrobial activity, antioxidant activity and molecular docking of novel chitosan derivatives containing glycine Schiff bases as potential succinate dehydrogenase inhibitors. Int J Biol Macromol 2024; 267:131407. [PMID: 38582463 DOI: 10.1016/j.ijbiomac.2024.131407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 03/10/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Succinate dehydrogenase (SDH) is an important inner mitochondrial membrane-bound enzyme involved in redox reactions during the tricarboxylic acid cycle. Therefore, a series of novel chitosan derivatives were designed and synthesized as potential microbicides targeting SDH and precisely characterized by FTIR, 1H NMR and SEM. Their antifungal and antibacterial activities were evaluated against Botrytis cinerea, Fusarium graminearum, Staphylococcus aureus and Escherichia coli. The bioassays revealed that these chitosan derivatives exerted significant antifungal effects, with four of the compounds achieving 100 % inhibition of Fusarium graminearum merely at a concentration of 0.5 mg/mL. Additionally, CSGDCH showed 79.34 % inhibition of Botrytis cinerea at a concentration of 0.1 mg/mL. In vitro antibacterial tests revealed that CSGDCH and CSGDBH have excellent Staphylococcus aureus and Escherichia coli inhibition with MICs of 0.0156 mg/mL and 0.03125 mg/mL, respectively. Molecular docking studies have been carried out to explore the binding energy and binding mode of chitosan and chitosan derivatives with SDH. The analyses indicated that chitosan derivatives targeted the active site of the SDH protein more precisely, disrupting its normal function and ultimately repressing the growth of microbial cells. Furthermore, the chitosan derivatives were also evaluated biologically for antioxidation, and all of these compounds had a greater degree of reducing power, superoxide radical, hydroxyl radical and DPPH-radical scavenging activity than chitosan. This research has the potential for the development of agricultural antimicrobial agents.
Collapse
Affiliation(s)
- Jingmin Cui
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanqing Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Xiaorui Liang
- School of Basic Sciences for Aviation Naval Aviation University, Yantai 264001, China
| | - Jinyu Zhao
- School of Chemistry and Chemical Engineering, Yantai University, Yantai 264003, China
| | - Yuting Ji
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Fang Dong
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Suryani S, Chaerunisaa AY, Joni IM, Ruslin R, Aspadiah V, Anton A, Sartinah A, Ramadhan LOAN. The Chemical Modification to Improve Solubility of Chitosan and Its Derivatives Application, Preparation Method, Toxicity as a Nanoparticles. Nanotechnol Sci Appl 2024; 17:41-57. [PMID: 38469157 PMCID: PMC10926861 DOI: 10.2147/nsa.s450026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/21/2024] [Indexed: 03/13/2024] Open
Abstract
Chitosan is a functional polymer in the pharmaceutical field, including for nanoparticle drug delivery systems. Chitosan-based nanoparticles are a promising carrier for a wide range of therapeutic agents and can be administered in various routes. Solubility is the main problem for its production and utilization in large-scale industries. Chitosan modifications have been employed to enhance its solubility, including chemical modification. Many reviews have reported the chemical modification but have not focused on the specific characteristics obtained. This review focused on the modification to improve chitosan solubility. Additionally, this review also focused on the application of chitosan derivatives in nanoparticle drug delivery systems since very few similar reviews have been reported. The specific method for chitosan derivative-based nanoparticles was also reported and the latest report of chitosan, chitosan derivative, and chitosan toxicity were also described.
