1
|
Alamoodi A, Albahri O, Zaidan A, Alsattar H, Zaidan B, Albahri A. Hospital selection framework for remote MCD patients based on fuzzy q-rung orthopair environment. Neural Comput Appl 2022; 35:6185-6196. [PMID: 36415285 PMCID: PMC9672551 DOI: 10.1007/s00521-022-07998-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022]
Abstract
This research proposes a novel mobile health-based hospital selection framework for remote patients with multi-chronic diseases based on wearable body medical sensors that use the Internet of Things. The proposed framework uses two powerful multi-criteria decision-making (MCDM) methods, namely fuzzy-weighted zero-inconsistency and fuzzy decision by opinion score method for criteria weighting and hospital ranking. The development of both methods is based on a Q-rung orthopair fuzzy environment to address the uncertainty issues associated with the case study in this research. The other MCDM issues of multiple criteria, various levels of significance and data variation are also addressed. The proposed framework comprises two main phases, namely identification and development. The first phase discusses the telemedicine architecture selected, patient dataset used and decision matrix integrated. The development phase discusses criteria weighting by q-ROFWZIC and hospital ranking by q-ROFDOSM and their sub-associated processes. Weighting results by q-ROFWZIC indicate that the time of arrival criterion is the most significant across all experimental scenarios with (0.1837, 0.183, 0.230, 0.276, 0.335) for (q = 1, 3, 5, 7, 10), respectively. Ranking results indicate that Hospital (H-4) is the best-ranked hospital in all experimental scenarios. Both methods were evaluated based on systematic ranking and sensitivity analysis, thereby confirming the validity of the proposed framework.
Collapse
Affiliation(s)
- A.H. Alamoodi
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Malaysia
| | - O.S. Albahri
- Computer Techniques Engineering Department, Mazaya University College, Nassiriya, Thi-Qar Iraq
| | - A.A. Zaidan
- Faculty of Engineering & IT, The British University in Dubai, Dubai, United Arab Emirates
| | - H.A. Alsattar
- Department of Business Administration, College of Administrative Science, The University of Mashreq, 10021 Baghdad, Iraq
| | - B.B. Zaidan
- Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin, 64002 Taiwan
| | - A.S. Albahri
- Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq
| |
Collapse
|
2
|
Albahri AS, Hamid RA, Zaidan AA, Albahri OS. Early automated prediction model for the diagnosis and detection of children with autism spectrum disorders based on effective sociodemographic and family characteristic features. Neural Comput Appl 2022. [DOI: 10.1007/s00521-022-07822-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
3
|
Alqaysi ME, Albahri AS, Hamid RA. Diagnosis-Based Hybridization of Multimedical Tests and Sociodemographic Characteristics of Autism Spectrum Disorder Using Artificial Intelligence and Machine Learning Techniques: A Systematic Review. Int J Telemed Appl 2022; 2022:3551528. [PMID: 35814280 PMCID: PMC9270139 DOI: 10.1155/2022/3551528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/31/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurobehavioral condition that begins in childhood and continues throughout life, affecting communication and verbal and behavioral skills. It is challenging to discover autism in the early stages of life, which prompted researchers to intensify efforts to reach the best solutions to treat this challenge by introducing artificial intelligence (AI) techniques and machine learning (ML) algorithms, which played an essential role in greatly assisting the medical and healthcare staff and trying to obtain the highest predictive results for autism spectrum disorder. This study is aimed at systematically reviewing the literature related to the criteria, including multimedical tests and sociodemographic characteristics in AI techniques and ML contributions. Accordingly, this study checked the Web of Science (WoS), Science Direct (SD), IEEE Xplore digital library, and Scopus databases. A set of 944 articles from 2017 to 2021 is collected to reveal a clear picture and better understand all the academic literature through a definitive collection of 40 articles based on our inclusion and exclusion criteria. The selected articles were divided based on similarity, objective, and aim evidence across studies. They are divided into two main categories: the first category is "diagnosis of ASD based on questionnaires and sociodemographic features" (n = 39). This category contains a subsection that consists of three categories: (a) early diagnosis of ASD towards analysis, (b) diagnosis of ASD towards prediction, and (c) diagnosis of ASD based on resampling techniques. The second category consists of "diagnosis ASD based on medical and family characteristic features" (n = 1). This multidisciplinary systematic review revealed the taxonomy, motivations, recommendations, and challenges of diagnosis ASD research in utilizing AI techniques and ML algorithms that need synergistic attention. Thus, this systematic review performs a comprehensive science mapping analysis and identifies the open issues that help accomplish the recommended solution of diagnosis ASD research. Finally, this study critically reviews the literature and attempts to address the diagnosis ASD research gaps in knowledge and highlights the available ASD datasets, AI techniques and ML algorithms, and the feature selection methods that have been collected from the final set of articles.
Collapse
Affiliation(s)
- M. E. Alqaysi
- Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq
- Department of Medical Instruments Engineering Techniques, Al-Farahidi University, Baghdad 10021, Iraq
| | - A. S. Albahri
- Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq
| | - Rula A. Hamid
- Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq
- College of Business Informatics, University of Information Technology and Communications (UOITC), Baghdad, Iraq
| |
Collapse
|
4
|
Aqueveque P, Gómez B, Williams PAH, Li Z. A Novel Privacy Preservation and Quantification Methodology for Implementing Home-Care-Oriented Movement Analysis Systems. SENSORS (BASEL, SWITZERLAND) 2022; 22:4677. [PMID: 35808171 PMCID: PMC9268977 DOI: 10.3390/s22134677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/05/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Human movement is generally evaluated through both observations and clinical assessment scales to identify the state and deterioration of a patient's motor control. Lately, technological systems for human motion analysis have been used in clinics to identify abnormal movement states, while they generally suffer from privacy challenges and concerns especially at home or in remote places. This paper presents a novel privacy preservation and quantification methodology that imitates the forgetting process of human memory to protect privacy in patient-centric healthcare. The privacy preservation principle of this methodology is to change the traditional data analytic routines into a distributed and disposable form (i.e., DnD) so as to naturally minimise the disclosure of patients' health data. To help judge the efficacy of DnD-based privacy preservation, the researchers further developed a risk-driven privacy quantification framework to supplement the existing privacy quantification techniques. To facilitate validating the methodology, this research also involves a home-care-oriented movement analysis system that comprises a single inertial measurement sensor and a mobile application. The system can acquire personal information, raw data of movements and indexes to evaluate the risk of falls and gait at homes. Moreover, the researchers conducted a technological appreciation survey of 16 health professionals to help understand the perception of this research. The survey obtains positive feedback regarding the movement analysis system and the proposed methodology as suitable for home-care scenarios.
Collapse
Affiliation(s)
- Pablo Aqueveque
- Electrical Engineering Department, Universidad de Concepción, Concepción 4070409, Chile; (P.A.); (B.G.)
| | - Britam Gómez
- Electrical Engineering Department, Universidad de Concepción, Concepción 4070409, Chile; (P.A.); (B.G.)
| | | | - Zheng Li
- Department of Computer Science, Universidad de Concepción, Concepción 4070409, Chile
| |
Collapse
|
5
|
Albahri AS, Albahri OS, Zaidan AA, Alnoor A, Alsattar HA, Mohammed R, Alamoodi AH, Zaidan BB, Aickelin U, Alazab M, Garfan S, Ahmaro IYY, Ahmed MA. Integration of fuzzy-weighted zero-inconsistency and fuzzy decision by opinion score methods under a q-rung orthopair environment: A distribution case study of COVID-19 vaccine doses. COMPUTER STANDARDS & INTERFACES 2022; 80:103572. [PMID: 34456503 PMCID: PMC8386109 DOI: 10.1016/j.csi.2021.103572] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/14/2021] [Accepted: 08/22/2021] [Indexed: 05/26/2023]
Abstract
Owing to the limitations of Pythagorean fuzzy and intuitionistic fuzzy sets, scientists have developed a distinct and successive fuzzy set called the q-rung orthopair fuzzy set (q-ROFS), which eliminates restrictions encountered by decision-makers in multicriteria decision making (MCDM) methods and facilitates the representation of complex uncertain information in real-world circumstances. Given its advantages and flexibility, this study has extended two considerable MCDM methods the fuzzy-weighted zero-inconsistency (FWZIC) method and fuzzy decision by opinion score method (FDOSM) under the fuzzy environment of q-ROFS. The extensions were called q-rung orthopair fuzzy-weighted zero-inconsistency (q-ROFWZIC) method and q-rung orthopair fuzzy decision by opinion score method (q-ROFDOSM). The methodology formulated had two phases. The first phase 'development' presented the sequential steps of each method thoroughly.The q-ROFWZIC method was formulated and used in determining the weights of evaluation criteria and then integrated into the q-ROFDOSM for the prioritisation of alternatives on the basis of the weighted criteria. In the second phase, a case study regarding the MCDM problem of coronavirus disease 2019 (COVID-19) vaccine distribution was performed. The purpose was to provide fair allocation of COVID-19 vaccine doses. A decision matrix based on an intersection of 'recipients list' and 'COVID-19 distribution criteria' was adopted. The proposed methods were evaluated according to systematic ranking assessment and sensitivity analysis, which revealed that the ranking was subject to a systematic ranking that is supported by high correlation results over different scenarios with variations in the weights of criteria.
