1
|
Maleki R, Ghith A, Heydarlou H, Grzeskowiak LE, Ingman WV. The Role of Breastmilk in Macrophage-Tumour Cell Interactions in Postpartum Breast Cancer. FRONT BIOSCI-LANDMRK 2024; 29:328. [PMID: 39344339 DOI: 10.31083/j.fbl2909328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/22/2024] [Accepted: 09/03/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Lactation is associated with long-term reduced risk of breast cancer. However, there is a transient increased risk of breast cancer in the 5 to 10 years postpartum and this is associated with a high incidence of metastasis and mortality. Breastmilk is a physiological fluid secreted by the mammary glands intimately connected with breast cells and the microenvironment that may affect postpartum breast cancer development and progression. This study aims to investigate the effect of breastmilk on interactions between breast cancer cells and macrophages in vitro. METHODS Human breastmilk from healthy donors (n = 7) was pooled and incubated with breast cancer (MCF-7 and MDA-MB-231) and macrophage (RAW264.7) cell lines to assess cell proliferation, viability, migration, and expression of key genes associated with epithelial-mesenchymal transition (EMT) and macrophage phenotype. Indirect co-culture studies assessed the effect of breastmilk on interactions between breast cancer cells and macrophages. RESULTS Breastmilk increased the proliferation and viability of breast cancer cells, reduced EMT markers, and reduced cell migration in MDA-MB-231 cells. Breastmilk decreased mRNA expression of interleukin 1B (IL1B) and interleukin 10 (IL10) in macrophages. Reduced EMT marker expression was observed in breast cancer cells co-cultured with macrophages pre-treated with breastmilk. Macrophages co-cultured with breast cancer cells pre-treated with breastmilk exhibited increased expression of a pro-inflammatory cytokine tumor necrosis factor A (TNFA) and pro-inflammatory nitric oxide synthase 2 (NOS2), and reduced expression of cytokines IL10 and transforming growth factor B1 (TGFB1) which are associated with the alternatively-activated macrophage phenotype. CONCLUSIONS Breastmilk has the potential to promote breast cancer proliferation, however, it can also reduce breast cancer progression through inhibition of breast cancer cell migration and regulation of macrophage polarisation. These findings suggest that breastmilk has potential to shape the tumour microenvironment in postpartum breast cancer.
Collapse
Affiliation(s)
- Reza Maleki
- Discipline of Surgical Specialties, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5006, Australia
| | - Amna Ghith
- Discipline of Surgical Specialties, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5006, Australia
| | - Hanieh Heydarlou
- Discipline of Surgical Specialties, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5006, Australia
| | - Luke E Grzeskowiak
- College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
- SAHMRI Women and Kids, South Australian Health and Medical Research Institute, Women's and Children's Hospital, North Adelaide, SA 5006, Australia
| | - Wendy V Ingman
- Discipline of Surgical Specialties, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital, Woodville South, SA 5011, Australia
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5006, Australia
| |
Collapse
|
2
|
Romero-Trejo D, Aguiñiga-Sanchez I, Ledesma-Martínez E, Weiss-Steider B, Sierra-Mondragón E, Santiago-Osorio E. Anti-cancer potential of casein and its derivatives: novel strategies for cancer treatment. Med Oncol 2024; 41:200. [PMID: 38990440 PMCID: PMC11239739 DOI: 10.1007/s12032-024-02403-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/02/2024] [Indexed: 07/12/2024]
Abstract
Cancer is one of the leading causes of death worldwide, with over 10 million fatalities annually. While tumors can be surgically removed and treated with chemotherapy, radiotherapy, immunotherapy, hormonal therapy, or combined therapies, current treatments often result in toxic side effects in normal tissue. Therefore, researchers are actively seeking ways to selectively eliminate cancerous cells, minimizing the toxic side effects in normal tissue. Caseins and its derivatives have shown promising anti-cancer potential, demonstrating antitumor and cytotoxic effects on cells from various tumor types without causing harm to normal cells. Collectively, these data reveals advancements in the study of caseins and their derivative peptides, particularly providing a comprehensive understanding of the molecular mechanism of action in cancer therapy. These mechanisms occur through various signaling pathways, including (i) the increase of interferon-associated STAT1 signaling, (ii) the suppression of stemness-related markers such as CD44, (iii) the attenuation of the STAT3/HIF1-α signaling, (iv) the down-expression of uPAR and PAI-1, (v) the loss of mitochondrial membrane potential and reduced intracellular ATP production, (vi) the increase of caspase-3 activity, and (vii) the suppression of TLR4/NF-кB signaling. Therefore, we conclude that casein could be an effective adjuvant for cancer treatment.