Collapse
Affiliation(s)
- Suryani Suryani
- Doctor of Pharmacy Study Program, Faculty of Pharmacy, Padjadjaran University, Sumedang, Indonesia
- Department of Pharmacy, Faculty of Pharmacy, Halu Oleo University, Kendari, Indonesia
| | - Anis Yohana Chaerunisaa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Padjadjaran University, Sumedang, Indonesia
- Dosage Form Development Research Centre, Faculty of Pharmacy, Padjadjaran University, Sumedang, Indonesia
| | - I Made Joni
- Department of Physics, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Sumedang, Indonesia
- Functional Nano Powder University Centre of Excellence, Padjadjaran University, Sumedang, Indonesia
| | - Ruslin Ruslin
- Department of Pharmacy, Faculty of Pharmacy, Halu Oleo University, Kendari, Indonesia
| | - Vica Aspadiah
- Department of Pharmacy, Faculty of Pharmacy, Halu Oleo University, Kendari, Indonesia
| | - Anton Anton
- Department of Biology, Faculty of Mathematics and Natural Sciences, Halu Oleo University, Kendari, Indonesia
| | - Ari Sartinah
- Department of Pharmacy, Faculty of Pharmacy, Halu Oleo University, Kendari, Indonesia
| | - La Ode Ahmad Nur Ramadhan
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Halu Oleo University, Kendari, Indonesia
| |
Collapse
|
4
|
Abdel-Baky YM, Omer AM, El-Fakharany EM, Ammar YA, Abusaif MS, Ragab A. Developing a new multi-featured chitosan-quinoline Schiff base with potent antibacterial, antioxidant, and antidiabetic activities: design and molecular modeling simulation. Sci Rep 2023; 13:22792. [PMID: 38123716 PMCID: PMC10733428 DOI: 10.1038/s41598-023-50130-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
A new chitosan Schiff base was developed via the reaction of chitosan (CH) with 2-chloro-3-formyl-7-ethoxy quinoline (Q) derivative. The alteration in the chemical structure and morphology of CHQ derivative was confirmed by 1H NMR, FT-IR spectroscopy and SEM analysis. The antibacterial activity was considerably promoted with increasing quinoline concentration up to 1 M with maximal inhibition reached 96 and 77% against Staphylococcus haemolyticus and Escherichia coli, respectively. Additionally, CHQ derivative afforded higher ABTS·+ radical scavenging activity reached 59% compared to 13% for native chitosan, approving its acceptable antioxidant activity. Moreover, the developed CHQ derivative can stimulate the glucose uptake in HepG-2 and yeast cells, while better inhibition of α-amylase and α-glucosidase was accomplished with maximum values of 99.78 and 92.10%, respectively. Furthermore, the molecular docking simulation clarified the binding mode of CHQ derivative inside the active site of α-amylase and α-glucosidase, suggesting its potential use as diabetes mellitus drug. The DFT calculations indicated an improvement in the electronic properties of CHQ with a lower energy band gap reached 4.05eV compared to 5.94eV for CH. The cytotoxicity assay revealed the safety of CHQ towards normal HSF cells, hypothesizing its possible application as non-toxic antibacterial, antioxidant, and antidiabetic agent for biomedical applications.
Collapse
Affiliation(s)
- Yasser M Abdel-Baky
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Ahmed M Omer
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), P. O. Box: 21934, New Borg El-Arab City, Alexandria, Egypt.
| | - Esmail M El-Fakharany
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), P. O. Box: 21934, New Borg El-Arab City, Alexandria, Egypt
| | - Yousry A Ammar
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Moustafa S Abusaif
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Ahmed Ragab
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| |
Collapse
|
5
|
Tamer TM, ElTantawy MM, Brussevich A, Nebalueva A, Novikov A, Moskalenko IV, Abu-Serie MM, Hassan MA, Ulasevich S, Skorb EV. Functionalization of chitosan with poly aromatic hydroxyl molecules for improving its antibacterial and antioxidant properties: Practical and theoretical studies. Int J Biol Macromol 2023; 234:123687. [PMID: 36801285 DOI: 10.1016/j.ijbiomac.2023.123687] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/02/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
In this study, the chitosan backbone was functionalized with 2,2',4,4'-tetrahydroxybenzophenone by Schiff base, bonding the molecules into the repeating amine groups. The use of 1H NMR, FT-IR, and UV-Vis analyses provided compelling evidence of the structure of the newly developed derivatives. The deacetylation degree was calculated to be 75.35 %, and the degree of substitution was 5.53 % according to elemental analysis. The thermal analysis of samples using TGA demonstrated that CS-THB derivatives are more stable than chitosan itself. SEM was used to investigate the change in surface morphology. The improvement of the biological properties of chitosan was investigated in terms of its antibacterial activity against pathogenic antibiotic-resistant bacteria. The antioxidant properties showed an improvement in activity compared to chitosan by two times against ABTS radicals and four times against DPPH radicals. Furthermore, the cytotoxicity and anti-inflammatory properties were investigated using normal skin cells (HBF4) and WBCs. Quantum chemistry calculations revealed that combining polyphenol with chitosan makes it more effective as an antioxidant than either chitosan or polyphenol alone. Our findings suggest that the new chitosan Schiff base derivative could be utilized for tissue regeneration applications.