Collapse
Affiliation(s)
- A S Albahri
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
- Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq
| | - O S Albahri
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - A A Zaidan
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - Alhamzah Alnoor
- School of Management, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| | - H A Alsattar
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - Rawia Mohammed
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - A H Alamoodi
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - B B Zaidan
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - Uwe Aickelin
- School of Computing and Information Systems, University of Melbourne, 700 Swanston Street, Victoria 3010 Australia
| | - Mamoun Alazab
- College of Engineering, IT and Environment, Charles Darwin University, NT, Australia
| | - Salem Garfan
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - Ibraheem Y Y Ahmaro
- Computer Science Department, College of Information Technology, Hebron University, Hebron, Palestine
| | - M A Ahmed
- Department of Computer Science, Computer Science and Mathematics College, Tikrit University, Tikrit, Iraq
| |
Collapse
|
6
|
Al-Samarraay MS, Zaidan A, Albahri O, Pamucar D, AlSattar H, Alamoodi A, Zaidan B, Albahri A. Extension of interval-valued Pythagorean FDOSM for evaluating and benchmarking real-time SLRSs based on multidimensional criteria of hand gesture recognition and sensor glove perspectives. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2021.108284] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
A new extension of FDOSM based on Pythagorean fuzzy environment for evaluating and benchmarking sign language recognition systems. Neural Comput Appl 2022. [DOI: 10.1007/s00521-021-06683-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Alsalem MA, Albahri OS, Zaidan AA, Al-Obaidi JR, Alnoor A, Alamoodi AH, Albahri AS, Zaidan BB, Jumaah FM. Rescuing emergency cases of COVID-19 patients: An intelligent real-time MSC transfusion framework based on multicriteria decision-making methods. APPL INTELL 2022; 52:9676-9700. [PMID: 35035091 PMCID: PMC8741536 DOI: 10.1007/s10489-021-02813-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem cells (MSCs) have shown promising ability to treat critical cases of coronavirus disease 2019 (COVID-19) by regenerating lung cells and reducing immune system overreaction. However, two main challenges need to be addressed first before MSCs can be efficiently transfused to the most critical cases of COVID-19. First is the selection of suitable MSC sources that can meet the standards of stem cell criteria. Second is differentiating COVID-19 patients into different emergency levels automatically and prioritising them in each emergency level. This study presents an efficient real-time MSC transfusion framework based on multicriteria decision-making(MCDM) methods. In the methodology, the testing phase represents the ability to adhere to plastic surfaces, the upregulation and downregulation of specific surface protein markers and finally the ability to differentiate into different kinds of cells. In the development phase, firstly, two scenarios of an augmented dataset based on the medical perspective are generated to produce 80 patients with different emergency levels. Secondly, an automated triage algorithm based on a formal medical guideline is proposed for real-time monitoring of COVID-19 patients with different emergency levels (i.e. mild, moderate, severe and critical) considering the improvement and deterioration procedures from one level to another. Thirdly, a unique decision matrix for each triage level (except mild) is constructed on the basis of the intersection between the evaluation criteria of each emergency level and list of COVID-19 patients. Thereafter, MCDM methods (i.e. analytic hierarchy process [AHP] and vlsekriterijumska optimizcija i kaompromisno resenje [VIKOR]) are integrated to assign subjective weights for the evaluation criteria within each triage level and then prioritise the COVID-19 patients on the basis of individual and group decision-making(GDM) contexts. Results show that: (1) in both scenarios, the proposed algorithm effectively classified the patients into four emergency levels, including mild, moderate, severe and critical, taking into consideration the improvement and deterioration cases. (2) On the basis of experts' perspectives, clear differences in most individual prioritisations for patients with different emergency levels in both scenarios were found. (3) In both scenarios, COVID-19 patients were prioritised identically between the internal and external group VIKOR. During the evaluation, the statistical objective method indicated that the patient prioritisations underwent systematic ranking. Moreover, comparison analysis with previous work proved the efficiency of the proposed framework. Thus, the real-time MSC transfusion for COVID-19 patients can follow the order achieved in the group VIKOR results.
Collapse
Affiliation(s)
- M. A. Alsalem
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim, Malaysia
| | - O. S. Albahri
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim, Malaysia
| | - A. A. Zaidan
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim, Malaysia
| | - Jameel R. Al-Obaidi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak Malaysia
| | - Alhamzah Alnoor
- School of Management, Universiti Sains Malaysia, 11800 Gelugor, Pulau Pinang Malaysia
| | - A. H. Alamoodi
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim, Malaysia
| | - A. S. Albahri
- Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq
| | - B. B. Zaidan
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim, Malaysia
| | - F. M. Jumaah
- Department of Advanced Applications and Embedded Systems, Intel Corporation, Plot 6, 11900 Bayan Lepas Technoplex, Pulau Pinang Malaysia
| |
Collapse
|
9
|
Hybrid artificial neural network and structural equation modelling techniques: a survey. COMPLEX INTELL SYST 2022; 8:1781-1801. [PMID: 34777975 PMCID: PMC8402975 DOI: 10.1007/s40747-021-00503-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/12/2021] [Indexed: 02/07/2023]
Abstract
Topical treatments with structural equation modelling (SEM) and an artificial neural network (ANN), including a wide range of concepts, benefits, challenges and anxieties, have emerged in various fields and are becoming increasingly important. Although SEM can determine relationships amongst unobserved constructs (i.e. independent, mediator, moderator, control and dependent variables), it is insufficient for providing non-compensatory relationships amongst constructs. In contrast with previous studies, a newly proposed methodology that involves a dual-stage analysis of SEM and ANN was performed to provide linear and non-compensatory relationships amongst constructs. Consequently, numerous distinct types of studies in diverse sectors have conducted hybrid SEM-ANN analysis. Accordingly, the current work supplements the academic literature with a systematic review that includes all major SEM-ANN techniques used in 11 industries published in the past 6 years. This study presents a state-of-the-art SEM-ANN classification taxonomy based on industries and compares the effort in various domains to that classification. To achieve this objective, we examined the Web of Science, ScienceDirect, Scopus and IEEE Xplore ® databases to retrieve 239 articles from 2016 to 2021. The obtained articles were filtered on the basis of inclusion criteria, and 60 studies were selected and classified under 11 categories. This multi-field systematic study uncovered new research possibilities, motivations, challenges, limitations and recommendations that must be addressed for the synergistic integration of multidisciplinary studies. It contributed two points of potential future work resulting from the developed taxonomy. First, the importance of the determinants of play, musical and art therapy adoption amongst autistic children within the healthcare sector is the most important consideration for future investigations. In this context, the second potential future work can use SEM-ANN to determine the barriers to adopting sensing-enhanced therapy amongst autistic children to satisfy the recommendations provided by the healthcare sector. The analysis indicates that the manufacturing and technology sectors have conducted the most number of investigations, whereas the construction and small- and medium-sized enterprise sectors have conducted the least. This study will provide a helpful reference to academics and practitioners by providing guidance and insightful knowledge for future studies.
Collapse
|
10
|
Alsalem MA, Alsattar HA, Albahri AS, Mohammed RT, Albahri OS, Zaidan AA, Alnoor A, Alamoodi AH, Qahtan S, Zaidan BB, Aickelin U, Alazab M, Jumaah FM. Based on T-spherical fuzzy environment: A combination of FWZIC and FDOSM for prioritising COVID-19 vaccine dose recipients. J Infect Public Health 2021; 14:1513-1559. [PMID: 34538731 PMCID: PMC8388152 DOI: 10.1016/j.jiph.2021.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/14/2021] [Accepted: 08/21/2021] [Indexed: 01/07/2023] Open
Abstract
The problem complexity of multi-criteria decision-making (MCDM) has been raised in the distribution of coronavirus disease 2019 (COVID-19) vaccines, which required solid and robust MCDM methods. Compared with other MCDM methods, the fuzzy-weighted zero-inconsistency (FWZIC) method and fuzzy decision by opinion score method (FDOSM) have demonstrated their solidity in solving different MCDM challenges. However, the fuzzy sets used in these methods have neglected the refusal concept and limited the restrictions on their constants. To end this, considering the advantage of the T-spherical fuzzy sets (T-SFSs) in handling the uncertainty in the data and obtaining information with more degree of freedom, this study has extended FWZIC and FDOSM methods into the T-SFSs environment (called T-SFWZIC and T-SFDOSM) to be used in the distribution of COVID-19 vaccines. The methodology was formulated on the basis of decision matrix adoption and development phases. The first phase described the adopted decision matrix used in the COVID-19 vaccine distribution. The second phase presented the sequential formulation steps of T-SFWZIC used for weighting the distribution criteria followed by T-SFDOSM utilised for prioritising the vaccine recipients. Results revealed the following: (1) T-SFWZIC effectively weighted the vaccine distribution criteria based on several parameters including T = 2, T = 4, T = 6, T = 8, and T = 10. Amongst all parameters, the age criterion received the highest weight, whereas the geographic locations severity criterion has the lowest weight. (2) According to the T parameters, a considerable variance has occurred on the vaccine recipient orders, indicating that the existence of T values affected the vaccine distribution. (3) In the individual context of T-SFDOSM, no unique prioritisation was observed based on the obtained opinions of each expert. (4) The group context of T-SFDOSM used in the prioritisation of vaccine recipients was considered the final distribution result as it unified the differences found in an individual context. The evaluation was performed based on systematic ranking assessment and sensitivity analysis. This evaluation showed that the prioritisation results based on each T parameter were subject to a systematic ranking that is supported by high correlation results over all discussed scenarios of changing criteria weights values.