Collapse
Affiliation(s)
- Daniel Romero-Trejo
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, 09230, Mexico City, Mexico
| | - Itzen Aguiñiga-Sanchez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, 09230, Mexico City, Mexico
- Department of Biomedical Sciences, School of Medicine, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, 56410, Mexico City, Mexico
| | - Edgar Ledesma-Martínez
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, 09230, Mexico City, Mexico
| | - Benny Weiss-Steider
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, 09230, Mexico City, Mexico
| | - Edith Sierra-Mondragón
- Department of Physiology, Biophysics, and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute, 07360, Mexico City, DF, Mexico
| | - Edelmiro Santiago-Osorio
- Hematopoiesis and Leukemia Laboratory, Research Unit on Cell Differentiation and Cancer, Faculty of High Studies Zaragoza, National Autonomous University of Mexico, 09230, Mexico City, Mexico.
| |
Collapse
|
3
|
Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J, Zhou R. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther 2024; 9:170. [PMID: 38965243 PMCID: PMC11224386 DOI: 10.1038/s41392-024-01851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/β-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-β, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunqi Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuofan Zhai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jie Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
4
|
Choi Y, Kim N, Song CH, Kim S, Lee DH. The Effect of A2 Milk on Gastrointestinal Symptoms in Comparison to A1/A2 Milk: A Single-center, Randomized, Double-blind, Cross-over Study. J Cancer Prev 2024; 29:45-53. [PMID: 38957588 PMCID: PMC11215337 DOI: 10.15430/jcp.24.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/04/2024] [Accepted: 06/11/2024] [Indexed: 07/04/2024] Open
Abstract
β-Casein, a major protein in cow's milk, is divided into the A1 and A2 type variants. Digestion of A1 β-casein yields the peptide β-casomorphin-7 which could cause gastrointestinal (GI) discomfort but A2 milk containing only A2 β-casein might be more beneficial than A1/A2 (regular) milk. The aim of this study was to evaluate the differences in GI discomfort after ingestion of A2 milk and A1/A2 milk. A randomized, double-blind, cross-over human trial was performed with 40 subjects who experienced GI discomfort following milk consumption. For each intervention period, either A2 milk first (A2→A1/A2) or A1/A2 milk was first consumed for 2 weeks (A1/A2→A2) following a 2-week washout period. GI symptom rating scale (GSRS) scores, questionnaire for digestive symptoms, and laboratory tests including fecal calprotectin were evaluated. For symptom analysis, generalized estimating equations gamma model was used. A2 milk increased bloating (P = 0.041) and loose stools (P = 0.026) compared to A1/A2 milk in GSRS. However, A2 milk caused less abdominal pain (P = 0.050), fecal urgency (P < 0.001) and borborygmus (P = 0.007) compared to A1/A2 milk in questionnaire for digestive symptoms. In addition, fecal calprotectin also decreased or less increased after consumption of A2 milk compared to A1/A2 milk (P = 0.030), and this change was more pronounced in males (P = 0.005) than in females. There were no significant adverse reactions during the trial. A2 milk alleviated digestive discomfort in Koreans following A2 milk consumption (ClinicalTrials.gov NCT06252636 and CRIS KCT0009301).
Collapse
Affiliation(s)
- Yonghoon Choi
- Department of Internal Medicine and Research Center for Sex- and Gender-Specific Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Nayoung Kim
- Department of Internal Medicine and Research Center for Sex- and Gender-Specific Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Chin-Hee Song
- Department of Internal Medicine and Research Center for Sex- and Gender-Specific Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Seulgi Kim
- Department of Internal Medicine and Research Center for Sex- and Gender-Specific Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Dong Ho Lee
- Department of Internal Medicine and Research Center for Sex- and Gender-Specific Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Golonko A, Pienkowski T, Swislocka R, Orzechowska S, Marszalek K, Szczerbinski L, Swiergiel AH, Lewandowski W. Dietary factors and their influence on immunotherapy strategies in oncology: a comprehensive review. Cell Death Dis 2024; 15:254. [PMID: 38594256 PMCID: PMC11004013 DOI: 10.1038/s41419-024-06641-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Immunotherapy is emerging as a promising avenue in oncology, gaining increasing importance and offering substantial advantages when compared to chemotherapy or radiotherapy. However, in the context of immunotherapy, there is the potential for the immune system to either support or hinder the administered treatment. This review encompasses recent and pivotal studies that assess the influence of dietary elements, including vitamins, fatty acids, nutrients, small dietary molecules, dietary patterns, and caloric restriction, on the ability to modulate immune responses. Furthermore, the article underscores how these dietary factors have the potential to modify and enhance the effectiveness of anticancer immunotherapy. It emphasizes the necessity for additional research to comprehend the underlying mechanisms for optimizing the efficacy of anticancer therapy and defining dietary strategies that may reduce cancer-related morbidity and mortality. Persistent investigation in this field holds significant promise for improving cancer treatment outcomes and maximizing the benefits of immunotherapy.