Collapse
Affiliation(s)
- Tamer M Tamer
- Infochemistry Scientific Center, ITMO University, Saint-Petersburg 191002, Russia.
| | - Mervat M ElTantawy
- Infochemistry Scientific Center, ITMO University, Saint-Petersburg 191002, Russia
| | - Arina Brussevich
- Infochemistry Scientific Center, ITMO University, Saint-Petersburg 191002, Russia
| | - Anna Nebalueva
- Infochemistry Scientific Center, ITMO University, Saint-Petersburg 191002, Russia
| | - Alexander Novikov
- Infochemistry Scientific Center, ITMO University, Saint-Petersburg 191002, Russia
| | - Ivan V Moskalenko
- Infochemistry Scientific Center, ITMO University, Saint-Petersburg 191002, Russia
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| | - Svetlana Ulasevich
- Infochemistry Scientific Center, ITMO University, Saint-Petersburg 191002, Russia
| | - Ekaterina V Skorb
- Infochemistry Scientific Center, ITMO University, Saint-Petersburg 191002, Russia.
| |
Collapse
|
6
|
Tamer TM, Zhou H, Hassan MA, Abu-Serie MM, Shityakov S, Elbayomi SM, Mohy-Eldin MS, Zhang Y, Cheang T. Synthesis and physicochemical properties of an aromatic chitosan derivative: In vitro antibacterial, antioxidant, and anticancer evaluations, and in silico studies. Int J Biol Macromol 2023; 240:124339. [PMID: 37028626 DOI: 10.1016/j.ijbiomac.2023.124339] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/25/2023] [Accepted: 04/02/2023] [Indexed: 04/09/2023]
Abstract
This study was designed to synthesize a functionalized chitosan by coupling the amine groups of chitosan with 2,4,6-Trimethoxybenzaldehyde, producing a chitosan Schiff base (Cs-TMB). The development of Cs-TMB was verified employing FT-IR, 1H NMR, the electronic spectrum, and elemental analysis. Antioxidant assays exhibited significant ameliorations of Cs-TMB, reporting scavenging activities of 69.67 ± 3.48 % and 39.65 ± 1.98 % for ABTS•+ and DPPH, respectively, while native chitosan showed scavenging ratios of 22.69 ± 1.13 % and 8.24 ± 0.4.1 % toward ABTS•+ and DPPH, respectively. Besides, Cs-TMB exerted significant antibacterial activity up to 90 % with remarkable bactericidal capacity against virulent gram-negative and gram-positive bacteria compared to the original chitosan. Furthermore, Cs-TMB exhibited a safe profile against normal fibroblast cells (HFB4). Interestingly, flow cytometric analysis showed that Cs-TMB demonstrated prominent anticancer properties of 52.35 ± 2.99 % against human skin cancer cells (A375), compared to 10.66 ± 0.55 % for Cs-treated cells. Moreover, Python and PyMOL in-house scripts were used to predict the interaction of Cs-TMB with the adenosine A1 receptor and visualized as a protein-ligand system submerged in a lipid membrane. Overall, these findings accentuate that Cs-TMB could be a favorable representative for wound dressing formulations and skin cancer treatment.
Collapse
Affiliation(s)
- Tamer M Tamer
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt.
| | - Hongyan Zhou
- Department of Neurology, Hospital of Sun Yat-sen University, Guangdong 510080, China.
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt.
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Sergey Shityakov
- Infochemistry Scientific Center, ITMO University, Saint-Petersburg 191002, Russia
| | - Smaher M Elbayomi
- Department of Chemistry, Faculty of Science, Damietta University, New Damietta City, Damietta 34517, Egypt
| | - Mohamed S Mohy-Eldin
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| | - Yongcheng Zhang
- Department of Breast Care Surgery, Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong 510080, China.
| | - Tuckyun Cheang
- Department of Neurosurgery, Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong 510080, China.