Collapse
Affiliation(s)
- M A Alsalem
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - H A Alsattar
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - A S Albahri
- Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq
| | - R T Mohammed
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia; Faculty of Computing and Innovative Technology, Geomatika University College, Kuala Lumpur, Malaysia
| | - O S Albahri
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - A A Zaidan
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia.
| | - Alhamzah Alnoor
- School of Management, Universiti Sains Malaysia, 11800 Pulau Pinang, Malaysia
| | - A H Alamoodi
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia
| | - Sarah Qahtan
- Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - B B Zaidan
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Tanjung Malim 35900, Malaysia; Future Technology Research Center, National Yunlin University of Science and Technology, 123 University Road, Section 3, Douliou, Yunlin 64002, Taiwan
| | - Uwe Aickelin
- School of Computing and Information Systems, University of Melbourne, 700 Swanston Street, Victoria 3010, Australia
| | - Mamoun Alazab
- College of Engineering, IT and Environment, Charles Darwin University, NT, Australia
| | - F M Jumaah
- Department of Advanced Applications and Embedded Systems, Intel Corporation, Plot 6 Bayan Lepas Technoplex, 11900 Pulau Pinang, Malaysia
| |
Collapse
|
11
|
Tang Z, Hu H, Xu C, Zhao K. Exploring an Efficient Remote Biomedical Signal Monitoring Framework for Personal Health in the COVID-19 Pandemic. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9037. [PMID: 34501625 PMCID: PMC8430740 DOI: 10.3390/ijerph18179037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/06/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022]
Abstract
Nowadays people are mostly focused on their work while ignoring their health which in turn is creating a drastic effect on their health in the long run. Remote health monitoring through telemedicine can help people discover potential health threats in time. In the COVID-19 pandemic, remote health monitoring can help obtain and analyze biomedical signals including human body temperature without direct body contact. This technique is of great significance to achieve safe and efficient health monitoring in the COVID-19 pandemic. Existing remote biomedical signal monitoring methods cannot effectively analyze the time series data. This paper designs a remote biomedical signal monitoring framework combining the Internet of Things (IoT), 5G communication and artificial intelligence techniques. In the constructed framework, IoT devices are used to collect biomedical signals at the perception layer. Subsequently, the biomedical signals are transmitted through the 5G network to the cloud server where the GRU-AE deep learning model is deployed. It is noteworthy that the proposed GRU-AE model can analyze multi-dimensional biomedical signals in time series. Finally, this paper conducts a 24-week monitoring experiment for 2000 subjects of different ages to obtain real data. Compared with the traditional biomedical signal monitoring method based on the AutoEncoder model, the GRU-AE model has better performance. The research has an important role in promoting the development of biomedical signal monitoring techniques, which can be effectively applied to some kinds of remote health monitoring scenario.
Collapse
Affiliation(s)
- Zhongyun Tang
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310014, China; (Z.T.); (H.H.)
- School of Information and Electronic Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Haiyang Hu
- School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310014, China; (Z.T.); (H.H.)
| | - Chonghuan Xu
- School of Business Administration, Zhejiang Gongshang University, Hangzhou 310018, China
- Modern Business Research Center, Zhejiang Gongshang University, Hangzhou 310018, China
- Zheshang Research Institute, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Kaidi Zhao
- School of Information Science and Technology, Fudan University, Shanghai 200433, China;
| |
Collapse
|
12
|
Novel dynamic fuzzy Decision-Making framework for COVID-19 vaccine dose recipients. J Adv Res 2021; 37:147-168. [PMID: 35475277 PMCID: PMC8378994 DOI: 10.1016/j.jare.2021.08.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 12/14/2022] Open
Abstract
Introduction The vaccine distribution for the COVID-19 is a multicriteria decision-making (MCDM) problem based on three issues, namely, identification of different distribution criteria, importance criteria and data variation. Thus, the Pythagorean fuzzy decision by opinion score method (PFDOSM) for prioritising vaccine recipients is the correct approach because it utilises the most powerful MCDM ranking method. However, PFDOSM weighs the criteria values of each alternative implicitly, which is limited to explicitly weighting each criterion. In view of solving this theoretical issue, the fuzzy-weighted zero-inconsistency (FWZIC) can be used as a powerful weighting MCDM method to provide explicit weights for a criteria set with zero inconstancy. However, FWZIC is based on the triangular fuzzy number that is limited in solving the vagueness related to the aforementioned theoretical issues. Objectives This research presents a novel homogeneous Pythagorean fuzzy framework for distributing the COVID-19 vaccine dose by integrating a new formulation of the PFWZIC and PFDOSM methods. Methods The methodology is divided into two phases. Firstly, an augmented dataset was generated that included 300 recipients based on five COVID-19 vaccine distribution criteria (i.e., vaccine recipient memberships, chronic disease conditions, age, geographic location severity and disabilities). Then, a decision matrix was constructed on the basis of an intersection of the 'recipients list' and 'COVID-19 distribution criteria'. Then, the MCDM methods were integrated. An extended PFWZIC was developed, followed by the development of PFDOSM. Results (1) PFWZIC effectively weighted the vaccine distribution criteria. (2) The PFDOSM-based group prioritisation was considered in the final distribution result. (3) The prioritisation ranks of the vaccine recipients were subject to a systematic ranking that is supported by high correlation results over nine scenarios of the changing criteria weights values. Conclusion The findings of this study are expected to ensuring equitable protection against COVID-19 and thus help accelerate vaccine progress worldwide.
Collapse
|
13
|
Albahri AS, Zaidan AA, Albahri OS, Zaidan BB, Alamoodi AH, Shareef AH, Alwan JK, Hamid RA, Aljbory MT, Jasim AN, Baqer MJ, Mohammed KI. Development of IoT-based mhealth framework for various cases of heart disease patients. HEALTH AND TECHNOLOGY 2021. [DOI: 10.1007/s12553-021-00579-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Krishnan E, Mohammed R, Alnoor A, Albahri OS, Zaidan AA, Alsattar H, Albahri AS, Zaidan BB, Kou G, Hamid RA, Alamoodi AH, Alazab M. Interval type 2 trapezoidal‐fuzzy weighted with zero inconsistency combined with VIKOR for evaluating smart e‐tourism applications. INT J INTELL SYST 2021. [DOI: 10.1002/int.22489] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Elaiyaraja Krishnan
- Department of Computing, Faculty of Arts, Computing and Creative Industry Sultan Idris Education University Tanjung Malim Malaysia
| | - Rawia Mohammed
- Department of Computing, Faculty of Arts, Computing and Creative Industry Sultan Idris Education University Tanjung Malim Malaysia
| | - Alhamzah Alnoor
- School of Management Universiti Sains Malaysia Pulau Pinang Malaysia
| | - Osamah Shihab Albahri
- Department of Computing, Faculty of Arts, Computing and Creative Industry Sultan Idris Education University Tanjung Malim Malaysia
| | - Aws Alaa Zaidan
- Department of Computing, Faculty of Arts, Computing and Creative Industry Sultan Idris Education University Tanjung Malim Malaysia
| | - Hassan Alsattar
- Department of Computing, Faculty of Arts, Computing and Creative Industry Sultan Idris Education University Tanjung Malim Malaysia
| | - Ahmed Shihab Albahri
- Department of Computing, Faculty of Arts, Computing and Creative Industry Sultan Idris Education University Tanjung Malim Malaysia
- Informatics Institute for Postgraduate Studies (IIPS) Iraqi Commission for Computers and Informatics (ICCI) Baghdad Iraq
| | - Bilal Bahaa Zaidan
- Department of Computing, Faculty of Arts, Computing and Creative Industry Sultan Idris Education University Tanjung Malim Malaysia
- Future Technology Research Center National Yunlin University of Science and Technology Yunlin Taiwan, ROC
| | - Gang Kou
- School of Business Administration Southwestern University of Finance and Economics Chengdu China
| | - Rula A. Hamid
- College of Business Informatics University of Information Technology and Communications (UOITC) Baghdad Iraq
| | - Abdullah Hussein Alamoodi
- Department of Computing, Faculty of Arts, Computing and Creative Industry Sultan Idris Education University Tanjung Malim Malaysia
| | - Mamoun Alazab
- College of Engineering, IT and Environment Charles Darwin University NT Australia
| |
Collapse
|
15
|
Li F, Shankar A, Santhosh Kumar B. Fog-Internet of things-assisted multi-sensor intelligent monitoring model to analyse the physical health condition. Technol Health Care 2021; 29:1319-1337. [PMID: 34092679 DOI: 10.3233/thc-213009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Internet of Things (IoT) technology provides a tremendous and structured solution to tackle service deliverance aspects of healthcare in terms of mobile health and remote patient tracking. In medicine observation applications, IoT and cloud computing serves as an assistant in the health sector and plays an incredibly significant role. Health professionals and technicians have built an excellent platform for people with various illnesses, leveraging principles of wearable technology, wireless channels, and other remote devices for low-cost healthcare monitoring. OBJECTIVE This paper proposed the Fog-IoT-assisted multisensor intelligent monitoring model (FIoT-MIMM) for analyzing the patient's physical health condition. METHOD The proposed system uses a multisensor device for collecting biometric and medical observing data. The main point is to continually generate emergency alerts on mobile phones from the fog system to users. For the precautionary steps and suggestions for patients' health, a fog layer's temporal information is used. RESULTS Experimental findings show that the proposed FIoT-MIMM model has less response time and high accuracy in determining a patient's condition than other existing methods. Furthermore, decision making based on real-time healthcare information further improves the utility of the suggested model.