Collapse
Affiliation(s)
- Aleksandra Golonko
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276, Bialystok, Poland
| | - Tomasz Pienkowski
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276, Bialystok, Poland.
| | - Renata Swislocka
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45 E, 15-351, Bialystok, Poland
| | - Sylwia Orzechowska
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Krystian Marszalek
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
| | - Lukasz Szczerbinski
- Clinical Research Center, Medical University of Bialystok, M. Skłodowskiej-Curie 24a, 15-276, Bialystok, Poland
| | - Artur Hugo Swiergiel
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
- Faculty of Biology, Department of Animal and Human Physiology, University of Gdansk, W. Stwosza 59, 80-308, Gdansk, Poland
| | - Wlodzimierz Lewandowski
- Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology State Research Institute, Rakowiecka 36, 02-532, Warsaw, Poland
- Department of Chemistry, Biology and Biotechnology, Bialystok University of Technology, Wiejska 45 E, 15-351, Bialystok, Poland
| |
Collapse
|
6
|
Hua Z, White J, Zhou J. Cancer stem cells in TNBC. Semin Cancer Biol 2021; 82:26-34. [PMID: 34147641 DOI: 10.1016/j.semcancer.2021.06.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022]
Abstract
Triple-negative breast cancer (TNBC) is a broad collection of breast cancer that tests negative for estrogen receptors (ER), progesterone receptors (PR), and excess human epidermal growth factor receptor 2 (HER2) protein. TNBC is considered to have poorer prognosis than other types of breast cancer because of a lack of effective therapeutic targets. The success of precision cancer therapies relies on the clarification of key molecular mechanisms that drive tumor growth and metastasis; however, TNBC is highly heterogeneous in terms of their cellular lineage composition and the molecular nature within each individual case. In particular, the rare and sometimes slow cycling cancer stem cells (CSCs) can provide effective means for TNBC to resist various treatments. Single cell analysis technologies, including single-cell RNA-seq (scRNA-seq) and proteomics, provide an avenue to unravel patient-level intratumoral heterogeneity by identifying CSCs populations, CSC biomarkers and the range of tumor microenvironment cellular constituents that contribute to tumor growth. This review discusses the emerging evidence for the role of CSCs in driving TNBC incidence and the therapeutic implications in manipulating molecular signaling against this rare cell population for the control of this deadly disease.
Collapse
Affiliation(s)
- Zhan Hua
- Department of General Surgery, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Jason White
- Tuskegee University, Center for Cancer Research, Tuskegee, AL, 36830, USA
| | - Jianjun Zhou
- Research Center for Translational Medicine, Cancer Stem Cell Institute, East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China.
| |
Collapse
|
7
|
Li X, Ye M. The expression of VEGF and VEGFR in endotoxin induced otitis media with effusion in rats. Int J Pediatr Otorhinolaryngol 2021; 144:110669. [PMID: 33761375 DOI: 10.1016/j.ijporl.2021.110669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/08/2021] [Accepted: 03/02/2021] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To investigate the expression and correlation of vascular endothelial growth factor (VEGF) and its receptor with hypoxia-inducible factor-1 α (HIF-1 α) in otitis media with effusion (OME). METHODS A rat model of OME was induced by injection of lipopolysaccharide (LPS) into the middle ear. Hematoxylin and eosin (HE) staining was used to observe the pathomorphological changes of the tympanic cavity in the middle ear of rats. Immunohistochemistry (IHC), western blotting and RT-qPCR were used to determine the mRNA and protein expression of VEGF, VEGFR-1, VEGFR-2 and HIF-1α in mucosa of tympanic cavity mucosa, respectively. RESULTS In the OME group, the epithelial space of the middle ear mucosa was significantly thickened and infiltration of a large number of inflammatory cells was found on postoperative day (POD), and the otitis media basically subsided 2 weeks after operation. VEGF mRNA expression was significantly increased on POD 1, and its protein expression peaked on POD 3. HIF-1α mRNA expression was significantly increased and peaked on POD 1, while its protein expression began to increase on POD 3 and was significantly expressed in the middle ear mucosal epithelium. HIF-1α mRNA showed a positive correlation with VEGF mRNA and VEGFR-1 mRNA expression. CONCLUSION VEGF mainly plays a role in the acute phase of OME, and it is abundantly expressed mediated by HIF-1α. And then it play a role in vasodilatation and increase of vascular permeability, thus promoting the generation of middle ear effusion.