| |
Collapse
|
7
|
Hassan MA, Tamer TM, Omer AM, Baset WMA, Abbas E, Mohy-Eldin MS. Therapeutic potential of two formulated novel chitosan derivatives with prominent antimicrobial activities against virulent microorganisms and safe profiles toward fibroblast cells. Int J Pharm 2023; 634:122649. [PMID: 36709834 DOI: 10.1016/j.ijpharm.2023.122649] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
The development of new antimicrobial agents has been drawing considerable attention due to the extreme escalation of multi-drug resistant microorganisms. We thus sought to ameliorate the antimicrobial activities of the chitosan (Cs) biopolymer by coupling chitosan with cyclohexanone and 2-N-methyl pyrrolidone, synthesizing two novel Schiff bases (CsSB1 and CsSB2), respectively. FT-IR, TGA, DSC, SEM, and potentiometric titration were employed to characterize the formulated chitosan derivatives. The findings exposed that the degrees of deacetylation were 88.12% and 89.98% for CsSB1 and CsSB2, respectively. The antimicrobial capacities of CsSB1 and CsSB2 were substantially enhanced compared with prime chitosan. Furthermore, the CsSB1 and CsSB2 demonstrated minimum inhibitory concentrations (MIC) of 50 µg/ml in relation to all studied microorganisms, whereas chitosan revealed MIC value of 50 µg/ml only for E. coli. Furthermore, CsSB1 with a concentration of 250 µg/ml manifested the highest antibacterial activity against Gram-positive bacteria. Correspondingly, CsSB2 revealed a comparable trend of microbial hindrance with lower activities. Besides, the two derivatives could thwart the growth of Candida albicans (C. albicans). The cytotoxicity assay of the biomaterials accentuated their biocompatibility with fibroblasts. Collectively, the two formulated chitosan derivatives could competently rival the native chitosan, particularly for future applications in wound healing.
Collapse
Affiliation(s)
- Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934 Alexandria, Egypt.
| | - Tamer M Tamer
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934 Alexandria, Egypt.
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934 Alexandria, Egypt
| | - Walid M A Baset
- National Organization for Drug Control and Research (NODCAR), 51 Wezaret El-Zeraa st., Dokki, Cairo, Egypt
| | - Eman Abbas
- Zoology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed S Mohy-Eldin
- Polymer Materials Research Department, Advanced Technologies and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934 Alexandria, Egypt
| |
Collapse
|
8
|
Chethan B, Rajegowda H, Padmaja D, Lokanath N. Synthesis, structural and exploration of non-covalent interactions of the palladium complex with the crystalline water molecule: A comprehensive quantum chemical approach. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Novel Cytocompatible Chitosan Schiff Base Derivative as a Potent Antibacterial, Antidiabetic, and Anticancer Agent. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023. [DOI: 10.1007/s13369-022-07588-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
AbstractThis study intends to develop a novel bioactive chitosan Schiff base (CTS-SB) derivative via coupling of chitosan (CTS) with 4-((5, 5-dimethyl-3-oxocyclohex-1-en-1-yl) amino) benzene-sulfonamide. The alteration in the chemical structure of CTS-SB was verified using 1H NMR and FT-IR analysis, while the thermal and morphological properties were inspected by TGA and SEM characterization tools, respectively. Ion exchange capacity of the developed CTS-SB derivative recorded a maximal value of 12.1 meq/g compared to 10.1 meq/g for pristine CTS. In addition, antibacterial activity of CTS-SB derivative was greatly boosted against Escherichia coli (E coli) and Staphylococcus aureus (S. aureus) bacteria. Minimum inhibition concentration of CTS-SB derivative was perceived at 50 µg/mL, while the highest concentration (250 µg/mL) could inhibit the growth of S. aureus up to 91%. What’s more, enhanced antidiabetic activity by CTS-SB derivative, which displayed higher inhibitory values of α-amylase (57.9%) and α-glucosidase (63.9%), compared to those of pure CTS (49.8 and 53.4%), respectively Furthermore, cytotoxicity investigation on HepG-2 cell line revealed potential anticancer activity along with good safety margin against primary human skin fibroblasts (HSF cells) and decent cytocompatibility. Collectively, the gained results hypothesized that CTS-SB derivative could be effectively applied as a promising antibacterial, anticancer and antidiabetic agent for advanced biomedical applications.