Collapse
Affiliation(s)
- Fen Li
- Sports Department, Chongqing Jiaotong University, Chongqing, China
| | | | - B Santhosh Kumar
- Department of Computer Science and Engineering, Guru Nanak Institute of Technology, India
| |
Collapse
|
16
|
Re-AuTh: Lightweight Re-Authentication with Practical Key Management for Wireless Body Area Networks. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-05442-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
17
|
Mohsin AH, Zaidan AA, Zaidan BB, Mohammed KI, Albahri OS, Albahri AS, Alsalem MA. PSO-Blockchain-based image steganography: towards a new method to secure updating and sharing COVID-19 data in decentralised hospitals intelligence architecture. MULTIMEDIA TOOLS AND APPLICATIONS 2021; 80:14137-14161. [PMID: 33519293 PMCID: PMC7821848 DOI: 10.1007/s11042-020-10284-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/17/2020] [Accepted: 12/22/2020] [Indexed: 05/02/2023]
Abstract
Secure updating and sharing for large amounts of healthcare information (such as medical data on coronavirus disease 2019 [COVID-19]) in efficient and secure transmission are important but challenging in communication channels amongst hospitals. In particular, in addressing the above challenges, two issues are faced, namely, those related to confidentiality and integrity of their health data and to network failure that may cause concerns about data availability. To the authors' knowledge, no study provides secure updating and sharing solution for large amounts of healthcare information in communication channels amongst hospitals. Therefore, this study proposes and discusses a novel steganography-based blockchain method in the spatial domain as a solution. The novelty of the proposed method is the removal and addition of new particles in the particle swarm optimisation (PSO) algorithm. In addition, hash function can hide secret medical COVID-19 data in hospital databases whilst providing confidentiality with high embedding capacity and high image quality. Moreover, stego images with hash data and blockchain technology are used in updating and sharing medical COVID-19 data between hospitals in the network to improve the level of confidentiality and protect the integrity of medical COVID-19 data in grey-scale images, achieve data availability if any connection failure occurs in a single point of the network and eliminate the central point (third party) in the network during transmission. The proposed method is discussed in three stages. Firstly, the pre-hiding stage estimates the embedding capacity of each host image. Secondly, the secret COVID-19 data hiding stage uses PSO algorithm and hash function. Thirdly, the transmission stage transfers the stego images based on blockchain technology and updates all nodes (hospitals) in the network. As proof of concept for the case study, the authors adopted the latest COVID-19 research published in the Computer Methods and Programs in Biomedicine journal, which presents a rescue framework within hospitals for the storage and transfusion of the best convalescent plasma to the most critical patients with COVID-19 on the basis of biological requirements. The validation and evaluation of the proposed method are discussed.
Collapse
Affiliation(s)
- A. H. Mohsin
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak Malaysia
- Republic of Iraq-Presidency of Ministries - Establishment of Martyrs, Baghdad, Iraq
| | - A. A. Zaidan
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak Malaysia
| | - B. B. Zaidan
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak Malaysia
| | - K. I. Mohammed
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak Malaysia
| | - O. S. Albahri
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak Malaysia
| | - A. S. Albahri
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak Malaysia
- Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq
| | - M. A. Alsalem
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak Malaysia
| |
Collapse
|
18
|
Mohammed TJ, Albahri AS, Zaidan AA, Albahri OS, Al-Obaidi JR, Zaidan BB, Larbani M, Mohammed RT, Hadi SM. Convalescent-plasma-transfusion intelligent framework for rescuing COVID-19 patients across centralised/decentralised telemedicine hospitals based on AHP-group TOPSIS and matching component. APPL INTELL 2021; 51:2956-2987. [PMID: 34764579 PMCID: PMC7820530 DOI: 10.1007/s10489-020-02169-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 01/31/2023]
Abstract
As coronavirus disease 2019 (COVID-19) spreads across the world, the transfusion of efficient convalescent plasma (CP) to the most critical patients can be the primary approach to preventing the virus spread and treating the disease, and this strategy is considered as an intelligent computing concern. In providing an automated intelligent computing solution to select the appropriate CP for the most critical patients with COVID-19, two challenges aspects are bound to be faced: (1) distributed hospital management aspects (including scalability and management issues for prioritising COVID-19 patients and donors simultaneously), and (2) technical aspects (including the lack of COVID-19 dataset availability of patients and donors and an accurate matching process amongst them considering all blood types). Based on previous reports, no study has provided a solution for CP-transfusion-rescue intelligent framework during this pandemic that has addressed said challenges and issues. This study aimed to propose a novel CP-transfusion intelligent framework for rescuing COVID-19 patients across centralised/decentralised telemedicine hospitals based on the matching component process to provide an efficient CP from eligible donors to the most critical patients using multicriteria decision-making (MCDM) methods. A dataset, including COVID-19 patients/donors that have met the important criteria in the virology field, must be augmented to improve the developed framework. Four consecutive phases conclude the methodology. In the first phase, a new COVID-19 dataset is generated on the basis of medical-reference ranges by specialised experts in the virology field. The simulation data are classified into 80 patients and 80 donors on the basis of the five biomarker criteria with four blood types (i.e., A, B, AB, and O) and produced for COVID-19 case study. In the second phase, the identification scenario of patient/donor distributions across four centralised/decentralised telemedicine hospitals is identified 'as a proof of concept'. In the third phase, three stages are conducted to develop a CP-transfusion-rescue framework. In the first stage, two decision matrices are adopted and developed on the basis of the five 'serological/protein biomarker' criteria for the prioritisation of patient/donor lists. In the second stage, MCDM techniques are analysed to adopt individual and group decision making based on integrated AHP-TOPSIS as suitable methods. In the third stage, the intelligent matching components amongst patients/donors are developed on the basis of four distinct rules. In the final phase, the guideline of the objective validation steps is reported. The intelligent framework implies the benefits and strength weights of biomarker criteria to the priority configuration results and can obtain efficient CPs for the most critical patients. The execution of matching components possesses the scalability and balancing presentation within centralised/decentralised hospitals. The objective validation results indicate that the ranking is valid.
Collapse
Affiliation(s)
- Thura J. Mohammed
- grid.444506.70000 0000 9272 6490Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Malaysia ,Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq
| | - A. S. Albahri
- Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq
| | - A. A. Zaidan
- grid.444506.70000 0000 9272 6490Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Malaysia
| | - O. S. Albahri
- grid.444506.70000 0000 9272 6490Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Malaysia
| | - Jameel R. Al-Obaidi
- grid.444506.70000 0000 9272 6490Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak Malaysia
| | - B. B. Zaidan
- grid.444506.70000 0000 9272 6490Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Malaysia
| | - Moussa Larbani
- grid.34428.390000 0004 1936 893XSchool of Mathematics and Statistics, Carleton University, Ottawa, ON Canada
| | - R. T. Mohammed
- grid.11142.370000 0001 2231 800XFaculty of Computer Science and Information Technology, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Suha M. Hadi
- Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq
| |
Collapse
|
19
|
Nicolò A, Massaroni C, Schena E, Sacchetti M. The Importance of Respiratory Rate Monitoring: From Healthcare to Sport and Exercise. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6396. [PMID: 33182463 PMCID: PMC7665156 DOI: 10.3390/s20216396] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 12/11/2022]
Abstract
Respiratory rate is a fundamental vital sign that is sensitive to different pathological conditions (e.g., adverse cardiac events, pneumonia, and clinical deterioration) and stressors, including emotional stress, cognitive load, heat, cold, physical effort, and exercise-induced fatigue. The sensitivity of respiratory rate to these conditions is superior compared to that of most of the other vital signs, and the abundance of suitable technological solutions measuring respiratory rate has important implications for healthcare, occupational settings, and sport. However, respiratory rate is still too often not routinely monitored in these fields of use. This review presents a multidisciplinary approach to respiratory monitoring, with the aim to improve the development and efficacy of respiratory monitoring services. We have identified thirteen monitoring goals where the use of the respiratory rate is invaluable, and for each of them we have described suitable sensors and techniques to monitor respiratory rate in specific measurement scenarios. We have also provided a physiological rationale corroborating the importance of respiratory rate monitoring and an original multidisciplinary framework for the development of respiratory monitoring services. This review is expected to advance the field of respiratory monitoring and favor synergies between different disciplines to accomplish this goal.
Collapse
Affiliation(s)
- Andrea Nicolò
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy;
| | - Carlo Massaroni
- Unit of Measurements and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy; (C.M.); (E.S.)
| | - Emiliano Schena
- Unit of Measurements and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy; (C.M.); (E.S.)
| | - Massimo Sacchetti
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, 00135 Rome, Italy;
| |
Collapse
|
20
|
Albahri OS, Zaidan AA, Salih MM, Zaidan BB, Khatari MA, Ahmed MA, Albahri AS, Alazab M. Multidimensional benchmarking of the active queue management methods of network congestion control based on extension of fuzzy decision by opinion score method. INT J INTELL SYST 2020. [DOI: 10.1002/int.22322] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Osamah Shihab Albahri
- Department of Computing Universiti Pendidikan Sultan Idris, Tanjong Malim Perak Malaysia
| | - Aws Alaa Zaidan
- Department of Computing Universiti Pendidikan Sultan Idris, Tanjong Malim Perak Malaysia
| | - Mahmood M. Salih
- Department of Computer Science, Computer Science and Mathematics College Tikrit University Tikrit 34001 Iraq
| | - Bilal Bahaa Zaidan
- Department of Computing Universiti Pendidikan Sultan Idris, Tanjong Malim Perak Malaysia
| | - Maimuna A. Khatari
- Department of Computing Universiti Pendidikan Sultan Idris, Tanjong Malim Perak Malaysia
| | - Mohamed A. Ahmed
- Department of Computer Science, Computer Science and Mathematics College Tikrit University Tikrit 34001 Iraq
| | - Ahmed Shihab Albahri
- Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI) Tikrit University Baghdad Iraq
| | - Mamoun Alazab
- College of Engineering, IT and Environment Charles Darwin University NT 0909 Australia
| |
Collapse
|
21
|
Albahri OS, Al-Obaidi JR, Zaidan AA, Albahri AS, Zaidan BB, Salih MM, Qays A, Dawood KA, Mohammed RT, Abdulkareem KH, Aleesa AM, Alamoodi AH, Chyad MA, Zulkifli CZ. Helping doctors hasten COVID-19 treatment: Towards a rescue framework for the transfusion of best convalescent plasma to the most critical patients based on biological requirements via ml and novel MCDM methods. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 196:105617. [PMID: 32593060 PMCID: PMC7305916 DOI: 10.1016/j.cmpb.2020.105617] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/16/2020] [Indexed: 05/04/2023]
Abstract
CONTEXT People who have recently recovered from the threat of deteriorating coronavirus disease-2019 (COVID-19) have antibodies to the coronavirus circulating in their blood. Thus, the transfusion of these antibodies to deteriorating patients could theoretically help boost their immune system. Biologically, two challenges need to be surmounted to allow convalescent plasma (CP) transfusion to rescue the most severe COVID-19 patients. First, convalescent subjects must meet donor selection plasma criteria and comply with national health requirements and known standard routine procedures. Second, multi-criteria decision-making (MCDM) problems should be considered in the selection of the most suitable CP and the prioritisation of patients with COVID-19. OBJECTIVE This paper presents a rescue framework for the transfusion of the best CP to the most critical patients with COVID-19 on the basis of biological requirements by using machine learning and novel MCDM methods. METHOD The proposed framework is illustrated on the basis of two distinct and consecutive phases (i.e. testing and development). In testing, ABO compatibility is assessed after classifying donors into the four blood types, namely, A, B, AB and O, to indicate the suitability and safety of plasma for administration in order to refine the CP tested list repository. The development phase includes patient and donor sides. In the patient side, prioritisation is performed using a contracted patient decision matrix constructed between 'serological/protein biomarkers and the ratio of the partial pressure of oxygen in arterial blood to fractional inspired oxygen criteria' and 'patient list based on novel MCDM method known as subjective and objective decision by opinion score method'. Then, the patients with the most urgent need are classified into the four blood types and matched with a tested CP list from the test phase in the donor side. Thereafter, the prioritisation of CP tested list is performed using the contracted CP decision matrix. RESULT An intelligence-integrated concept is proposed to identify the most appropriate CP for corresponding prioritised patients with COVID-19 to help doctors hasten treatments. DISCUSSION The proposed framework implies the benefits of providing effective care and prevention of the extremely rapidly spreading COVID-19 from affecting patients and the medical sector.