Collapse
Affiliation(s)
- Xiping Li
- Department of Otolaryngology Head and Neck Surgery, Beiijng Anzhen Hospital Affiliated with Capital Medical University, 2 Anzhen Road, Chaoyang District, Beijing, 100029, China.
| | - Mengxiao Ye
- Department of Otolaryngology Head and Neck Surgery, Beiijng Anzhen Hospital Affiliated with Capital Medical University, 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
| |
Collapse
|
8
|
Zhang Q, Han Z, Zhu Y, Chen J, Li W. Role of hypoxia inducible factor-1 in cancer stem cells (Review). Mol Med Rep 2020; 23:17. [PMID: 33179080 PMCID: PMC7673349 DOI: 10.3892/mmr.2020.11655] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) have been found to play a decisive role in cancer recurrence, metastasis, and chemo‑, radio‑ and immuno‑resistance. Understanding the mechanism of CSC self‑renewal and proliferation may help overcome the limitations of clinical treatment. The microenvironment of tumor growth consists of a lack of oxygen, and hypoxia has been confirmed to induce cancer cell invasion, metastasis and epithelial‑mesenchymal transition, and is usually associated with poor prognosis and low survival rates. Hypoxia inducible factor‑1 (HIF‑1) can be stably expressed under hypoxia and act as an important molecule to regulate the development of CSCs, but the specific mechanism remains unclear. The present review attempted to explain the role of HIF‑1 in the generation and maintenance of CSCs from the perspective of epigenetics, metabolic reprogramming, tumor immunity, CSC markers, non‑coding RNA and signaling pathways associated with HIF‑1, in order to provide novel targets with HIF‑1 as the core for clinical treatment, and extend the life of patients.
Collapse
Affiliation(s)
- Qi Zhang
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Zhenzhen Han
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Yanbo Zhu
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Jingcheng Chen
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| | - Wei Li
- Stem Cell and Cancer Center, The First Hospital of Jilin University, Changchun, Jilin 130061, P.R. China
| |
Collapse
|
9
|
Nilsson L, Sandén E, Khazaei S, Tryggvadottir H, Nodin B, Jirström K, Borgquist S, Isaksson K, Jernström H. Patient Characteristics Influence Activated Signal Transducer and Activator of Transcription 3 (STAT3) Levels in Primary Breast Cancer-Impact on Prognosis. Front Oncol 2020; 10:1278. [PMID: 32850390 PMCID: PMC7403202 DOI: 10.3389/fonc.2020.01278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/19/2020] [Indexed: 12/23/2022] Open
Abstract
Background: Activated signal transducer and activator of transcription 3 (pSTAT3) is often present in breast cancer, but its prognostic impact is still unclear. We investigated how breast tumor-specific pSTAT3Y705 levels are associated with patient and tumor characteristics and risk of recurrence. Materials and Methods: Primary breast cancer patients without preoperative treatment were included preoperatively. The patients were treated in Lund, Sweden, in 2002–2012 and followed until 2016. Levels of pSTAT3Y705 were evaluated in 867 tumors using tissue microarrays with immunohistochemistry and categorized according to the H-score as negative (0–9; 24.2%), intermediate (10–150; 69.9%), and high (160–300; 5.9%). Results: Patients were followed for up to 13 years, and 137 recurrences (88 distant) were recorded. Higher pSTAT3Y705 levels were associated with patient characteristics including younger age, any alcohol consumption, higher age at first child birth, and smaller body size, as well as tumor characteristics including smaller tumor size, lower histological grade, lymph node negativity, progesterone receptor positivity, and HER2 negativity (all Ptrends ≤ 0.04). Higher pSTAT3Y705 levels were associated with lower risk of early recurrences (LogRank Ptrend = 0.10; 5-year LogRank Ptrend = 0.004) and distant metastases (LogRank Ptrend = 0.045; 5-year LogRank Ptrend = 0.0007), but this was not significant in the multivariable models. There was significant effect modification between tamoxifen treatment and pSTAT3Y705 negativity on the recurrence risk in chemonaïve patients with estrogen receptor positive tumors [adjusted hazard ratio (HR) 0.38; Pinteraction = 0.046]. Conclusion: Higher pSTAT3Y705 levels were associated with several patient and tumor characteristics that are mainly associated with good prognosis and a tendency toward lower risk for early recurrences. In the future, these results may help guide the selection of patients for trials with drugs targeting the STAT3 pathway.