Collapse
|
10
|
Hassan HHAM, Hussein HM, Elhusseiny AF. Green synthesis of nanosized N,N'-bis(1-naphthylidene)-4,4'-diaminodiphenylmethane and its metal (II) complexes and evaluation of their biological activity. Sci Rep 2022; 12:21142. [PMID: 36476678 PMCID: PMC9729294 DOI: 10.1038/s41598-022-25650-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Condensation of ecofriendly synthesized 4,4'-methanedianiline with 2-hydroxy-1-naphthaldehyde produced a (1:1) octopus-like Schiff base mixed ligand. Reaction with Co(OAc)2⋅H2O, NiCl2⋅6H2O, Cu(OAc)2⋅H2O and Zn(OAc)2⋅2H2O metals furnished their complexes in high yield and purity. All new structures were fully characterized by various spectroscopic and spectrometric measurements. The complexes exhibited high thermal stability up to 700 °C, leaving nearly 40% of their mass as residues. Antimicrobial screening results exhibited moderate activities towards all studied microbes. Antioxidant screening was concentration dependent, and their activities were in the order Ni(II) > Zn(II) > Cu(II) > Co(II) complexes. The NO inhibitory effect revealed that the nickel complex exhibited the highest activity, whereas the cobalt complex showed the lowest inhibition. All compounds showed a significant lipid peroxidation inhibitory effect against oxidative stress. The complexes significantly diminished the TBARS level, and the nickel complex exhibited the highest inhibition at p < 0.01. Antioxidants stress the oxidative damage induced by iron, indicating that the nickel complex has the highest reducing activity. The inhibitory effect against acetylcholine esterase showed that the copper complex has the highest activity. Membrane stabilization activities clearly indicated that most compounds can improve the integrity of the cells and stability of their membrane, and this result may be related to their antioxidant capacity to protect against cytotoxicity. The nickel complex exhibited a stronger total antioxidant capacity than the other complexes. The biological and antioxidant capacities of these complexes may make them promising candidates in pharmaceutical applications.
Collapse
Affiliation(s)
- Hammed H A M Hassan
- Department of Chemistry, Faculty of Science, Alexandria University, Moharram Beck, P.O. Box 2, Alexandria, 21568, Egypt.
| | - Hend M Hussein
- Pharmacology and Therapeutics Department, Faculty of Pharmacy, Pharos University, Canal El Mahmoudia Street, Alexandria, 21311, Egypt
| | - Amel F Elhusseiny
- Department of Chemistry, Faculty of Science, Alexandria University, Moharram Beck, P.O. Box 2, Alexandria, 21568, Egypt
| |
Collapse
|
11
|
Ahamed AF, Kalaivasan N, Thangaraj R. Probing the Photocatalytic Degradation of Acid Orange 7 Dye with Chitosan Impregnated Hydroxyapatite/Manganese Dioxide Composite. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02492-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
12
|
Fabrication of Biologically Active Fish Bone Derived Hydroxyapatite and Montmorillonite Blended Sodium Alginate Composite for In-Vitro Drug Delivery Studies. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02401-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
13
|
Alorini TA, Al-Hakimi AN, El-Sayed Saeed S, Alhamzi EHL, Albadri AE. Synthesis, characterization, and anticancer activity of some metal complexes with a new Schiff base ligand. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103559] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
14
|
Alkabli J. Progress in preparation of thiolated, crosslinked, and imino-chitosan derivatives targeting specific applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.110998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
15
|
Manimohan M, Paulpandiyan R, Pugalmani S, Sithique MA. Biologically active Co (II), Cu (II), Zn (II) centered water soluble novel isoniazid grafted O-carboxymethyl chitosan Schiff base ligand metal complexes: Synthesis, spectral characterisation and DNA nuclease activity. Int J Biol Macromol 2020; 163:801-816. [PMID: 32652152 DOI: 10.1016/j.ijbiomac.2020.06.278] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/17/2020] [Accepted: 06/29/2020] [Indexed: 12/26/2022]
Abstract
In this study, the new N, N, O tridentate donor water soluble isoniazid based biopolymer Schiff base ligand and their Co (II), Cu (II), Zn (II) metal complexes were prepared. The compounds were designed for potential biological application such as antibacterial, antifungal, anti-inflammatory, total antioxidant, antidiabetic and DNA binding studies. The synthesized compounds were illuminated in different light sources of various spectra were used to explore the functional groups of Biopolymer derivatives. Thermal degradation, thermal stability and percentage of mass loss for the prepared compounds were investigated through thermo gravimetric and differential thermal (TGA-DTA) analyses. Crystalline structure of synthesized biopolymer derivatives were explored by X-ray diffraction (XRD) studies, the crystallinity of chitosan is gradually decreased after the Schiff base and complex formation. Surface morphology and structures of the prepared compounds were examined using SEM analysis. The magnetic moment and magnetism of the metal complexes were studied using Vibrating-sample magnetometer (VSM). Antidiabetic studies of Biopolymer Schiff base and metal complexes were carried out by α-amylose inhibitory method. DNA nuclease activities of synthesized metal complexes were investigated by Ultra-Violet (UV) and viscometry methods. The Cu (II) complexes showed better DNA binding results than Co (II) and Zn (II) complexes.