Collapse
Affiliation(s)
- O S Albahri
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan, Tanjung Malim 35900, Malaysia
| | - Jameel R Al-Obaidi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak 35900, Malaysia
| | - A A Zaidan
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan, Tanjung Malim 35900, Malaysia.
| | - A S Albahri
- Informatics Institute for Postgraduate Studies (IIPS), Iraqi Commission for Computers and Informatics (ICCI), Baghdad, Iraq
| | - B B Zaidan
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan, Tanjung Malim 35900, Malaysia
| | - Mahmood M Salih
- Department of Computer Science, Computer Science and Mathematics College, Tikrit University, Tikrit 34001, Iraq
| | - Abdulhadi Qays
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan, Tanjung Malim 35900, Malaysia
| | - K A Dawood
- Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - R T Mohammed
- Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Seri Kembangan, Malaysia
| | - Karrar Hameed Abdulkareem
- Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, Parit Raja, Malaysia
| | - A M Aleesa
- Faculty of Electronic and Electrical Engineering, Universiti Tun Hussein Onn, Batu Pahat, Johor 86400, Malaysia
| | - A H Alamoodi
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan, Tanjung Malim 35900, Malaysia
| | - M A Chyad
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan, Tanjung Malim 35900, Malaysia
| | - Che Zalina Zulkifli
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan, Tanjung Malim 35900, Malaysia
| |
Collapse
|
22
|
Systematic review of artificial intelligence techniques in the detection and classification of COVID-19 medical images in terms of evaluation and benchmarking: Taxonomy analysis, challenges, future solutions and methodological aspects. J Infect Public Health 2020; 13:1381-1396. [PMID: 32646771 PMCID: PMC7328559 DOI: 10.1016/j.jiph.2020.06.028] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/06/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
This study presents a systematic review of artificial intelligence (AI) techniques used in the detection and classification of coronavirus disease 2019 (COVID-19) medical images in terms of evaluation and benchmarking. Five reliable databases, namely, IEEE Xplore, Web of Science, PubMed, ScienceDirect and Scopus were used to obtain relevant studies of the given topic. Several filtering and scanning stages were performed according to the inclusion/exclusion criteria to screen the 36 studies obtained; however, only 11 studies met the criteria. Taxonomy was performed, and the 11 studies were classified on the basis of two categories, namely, review and research studies. Then, a deep analysis and critical review were performed to highlight the challenges and critical gaps outlined in the academic literature of the given subject. Results showed that no relevant study evaluated and benchmarked AI techniques utilised in classification tasks (i.e. binary, multi-class, multi-labelled and hierarchical classifications) of COVID-19 medical images. In case evaluation and benchmarking will be conducted, three future challenges will be encountered, namely, multiple evaluation criteria within each classification task, trade-off amongst criteria and importance of these criteria. According to the discussed future challenges, the process of evaluation and benchmarking AI techniques used in the classification of COVID-19 medical images considered multi-complex attribute problems. Thus, adopting multi-criteria decision analysis (MCDA) is an essential and effective approach to tackle the problem complexity. Moreover, this study proposes a detailed methodology for the evaluation and benchmarking of AI techniques used in all classification tasks of COVID-19 medical images as future directions; such methodology is presented on the basis of three sequential phases. Firstly, the identification procedure for the construction of four decision matrices, namely, binary, multi-class, multi-labelled and hierarchical, is presented on the basis of the intersection of evaluation criteria of each classification task and AI classification techniques. Secondly, the development of the MCDA approach for benchmarking AI classification techniques is provided on the basis of the integrated analytic hierarchy process and VlseKriterijumska Optimizacija I Kompromisno Resenje methods. Lastly, objective and subjective validation procedures are described to validate the proposed benchmarking solutions.
Collapse
|
23
|
Willing M, Dresen C, Haverkamp U, Schinzel S. Analyzing medical device connectivity and its effect on cyber security in german hospitals. BMC Med Inform Decis Mak 2020; 20:246. [PMID: 32993623 PMCID: PMC7526356 DOI: 10.1186/s12911-020-01259-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 09/14/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Modern healthcare devices can be connected to computer networks and many western healthcare institutions run those devices in networks. At the same time, cyber attacks are on the rise and there is evidence that cybercriminals do not spare critical infrastructure such as major hospitals, even if they endanger patients. Intuitively, the more and closer connected healthcare devices are to public networks, the higher the risk of getting attacked. METHODS To asses the current connectivity status of healthcare devices, we surveyed the field of German hospitals and especially University Medical Center UMCs. RESULTS The results show a strong correlation between the networking degree and the number of medical devices. The average number of medical devices is 25.150, with a median of networked medical devices of 3.600. Actual key users of networked medical devices are the departments Radiology, Intensive Care, Radio-Oncology RO, Nuclear Medicine NUC, and Anaesthesiology in the group of UMCs. In the next five years, the usage of networked medical devices will increase significantly in the departments of Surgery, Intensive Care, and Radiology. We detected a strong correlation between the degree of connectivity and the likelihood of being attacked.The survey answers regarding the cyber security status reveal a lack of security basics in some of the inquired hospitals. We did discover successful attacks in hospitals with separated or subsidiary departments. A fusion of competencies on an organizational level facilitates the right behavior here. Most hospitals rated themselves predominantly positively in the self-assessment but also stated the usefulness of IT security insurance. CONCLUSIONS Concluding our results, hospitals are already facing the consequences of omitted measures within their growing pool of medical devices. Continuously relying on historically grown structures without adaption and trusting manufactures to solve vectors is a critical behavior that could seriously endanger patients.
Collapse
|
24
|
A new standardisation and selection framework for real-time image dehazing algorithms from multi-foggy scenes based on fuzzy Delphi and hybrid multi-criteria decision analysis methods. Neural Comput Appl 2020. [DOI: 10.1007/s00521-020-05020-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Mohammed KI, Zaidan AA, Zaidan BB, Albahri OS, Albahri AS, Alsalem MA, Mohsin AH. Novel technique for reorganisation of opinion order to interval levels for solving several instances representing prioritisation in patients with multiple chronic diseases. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 185:105151. [PMID: 31710981 DOI: 10.1016/j.cmpb.2019.105151] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/20/2019] [Accepted: 10/21/2019] [Indexed: 06/10/2023]
Abstract
CONTEXT Telemedicine has been increasingly used in healthcare to provide services to patients remotely. However, prioritising patients with multiple chronic diseases (MCDs) in telemedicine environment is challenging because it includes decision-making (DM) with regard to the emergency degree of each chronic disease for every patient. OBJECTIVE This paper proposes a novel technique for reorganisation of opinion order to interval levels (TROOIL) to prioritise the patients with MCDs in real-time remote health-monitoring system. METHODS The proposed TROOIL technique comprises six steps for prioritisation of patients with MCDs: (1) conversion of actual data into intervals; (2) rule generation; (3) rule ordering; (4) expert rule validation; (5) data reorganisation; and (6) criteria weighting and ranking alternatives within each rule. The secondary dataset of 500 patients from the most relevant study in a remote prioritisation area was adopted. The dataset contains three diseases, namely, chronic heart disease, high blood pressure (BP) and low BP. RESULTS The proposed TROOIL is an effective technique for prioritising patients with MCDs. In the objective validation, remarkable differences were recognised among the groups' scores, indicating identical ranking results. In the evaluation of issues within all scenarios, the proposed framework has an advantage of 22.95% over the benchmark framework. DISCUSSION Patients with the most severe MCD were treated first on the basis of their highest priority levels. The treatment for patients with less severe cases was delayed more than that for other patients. CONCLUSIONS The proposed TROOIL technique can deal with multiple DM problems in prioritisation of patients with MCDs.