Collapse
Affiliation(s)
- Linn Nilsson
- Department of Clinical Sciences in Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden.,Department of Medical Physics and Engineering, Växjö Central Hospital, Växjö, Sweden.,Department of Research and Development, Region Kronoberg, Växjö, Sweden
| | - Emma Sandén
- Department of Clinical Sciences in Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Somayeh Khazaei
- Department of Clinical Sciences in Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Helga Tryggvadottir
- Department of Clinical Sciences in Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Björn Nodin
- Department of Clinical Sciences in Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Karin Jirström
- Department of Clinical Sciences in Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Signe Borgquist
- Department of Clinical Sciences in Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden.,Department of Oncology, Aarhus University and Aarhus University Hospital, Aarhus, Denmark
| | - Karolin Isaksson
- Department of Clinical Sciences in Lund, Surgery, Lund University, Lund, Sweden.,Department of Surgery, Central Hospital Kristianstad, Kristianstad, Sweden
| | - Helena Jernström
- Department of Clinical Sciences in Lund, Oncology, Lund University and Skåne University Hospital, Lund, Sweden
| |
Collapse
|
10
|
Ashrafizadeh M, Ahmadi Z, Mohammadinejad R, Ghasemipour Afshar E. Tangeretin: a mechanistic review of its pharmacological and therapeutic effects. J Basic Clin Physiol Pharmacol 2020; 31:/j/jbcpp.ahead-of-print/jbcpp-2019-0191/jbcpp-2019-0191.xml. [PMID: 32329752 DOI: 10.1515/jbcpp-2019-0191] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/07/2019] [Indexed: 06/11/2023]
Abstract
To date, a large number of synthetic drugs have been developed for the treatment and prevention of different disorders, such as neurodegenerative diseases, diabetes mellitus, and cancer. However, these drugs suffer from a variety of drawbacks including side effects and low efficacy. In response to this problem, researchers have focused on the plant-derived natural products due to their valuable biological activities and low side effects. Flavonoids consist of a wide range of naturally occurring compounds exclusively found in fruits and vegetables and demonstrate a number of pharmacological and therapeutic effects. Tangeretin (TGN) is a key member of flavonoids that is extensively found in citrus peels. It has different favorable biological activities such as antioxidant, anti-inflammatory, antitumor, hepatoprotective, and neuroprotective effects. In the present review, we discuss the various pharmacological and therapeutic effects of TGN and then, demonstrate how this naturally occurring compound affects signaling pathways to exert its impacts.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran, Phone: +989032360639
| | - Zahra Ahmadi
- Department of Basic Science, Faculty of Veterinary Medicine, Islamic Azad Branch, University of Shushtar, Khuzestan, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Ghasemipour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
11
|
Identification of Prognostic Immune Genes in Bladder Urothelial Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7510120. [PMID: 32420368 PMCID: PMC7201587 DOI: 10.1155/2020/7510120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/20/2019] [Accepted: 12/17/2019] [Indexed: 12/27/2022]
Abstract
Background The aim of this study is to identify possible prognostic-related immune genes in bladder urothelial carcinoma and to try to predict the prognosis of bladder urothelial carcinoma based on these genes. Methods The Cancer Genome Atlas (TCGA) expression profile data and corresponding clinical traits were obtained. Differential gene analysis was performed using R software. Reactome was used to analyze the pathway of immune gene participation. The differentially expressed transcription factors and differentially expressed immune-related genes were extracted from the obtained list of differentially expressed genes, and the transcription factor-immune gene network was constructed. To analyze the relationship between immune genes and clinical traits of bladder urothelial carcinoma, a multifactor Cox proportional hazards regression model based on the expression of immune genes was established and validated. Results Fifty-eight immune genes were identified to be associated with the prognosis of bladder urothelial carcinoma. These genes were enriched in Cytokine Signaling in Immune System, Signaling by Receptor Tyrosine Kinases, Interferon alpha/beta signaling, and other immune related pathways. Transcription factor-immune gene regulatory network was established, and EBF1, IRF4, SOX17, MEF2C, NFATC1, STAT1, ANXA6, SLIT2, and IGF1 were screened as hub genes in the network. The model calculated by the expression of 16 immune genes showed a good survival prediction ability (p < 0.05 and AUC = 0.778). Conclusion A transcription factor-immune gene regulatory network related to the prognosis of bladder urothelial carcinoma was established. EBF1, IRF4, SOX17, MEF2C, NFATC1, STAT1, ANXA6, SLIT2, and IGF1 were identified as hub genes in the network. The proportional hazards regression model constructed by 16 immune genes shows a good predictive ability for the prognosis of bladder urothelial carcinoma.
Collapse
|