Collapse
Affiliation(s)
- Murugaiyan Manimohan
- PG & Research Department of Chemistry, Islamiah College (Autonomous), Vaniyambadi, Tirupattur District, Tamil Nadu 635 752, India
| | | | | | - Mohamed Aboobucker Sithique
- PG & Research Department of Chemistry, Islamiah College (Autonomous), Vaniyambadi, Tirupattur District, Tamil Nadu 635 752, India.
| |
Collapse
|
16
|
Manimohan M, Pugalmani S, Sithique MA. Synthesis, Spectral Characterisation and Biological Activities of Novel Biomaterial/N, N, O Donor Tridentate Co (II), Ni (II) and Zn (II) Complexes of Hydrazide Based Biopolymer Schiff Base Ligand. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01578-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
17
|
Luo F, Wang W, Chen M, Zheng Z, Zeng D, Hasan M, Fu Z, Shu X. Synthesis and Efficacy of the N-carbamoyl-methionine Copper on the Growth Performance, Tissue Mineralization, Immunity, and Enzymatic Antioxidant Capacity of Nile tilapia ( Oreochromis niloticus). ACS OMEGA 2020; 5:22578-22586. [PMID: 32923817 PMCID: PMC7482252 DOI: 10.1021/acsomega.0c03220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/13/2020] [Indexed: 05/15/2023]
Abstract
Immunogenic, methionine copper-induced response had proven to be precedent in providing resistance against certain diseases in fish. This study allocates the fitness strategy for Oreochromis niloticus by introducing and incorporating the well-designed, stabilized, and biocompatible N-carbamoyl-methionine copper (NCM-Cu) as a Cu potent source in diet that enhances the bioavailability and fitness. The synchronized NCM-Cu complex was characterized by directing ultraviolet and visible spectrophotometry (UV-vis), Fourier-transform infrared (FTIR), X-ray diffractometry (XRD), thermogravimetric analysis (TGA), and single-crystal X-ray diffraction. Results revealed blue columnar crystalline, NCM-Cu complex with an empirical formula as C12H30CuN4O10S2. Anonymously, the overall growth performance of the fish remained unaltered with NCM-Cu adjunct feed. NCM-Cu significantly raised the Cu accumulation in the fish muscles, liver, gill, and intestine in contrast to the basic Cu-rich feed. The serum antioxidant enzyme activity elevated up to (ceruloplasmin: 19.38 U/L) and the lowest liver malondialdehyde (MDA) content (8.81 nmol/mg prot.) and triglyceride content (0.39 nmol/g prot.) were observed in the NCM-Cu group as compared to the basic Cu and CuSO4 groups, suggesting that NCM-Cu promoted antioxidative responses and alleviated lipid peroxidation of O. niloticus. Overweening, the synthesized complex, NCM-Cu significantly regulated the expression levels of lysozyme, immunoglobulin M, complement 4, and complement 3 up to 10.93 U/mL, 0.72, 0.77, and 1.18 mg/mL in serum, respectively. Thus, such endorsed results reveal the preeminence of NCM-Cu-supplemented diet for the fitness in O. niloticus.
Collapse
Affiliation(s)
- Fan Luo
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenxiong Wang
- School
of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Meiquan Chen
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhanjia Zheng
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou 510225, China
| | - Dandan Zeng
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou 510225, China
| | - Murtaza Hasan
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou 510225, China
- Department
of Biochemistry and Biotechnology, The Islamia
University of Bahawalpur, Bahawalpur 61300, Pakistan
- . Phone/Fax: 86-020-8900-3114
| | - Zhihuan Fu
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xugang Shu
- School
of Chemistry and Chemical Engineering, Zhongkai
University of Agriculture and Engineering, Guangzhou 510225, China
- Guangdong
Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou 510225, China
| |
Collapse
|