Collapse
Affiliation(s)
- K I Mohammed
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Malaysia
| | - A A Zaidan
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Malaysia
| | - B B Zaidan
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Malaysia.
| | - O S Albahri
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Malaysia
| | - A S Albahri
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Malaysia
| | - M A Alsalem
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Malaysia
| | - A H Mohsin
- Department of Computing, Faculty of Arts, Computing and Creative Industry, Universiti Pendidikan Sultan Idris, Malaysia
| |
Collapse
|
26
|
Rudraraju G, Palreddy S, Mamidgi B, Sripada NR, Sai YP, Vodnala NK, Haranath SP. Cough sound analysis and objective correlation with spirometry and clinical diagnosis. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
27
|
Hussien HM, Yasin SM, Udzir SNI, Zaidan AA, Zaidan BB. A Systematic Review for Enabling of Develop a Blockchain Technology in Healthcare Application: Taxonomy, Substantially Analysis, Motivations, Challenges, Recommendations and Future Direction. J Med Syst 2019; 43:320. [PMID: 31522262 DOI: 10.1007/s10916-019-1445-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/28/2019] [Indexed: 01/17/2023]
Abstract
Blockchain in healthcare applications requires robust security and privacy mechanism for high-level authentication, interoperability and medical records sharing to comply with the strict legal requirements of the Health Insurance Portability and Accountability Act of 1996. Blockchain technology in the healthcare industry has received considerable research attention in recent years. This study conducts a review to substantially analyse and map the research landscape of current technologies, mainly the use of blockchain in healthcare applications, into a coherent taxonomy. The present study systematically searches all relevant research articles on blockchain in healthcare applications in three accessible databases, namely, ScienceDirect, IEEE and Web of Science, by using the defined keywords 'blockchain', 'healthcare' and 'electronic health records' and their variations. The final set of collected articles related to the use of blockchain in healthcare application is divided into three categories. The first category includes articles (i.e. 43/58 scientific articles) that attempted to develop and design healthcare applications integrating blockchain, particularly those on new architecture, system designs, framework, scheme, model, platform, approach, protocol and algorithm. The second category includes studies (i.e., 6/58 scientific articles) that attempted to evaluate and analyse the adoption of blockchain in the healthcare system. Finally, the third category comprises review and survey articles (i.e., 6/58 scientific articles) related to the integration of blockchain into healthcare applications. The final articles for review are discussed on the basis of five aspects: (1) year of publication, (2) nationality of authors, (3) publishing house or journal, (4) purpose of using blockchain in health applications and the corresponding contributions and (5) problem types and proposed solutions. Additionally, this study provides identified motivations, open challenges and recommendations on the use of blockchain in healthcare applications. The current research contributes to the literature by providing a detailed review of feasible alternatives and identifying the research gaps. Accordingly, researchers and developers are provided with appealing opportunities to further develop decentralised healthcare applications through a comprehensive discussion of about the importance of blockchain and its integration into various healthcare applications.
Collapse
Affiliation(s)
- H M Hussien
- Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - S M Yasin
- Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - S N I Udzir
- Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang, Malaysia
| | - A A Zaidan
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Malaysia
| | - B B Zaidan
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Malaysia.
| |
Collapse
|
28
|
Homier V, de Champlain F, Nolan M, Fleet R. Identification of Swimmers in Distress Using Unmanned Aerial Vehicles: Experience at the Mont-Tremblant IRONMAN Triathlon. PREHOSP EMERG CARE 2019; 24:451-458. [PMID: 31429611 DOI: 10.1080/10903127.2019.1657211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background: This preliminary report describes our experience using unmanned aerial vehicles (UAVs) to identify swimmers in distress at the 2018 Mont-Tremblant IRONMAN triathlon (Quebec, Canada). Methods: In a prospective pilot study, we sought to determine whether UAV surveillance could identify swimmers showing signs of distress quicker than conventional methods (i.e., lifeguards on the ground and on watercraft). In addition, we investigated the feasibility of using UAVs for medical surveillance at a triathlon event in terms of operations, costs, safety, legal parameters, and added value. Prior to the race, we screened participants for medical conditions that could elevate their risk of injury during the swim portion of the triathlon. Athletes deemed to be at increased risk were given a yellow swimming cap to enhance their surveillance by trained observers watching a live video feed from the UAVs. Results: On race day, a total of 3 UAVs (2 mobile, 1 tethered) were launched over Lake Tremblant and provided 3 observers with live video of the swimmers. Of the 2,473 race participants, there were 25 athletes with pre-identified medical conditions who wore a yellow cap during the swim. We did not detect any signs of distress among swimmers wearing yellow caps. Among the remaining 2,448 athletes, there were 5 swimmers who demonstrated signs of distress and required mobilization of water rescue boats; UAV surveillance identified 1 of these 5 distress events before it was seen by lifeguards on rescue boats. None of the athletes in the IRONMAN suffered an adverse event while swimming. Several technical and safety issues related to UAV surveillance arose including poor visibility, equipment loss, and flight autonomy. Conclusion: While our preliminary findings suggest that using UAVs to identify distressed swimmers during an IRONMAN race is feasible and safe, more research is necessary to determine how to optimize UAV surveillance at mass sporting events and integrate this technology within the existing emergency response teams.
Collapse
|
29
|
Napi NM, Zaidan AA, Zaidan BB, Albahri OS, Alsalem MA, Albahri AS. Medical emergency triage and patient prioritisation in a telemedicine environment: a systematic review. HEALTH AND TECHNOLOGY 2019. [DOI: 10.1007/s12553-019-00357-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Multi-agent learning neural network and Bayesian model for real-time IoT skin detectors: a new evaluation and benchmarking methodology. Neural Comput Appl 2019. [DOI: 10.1007/s00521-019-04325-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Real-Time Remote-Health Monitoring Systems: a Review on Patients Prioritisation for Multiple-Chronic Diseases, Taxonomy Analysis, Concerns and Solution Procedure. J Med Syst 2019; 43:223. [PMID: 31187288 DOI: 10.1007/s10916-019-1362-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 05/30/2019] [Indexed: 01/01/2023]
Abstract
Remotely monitoring a patient's condition is a serious issue and must be addressed. Remote health monitoring systems (RHMS) in telemedicine refers to resources, strategies, methods and installations that enable doctors or other medical professionals to work remotely to consult, diagnose and treat patients. The goal of RHMS is to provide timely medical services at remote areas through telecommunication technologies. Through major advancements in technology, particularly in wireless networking, cloud computing and data storage, RHMS is becoming a feasible aspect of modern medicine. RHMS for the prioritisation of patients with multiple chronic diseases (MCDs) plays an important role in sustainably providing high-quality healthcare services. Further investigations are required to highlight the limitations of the prioritisation of patients with MCDs over a telemedicine environment. This study introduces a comprehensive and inclusive review on the prioritisation of patients with MCDs in telemedicine applications. Furthermore, it presents the challenges and open issues regarding patient prioritisation in telemedicine. The findings of this study are as follows: (1) The limitations and problems of existing patients' prioritisation with MCDs are presented and emphasised. (2) Based on the analysis of the academic literature, an accurate solution for remote prioritisation in a large scale of patients with MCDs was not presented. (3) There is an essential need to produce a new multiple-criteria decision-making theory to address the current problems in the prioritisation of patients with MCDs.
Collapse
|
32
|
Mobile-Based Patient Monitoring Systems: A Prioritisation Framework Using Multi-Criteria Decision-Making Techniques. J Med Syst 2019; 43:219. [PMID: 31172296 DOI: 10.1007/s10916-019-1339-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
Abstract
This study presents a prioritisation framework for mobile patient monitoring systems (MPMSs) based on multicriteria analysis in architectural components. This framework selects the most appropriate system amongst available MPMSs for the telemedicine environment. Prioritisation of MPMSs is a challenging task due to (a) multiple evaluation criteria, (b) importance of criteria, (c) data variation and (d) unmeasurable values. The secondary data presented as the decision evaluation matrix include six systems (namely, Yale-National Aeronautics and Space Administration (NASA), advanced health and disaster aid network, personalised health monitoring, CMS, MobiHealth and NTU) as alternatives and 13 criteria (namely, supported number of sensors, sensor front-end (SFE) communication, SFE to mobile base unit (MBU) communications, display of biosignals on the MBU, storage of biosignals on the MBU, intra-body area network (BAN) communication problems, extra-BAN communication problems, extra-BAN communication technology, extra-BAN communication protocols, back-end system communication technology, intended geographic area of use, end-to-end security and reported trial problems) based on the architectural components of MPMSs. These criteria are adopted from the most relevant studies and are found to be applicable to this study. The prioritisation framework is developed in three stages. (1) The unmeasurable values of the MPMS evaluation criteria in the adopted decision evaluation matrix based on expert opinion are represented by using the best-worst method (BWM). (2) The importance of the evaluation criteria based on the architectural components of the MPMS is determined by using the BWM. (3) The VlseKriterijumska Optimizacija I Kompromisno Resenje (VIKOR) method is utilised to rank the MPMSs according to the determined importance of the evaluation criteria and the adopted decision matrix. For validation, mean ± standard deviation is used to verify the similarity of systematic prioritisations objectively. The following results are obtained. (1) The BWM represents the unmeasurable values of the MPMS evaluation criteria. (2) The BWM is suitable for weighing the evaluation criteria based on the architectural components of the MPMS. (3) VIKOR is suitable for solving the MPMS prioritisation problem. Moreover, the internal and external VIKOR group decision making are approximately the same, with the best MPMS being 'Yale-NASA' and the worst MPMS being 'NTU'. (4) For the objective validation, remarkable differences are observed between the group scores, which indicate the similarity of internal and external prioritisation results.
Collapse
|
33
|
Multiclass Benchmarking Framework for Automated Acute Leukaemia Detection and Classification Based on BWM and Group-VIKOR. J Med Syst 2019; 43:212. [PMID: 31154550 DOI: 10.1007/s10916-019-1338-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/13/2019] [Indexed: 10/26/2022]
Abstract
This paper aims to assist the administration departments of medical organisations in making the right decision on selecting a suitable multiclass classification model for acute leukaemia. In this paper, we proposed a framework that will aid these departments in evaluating, benchmarking and ranking available multiclass classification models for the selection of the best one. Medical organisations have continuously faced evaluation and benchmarking challenges in such endeavour, especially when no single model is superior. Moreover, the improper selection of multiclass classification for acute leukaemia model may be costly for medical organisations. For example, when a patient dies, one such organisation will be legally or financially sued for incidents in which the model fails to fulfil its desired outcome. With regard to evaluation and benchmarking, multiclass classification models are challenging processes due to multiple evaluation and conflicting criteria. This study structured a decision matrix (DM) based on the crossover of 2 groups of multi-evaluation criteria and 22 multiclass classification models. The matrix was then evaluated with datasets comprising 72 samples of acute leukaemia, which include 5327 gens. Subsequently, multi-criteria decision-making (MCDM) techniques are used in the benchmarking and ranking of multiclass classification models. The MCDM used techniques that include the integrated BWM and VIKOR. BWM has been applied for the weight calculations of evaluation criteria, whereas VIKOR has been used to benchmark and rank classification models. VIKOR has also been employed in two decision-making contexts: individual and group decision making and internal and external group aggregation. Results showed the following: (1) the integration of BWM and VIKOR is effective at solving the benchmarking/selection problems of multiclass classification models. (2) The ranks of classification models obtained from internal and external VIKOR group decision making were almost the same, and the best multiclass classification model based on the two was 'Bayes. Naive Byes Updateable' and the worst one was 'Trees.LMT'. (3) Among the scores of groups in the objective validation, significant differences were identified, which indicated that the ranking results of internal and external VIKOR group decision making were valid.
Collapse
|
34
|
Almahdi EM, Zaidan AA, Zaidan BB, Alsalem MA, Albahri OS, Albahri AS. Mobile Patient Monitoring Systems from a Benchmarking Aspect: Challenges, Open Issues and Recommended Solutions. J Med Syst 2019; 43:207. [PMID: 31144129 DOI: 10.1007/s10916-019-1336-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 05/13/2019] [Indexed: 11/30/2022]
Abstract
This paper presents comprehensive insights into mobile patient monitoring systems (MPMSs) from evaluation and benchmarking aspects on the basis of two critical directions. The current evaluation criteria of MPMSs based on the architectural components of MPMSs and possible solutions are discussed. This review highlights four serious issues, namely, multiple evaluation criteria, criterion importance, unmeasurable criteria and data variation, in MPMS benchmarking. Multicriteria decision-making (MCDM) analysis techniques are proposed as effective solutions to solve these issues from a methodological aspect. This methodological aspect involves a framework for benchmarking MPMSs on the basis of MCDM to rank available MPMSs and select a suitable one. The benchmarking framework is discussed in four steps. Firstly, pre-processing and identification procedures are presented. Secondly, the procedure of weight calculation based on the best-worst method (BWM) is described. Thirdly, the development of a benchmark framework by using the VIKOR method is introduced. Lastly, the proposed framework is validated.
Collapse
Affiliation(s)
- E M Almahdi
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| | - A A Zaidan
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia.
| | - B B Zaidan
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| | - M A Alsalem
- College of Administration and Economic, University of Mosul, Mosul, Iraq
| | - O S Albahri
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| | - A S Albahri
- College of Engineering, University of Information Technology and Communications, Baghdad, Iraq
| |
Collapse
|
35
|
Based Medical Systems for Patient's Authentication: Towards a New Verification Secure Framework Using CIA Standard. J Med Syst 2019; 43:192. [PMID: 31115768 DOI: 10.1007/s10916-019-1264-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/27/2019] [Indexed: 01/14/2023]
Abstract
In medical systems for patient's authentication, keeping biometric data secure is a general problem. Many studies have presented various ways of protecting biometric data especially finger vein biometric data. Thus, It is needs to find better ways of securing this data by applying the three principles of information security aforementioned, and creating a robust verification system with high levels of reliability, privacy and security. Moreover, it is very difficult to replace biometric information and any leakage of biometrics information leads to earnest risks for example replay attacks using the robbed biometric data. In this paper presented criticism and analysis to all attempts as revealed in the literature review and discussion the proposes a novel verification secure framework based confidentiality, integrity and availability (CIA) standard in triplex blockchain-particle swarm optimization (PSO)-advanced encryption standard (AES) techniques for medical systems patient's authentication. Three stages are performed on discussion. Firstly, proposes a new hybrid model pattern in order to increase the randomization based on radio frequency identification (RFID) and finger vein biometrics. To achieve this, proposed a new merge algorithm to combine the RFID features and finger vein features in one hybrid and random pattern. Secondly, how the propose verification secure framework are followed the CIA standard for telemedicine authentication by combination of AES encryption technique, blockchain and PSO in steganography technique based on proposed pattern model. Finally, discussed the validation and evaluation of the proposed verification secure framework.
Collapse
|
36
|
Talal M, Zaidan AA, Zaidan BB, Albahri AS, Alamoodi AH, Albahri OS, Alsalem MA, Lim CK, Tan KL, Shir WL, Mohammed KI. Smart Home-based IoT for Real-time and Secure Remote Health Monitoring of Triage and Priority System using Body Sensors: Multi-driven Systematic Review. J Med Syst 2019; 43:42. [PMID: 30648217 DOI: 10.1007/s10916-019-1158-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022]
Abstract
The Internet of Things (IoT) has been identified in various applications across different domains, such as in the healthcare sector. IoT has also been recognised for its revolution in reshaping modern healthcare with aspiring wide range prospects, including economical, technological and social. This study aims to establish IoT-based smart home security solutions for real-time health monitoring technologies in telemedicine architecture. A multilayer taxonomy is driven and conducted in this study. In the first layer, a comprehensive analysis on telemedicine, which focuses on the client and server sides, shows that other studies associated with IoT-based smart home applications have several limitations that remain unaddressed. Particularly, remote patient monitoring in healthcare applications presents various facilities and benefits by adopting IoT-based smart home technologies without compromising the security requirements and potentially large number of risks. An extensive search is conducted to identify articles that handle these issues, related applications are comprehensively reviewed and a coherent taxonomy for these articles is established. A total number of (n = 3064) are gathered between 2007 and 2017 for most reliable databases, such as ScienceDirect, Web of Science and Institute of Electrical and Electronic Engineer Xplore databases. Then, the articles based on IoT studies that are associated with telemedicine applications are filtered. Nine articles are selected and classified into two categories. The first category, which accounts for 22.22% (n = 2/9), includes surveys on telemedicine articles and their applications. The second category, which accounts for 77.78% (n = 7/9), includes articles on the client and server sides of telemedicine architecture. The collected studies reveal the essential requirement in constructing another taxonomy layer and review IoT-based smart home security studies. Therefore, IoT-based smart home security features are introduced and analysed in the second layer. The security of smart home design based on IoT applications is an aspect that represents a crucial matter for general occupants of smart homes, in which studies are required to provide a better solution with patient security, privacy protection and security of users' entities from being stolen or compromised. Innovative technologies have dispersed limitations related to this matter. The existing gaps and trends in this area should be investigated to provide valuable visions for technical environments and researchers. Thus, 67 articles are obtained in the second layer of our taxonomy and are classified into six categories. In the first category, 25.37% (n = 17/67) of the articles focus on architecture design. In the second category, 17.91% (n = 12/67) includes security analysis articles that investigate the research status in the security area of IoT-based smart home applications. In the third category, 10.44% (n = 7/67) includes articles about security schemes. In the fourth category, 17.91% (n = 12/67) comprises security examination. In the fifth category, 13.43% (n = 9/67) analyses security protocols. In the final category, 14.92% (n = 10/67) analyses the security framework. Then, the identified basic characteristics of this emerging field are presented and provided in the following aspects. Open challenges experienced on the development of IoT-based smart home security are addressed to be adopted fully in telemedicine applications. Then, the requirements are provided to increase researcher's interest in this study area. On this basis, a number of recommendations for different parties are described to provide insights on the next steps that should be considered to enhance the security of smart homes based on IoT. A map matching for both taxonomies is developed in this study to determine the novel risks and benefits of IoT-based smart home security for real-time remote health monitoring within client and server sides in telemedicine applications.
Collapse
Affiliation(s)
- Mohammed Talal
- Department of Communication Engineering, Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), Parit Raja, Malaysia
| | - A A Zaidan
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia.
| | - B B Zaidan
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| | - A S Albahri
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| | - A H Alamoodi
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| | - O S Albahri
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| | - M A Alsalem
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| | - C K Lim
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| | - K L Tan
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| | - W L Shir
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| | - K I Mohammed
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| |
Collapse
|
37
|
Shuwandy ML, Zaidan BB, Zaidan AA, Albahri AS. Sensor-Based mHealth Authentication for Real-Time Remote Healthcare Monitoring System: A Multilayer Systematic Review. J Med Syst 2019; 43:33. [PMID: 30612191 DOI: 10.1007/s10916-018-1149-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023]
Abstract
The new and groundbreaking real-time remote healthcare monitoring system on sensor-based mobile health (mHealth) authentication in telemedicine has considerably bounded and dispersed communication components. mHealth, an attractive part in telemedicine architecture, plays an imperative role in patient security and privacy and adapts different sensing technologies through many built-in sensors. This study aims to improve sensor-based defence and attack mechanisms to ensure patient privacy in client side when using mHealth. Thus, a multilayer taxonomy was conducted to attain the goal of this study. Within the first layer, real-time remote monitoring studies based on sensor technology for telemedicine application were reviewed and analysed to examine these technologies and provide researchers with a clear vision of security- and privacy-based sensors in the telemedicine area. An extensive search was conducted to find articles about security and privacy issues, review related applications comprehensively and establish the coherent taxonomy of these articles. ScienceDirect, IEEE Xplore and Web of Science databases were investigated for articles on mHealth in telemedicine-based sensor. A total of 3064 papers were collected from 2007 to 2017. The retrieved articles were filtered according to the security and privacy of sensor-based telemedicine applications. A total of 19 articles were selected and classified into two categories. The first category, 57.89% (n = 11/19), included survey on telemedicine articles and their applications. The second category, 42.1% (n = 8/19), included articles contributed to the three-tiered architecture of telemedicine. The collected studies improved the essential need to add another taxonomy layer and review the sensor-based smartphone authentication studies. This map matching for both taxonomies was developed for this study to investigate sensor field comprehensively and gain access to novel risks and benefits of the mHealth security in telemedicine application. The literature on sensor-based smartphones in the second layer of our taxonomy was analysed and reviewed. A total of 599 papers were collected from 2007 to 2017. In this layer, we obtained a final set of 81 articles classified into three categories. The first category of the articles [86.41% (n = 70/81)], where sensor-based smartphones were examined by utilising orientation sensors for user authentication, was used. The second category [7.40% (n = 6/81)] included attack articles, which were not intensively included in our literature analysis. The third category [8.64% (n = 7/81)] included 'other' articles. Factors were considered to understand fully the various contextual aspects of the field in published studies. The characteristics included the motivation and challenges related to sensor-based authentication of smartphones encountered by researchers and the recommendations to strengthen this critical area of research. Finally, many studies on the sensor-based smartphone in the second layer have focused on enhancing accurate authentication because sensor-based smartphones require sensors that could authentically secure mHealth.
Collapse
Affiliation(s)
- Moceheb Lazam Shuwandy
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| | - B B Zaidan
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| | - A A Zaidan
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia.
| | - A S Albahri
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| |
Collapse
|
38
|
Enaizan O, Zaidan AA, Alwi NHM, Zaidan BB, Alsalem MA, Albahri OS, Albahri AS. Electronic medical record systems: decision support examination framework for individual, security and privacy concerns using multi-perspective analysis. HEALTH AND TECHNOLOGY 2018. [DOI: 10.1007/s12553-018-0278-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Mohsin AH, Zaidan AA, Zaidan BB, Ariffin SAB, Albahri OS, Albahri AS, Alsalem MA, Mohammed KI, Hashim M. Real-Time Medical Systems Based on Human Biometric Steganography: a Systematic Review. J Med Syst 2018; 42:245. [PMID: 30374820 DOI: 10.1007/s10916-018-1103-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/09/2018] [Indexed: 11/26/2022]
Abstract
In real-time medical systems, the role of biometric technology is significant in authentication systems because it is used in verifying the identity of people through their biometric features. The biometric technology provides crucial properties for biometric features that can support the process of personal identification. The storage of biometric template within a central database makes it vulnerable to attack which can also occur during data transmission. Therefore, an alternative mechanism of protection becomes important to develop. On this basis, this study focuses on providing a detailed analysis of the extant literature (2013-2018) to identify the taxonomy and research distribution. Furthermore, this study also seeks to ascertain the challenges and motivations associated with biometric steganography in real-time medical systems to provide recommendations that can enhance the efficient use of real-time medical systems in biometric steganography and its applications. A review of articles on human biometric steganography in real-time medical systems obtained from three main databases (IEEE Xplore, ScienceDirect and Web of Science) is conducted according to an appropriate review protocol. Then, 41 related articles are selected by using exclusion and inclusion criteria. Majority of the studies reviewed had been conducted in the field of data-hiding (particularly steganography) technologies. In this review, various steganographic methods that have been applied in different human biometrics are investigated. Thereafter, these methods are categorised according to taxonomy, and the results are presented on the basis of human steganography biometric real-time medical systems, testing and evaluation methods, significance of use and applications and techniques. Finally, recommendations on how the challenges associated with data hiding can be addressed are provided to enhance the efficiency of using biometric information processed in any authentication real-time medical system. These recommendations are expected to be immensely helpful to developers, company users and researchers.
Collapse
Affiliation(s)
- A H Mohsin
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| | - A A Zaidan
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia.
| | - B B Zaidan
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| | | | - O S Albahri
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| | - A S Albahri
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| | - M A Alsalem
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| | - K I Mohammed
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| | - M Hashim
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| |
Collapse
|
40
|
Mohsin AH, Zaidan AA, Zaidan BB, Albahri AS, Albahri OS, Alsalem MA, Mohammed KI. Real-Time Remote Health Monitoring Systems Using Body Sensor Information and Finger Vein Biometric Verification: A Multi-Layer Systematic Review. J Med Syst 2018; 42:238. [PMID: 30327939 DOI: 10.1007/s10916-018-1104-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/09/2018] [Indexed: 10/28/2022]
Abstract
The development of wireless body area sensor networks is imperative for modern telemedicine. However, attackers and cybercriminals are gradually becoming aware in attacking telemedicine systems, and the black market value of protected health information has the highest price nowadays. Security remains a formidable challenge to be resolved. Intelligent home environments make up one of the major application areas of pervasive computing. Security and privacy are the two most important issues in the remote monitoring and control of intelligent home environments for clients and servers in telemedicine architecture. The personal authentication approach that uses the finger vein pattern is a newly investigated biometric technique. This type of biometric has many advantages over other types (explained in detail later on) and is suitable for different human categories and ages. This study aims to establish a secure verification method for real-time monitoring systems to be used for the authentication of patients and other members who are working in telemedicine systems. The process begins with the sensor based on Tiers 1 and 2 (client side) in the telemedicine architecture and ends with patient verification in Tier 3 (server side) via finger vein biometric technology to ensure patient security on both sides. Multilayer taxonomy is conducted in this research to attain the study's goal. In the first layer, real-time remote monitoring studies based on the sensor technology used in telemedicine applications are reviewed and analysed to provide researchers a clear vision of security and privacy based on sensors in telemedicine. An extensive search is conducted to identify articles that deal with security and privacy issues, related applications are reviewed comprehensively and a coherent taxonomy of these articles is established. ScienceDirect, IEEE Xplore and Web of Science databases are checked for articles on mHealth in telemedicine based on sensors. A total of 3064 papers are collected from 2007 to 2017. The retrieved articles are filtered according to the security and privacy of telemedicine applications based on sensors. Nineteen articles are selected and classified into two categories. The first category, which accounts for 57.89% (n = 11/19), includes surveys on telemedicine articles and their applications. The second category, accounting for 42.1% (n = 8/19), includes articles on the three-tiered architecture of telemedicine. The collected studies reveal the essential need to construct another taxonomy layer and review studies on finger vein biometric verification systems. This map-matching for both taxonomies is developed for this study to go deeply into the sensor field and determine novel risks and benefits for patient security and privacy on client and server sides in telemedicine applications. In the second layer of our taxonomy, the literature on finger vein biometric verification systems is analysed and reviewed. In this layer, we obtain a final set of 65 articles classified into four categories. In the first category, 80% (n = 52/65) of the articles focus on development and design. In the second category, 12.30% (n = 8/65) includes evaluation and comparative articles. These articles are not intensively included in our literature analysis. In the third category, 4.61% (n = 3/65) includes articles about analytical studies. In the fourth category, 3.07% (n = 2/65) comprises reviews and surveys. This study aims to provide researchers with an up-to-date overview of studies that have been conducted on (user/patient) authentication to enhance the security level in telemedicine or any information system. In the current study, taxonomy is presented by explaining previous studies. Moreover, this review highlights the motivations, challenges and recommendations related to finger vein biometric verification systems and determines the gaps in this research direction (protection of finger vein templates in real time), which represent a new research direction in this area.
Collapse
Affiliation(s)
- A H Mohsin
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| | - A A Zaidan
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia.
| | - B B Zaidan
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| | - A S Albahri
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| | - O S Albahri
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| | - M A Alsalem
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| | - K I Mohammed
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| |
Collapse
|
41
|
Alsalem MA, Zaidan AA, Zaidan BB, Hashim M, Albahri OS, Albahri AS, Hadi A, Mohammed KI. Systematic Review of an Automated Multiclass Detection and Classification System for Acute Leukaemia in Terms of Evaluation and Benchmarking, Open Challenges, Issues and Methodological Aspects. J Med Syst 2018; 42:204. [PMID: 30232632 DOI: 10.1007/s10916-018-1064-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/06/2018] [Indexed: 10/28/2022]
Abstract
This study aims to systematically review prior research on the evaluation and benchmarking of automated acute leukaemia classification tasks. The review depends on three reliable search engines: ScienceDirect, Web of Science and IEEE Xplore. A research taxonomy developed for the review considers a wide perspective for automated detection and classification of acute leukaemia research and reflects the usage trends in the evaluation criteria in this field. The developed taxonomy consists of three main research directions in this domain. The taxonomy involves two phases. The first phase includes all three research directions. The second one demonstrates all the criteria used for evaluating acute leukaemia classification. The final set of studies includes 83 investigations, most of which focused on enhancing the accuracy and performance of detection and classification through proposed methods or systems. Few efforts were made to undertake the evaluation issues. According to the final set of articles, three groups of articles represented the main research directions in this domain: 56 articles highlighted the proposed methods, 22 articles involved proposals for system development and 5 papers centred on evaluation and comparison. The other taxonomy side included 16 main and sub-evaluation and benchmarking criteria. This review highlights three serious issues in the evaluation and benchmarking of multiclass classification of acute leukaemia, namely, conflicting criteria, evaluation criteria and criteria importance. It also determines the weakness of benchmarking tools. To solve these issues, multicriteria decision-making (MCDM) analysis techniques were proposed as effective recommended solutions in the methodological aspect. This methodological aspect involves a proposed decision support system based on MCDM for evaluation and benchmarking to select suitable multiclass classification models for acute leukaemia. The said support system is examined and has three sequential phases. Phase One presents the identification procedure and process for establishing a decision matrix based on a crossover of evaluation criteria and acute leukaemia multiclass classification models. Phase Two describes the decision matrix development for the selection of acute leukaemia classification models based on the integrated Best and worst method (BWM) and VIKOR. Phase Three entails the validation of the proposed system.
Collapse
Affiliation(s)
- M A Alsalem
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| | - A A Zaidan
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia.
| | - B B Zaidan
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| | - M Hashim
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| | - O S Albahri
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| | - A S Albahri
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| | - Ali Hadi
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| | - K I Mohammed
- Department of Computing, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| |
Collapse
|