1
|
Yamagishi Y, Nakamura Y, Hanaoka S, Abe O. Large Language Model Approach for Zero-Shot Information Extraction and Clustering of Japanese Radiology Reports: Algorithm Development and Validation. JMIR Cancer 2025; 11:e57275. [PMID: 39864093 DOI: 10.2196/57275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/28/2025] Open
Abstract
Background The application of natural language processing in medicine has increased significantly, including tasks such as information extraction and classification. Natural language processing plays a crucial role in structuring free-form radiology reports, facilitating the interpretation of textual content, and enhancing data utility through clustering techniques. Clustering allows for the identification of similar lesions and disease patterns across a broad dataset, making it useful for aggregating information and discovering new insights in medical imaging. However, most publicly available medical datasets are in English, with limited resources in other languages. This scarcity poses a challenge for development of models geared toward non-English downstream tasks. Objective This study aimed to develop and evaluate an algorithm that uses large language models (LLMs) to extract information from Japanese lung cancer radiology reports and perform clustering analysis. The effectiveness of this approach was assessed and compared with previous supervised methods. Methods This study employed the MedTxt-RR dataset, comprising 135 Japanese radiology reports from 9 radiologists who interpreted the computed tomography images of 15 lung cancer patients obtained from Radiopaedia. Previously used in the NTCIR-16 (NII Testbeds and Community for Information Access Research) shared task for clustering performance competition, this dataset was ideal for comparing the clustering ability of our algorithm with those of previous methods. The dataset was split into 8 cases for development and 7 for testing, respectively. The study's approach involved using the LLM to extract information pertinent to lung cancer findings and transforming it into numeric features for clustering, using the K-means method. Performance was evaluated using 135 reports for information extraction accuracy and 63 test reports for clustering performance. This study focused on the accuracy of automated systems for extracting tumor size, location, and laterality from clinical reports. The clustering performance was evaluated using normalized mutual information, adjusted mutual information , and the Fowlkes-Mallows index for both the development and test data. Results The tumor size was accurately identified in 99 out of 135 reports (73.3%), with errors in 36 reports (26.7%), primarily due to missing or incorrect size information. Tumor location and laterality were identified with greater accuracy in 112 out of 135 reports (83%); however, 23 reports (17%) contained errors mainly due to empty values or incorrect data. Clustering performance of the test data yielded an normalized mutual information of 0.6414, adjusted mutual information of 0.5598, and Fowlkes-Mallows index of 0.5354. The proposed method demonstrated superior performance across all evaluation metrics compared to previous methods. Conclusions The unsupervised LLM approach surpassed the existing supervised methods in clustering Japanese radiology reports. These findings suggest that LLMs hold promise for extracting information from radiology reports and integrating it into disease-specific knowledge structures.
Collapse
Affiliation(s)
- Yosuke Yamagishi
- Division of Radiology and Biomedical Engineering, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuta Nakamura
- Department of Computational Diagnostic Radiology and Preventive Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Shouhei Hanaoka
- Division of Radiology and Biomedical Engineering, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Osamu Abe
- Division of Radiology and Biomedical Engineering, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
2
|
Tang CC, Nagesh S, Fussell DA, Glavis-Bloom J, Mishra N, Li C, Cortes G, Hill R, Zhao J, Gordon A, Wright J, Troutt H, Tarrago R, Chow DS. Generating colloquial radiology reports with large language models. J Am Med Inform Assoc 2024; 31:2660-2667. [PMID: 39178375 PMCID: PMC11491646 DOI: 10.1093/jamia/ocae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/25/2024] Open
Abstract
OBJECTIVES Patients are increasingly being given direct access to their medical records. However, radiology reports are written for clinicians and typically contain medical jargon, which can be confusing. One solution is for radiologists to provide a "colloquial" version that is accessible to the layperson. Because manually generating these colloquial translations would represent a significant burden for radiologists, a way to automatically produce accurate, accessible patient-facing reports is desired. We propose a novel method to produce colloquial translations of radiology reports by providing specialized prompts to a large language model (LLM). MATERIALS AND METHODS Our method automatically extracts and defines medical terms and includes their definitions in the LLM prompt. Using our method and a naive strategy, translations were generated at 4 different reading levels for 100 de-identified neuroradiology reports from an academic medical center. Translations were evaluated by a panel of radiologists for accuracy, likability, harm potential, and readability. RESULTS Our approach translated the Findings and Impression sections at the 8th-grade level with accuracies of 88% and 93%, respectively. Across all grade levels, our approach was 20% more accurate than the baseline method. Overall, translations were more readable than the original reports, as evaluated using standard readability indices. CONCLUSION We find that our translations at the eighth-grade level strike an optimal balance between accuracy and readability. Notably, this corresponds to nationally recognized recommendations for patient-facing health communication. We believe that using this approach to draft patient-accessible reports will benefit patients without significantly increasing the burden on radiologists.
Collapse
Affiliation(s)
- Cynthia Crystal Tang
- Department of Radiological Sciences, University of California, Irvine, Irvine, CA 92868, United States
| | - Supriya Nagesh
- Amazon Web Services, East Palo Alto, CA 94303, United States
| | - David A Fussell
- Department of Radiological Sciences, University of California, Irvine, Irvine, CA 92868, United States
| | - Justin Glavis-Bloom
- Department of Radiological Sciences, University of California, Irvine, Irvine, CA 92868, United States
| | - Nina Mishra
- Amazon Web Services, East Palo Alto, CA 94303, United States
| | - Charles Li
- Department of Radiological Sciences, University of California, Irvine, Irvine, CA 92868, United States
| | - Gillean Cortes
- Department of Radiological Sciences, University of California, Irvine, Irvine, CA 92868, United States
| | - Robert Hill
- Department of Radiological Sciences, University of California, Irvine, Irvine, CA 92868, United States
| | - Jasmine Zhao
- Department of Radiological Sciences, University of California, Irvine, Irvine, CA 92868, United States
| | - Angellica Gordon
- Department of Radiological Sciences, University of California, Irvine, Irvine, CA 92868, United States
| | - Joshua Wright
- Department of Radiological Sciences, University of California, Irvine, Irvine, CA 92868, United States
| | - Hayden Troutt
- Department of Radiological Sciences, University of California, Irvine, Irvine, CA 92868, United States
| | - Rod Tarrago
- Amazon Web Services, Seattle, WA 98121, United States
| | - Daniel S Chow
- Department of Radiological Sciences, University of California, Irvine, Irvine, CA 92868, United States
| |
Collapse
|
3
|
Kanemaru N, Yasaka K, Fujita N, Kanzawa J, Abe O. The Fine-Tuned Large Language Model for Extracting the Progressive Bone Metastasis from Unstructured Radiology Reports. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024:10.1007/s10278-024-01242-3. [PMID: 39187702 DOI: 10.1007/s10278-024-01242-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/03/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Early detection of patients with impending bone metastasis is crucial for prognosis improvement. This study aimed to investigate the feasibility of a fine-tuned, locally run large language model (LLM) in extracting patients with bone metastasis in unstructured Japanese radiology report and to compare its performance with manual annotation. This retrospective study included patients with "metastasis" in radiological reports (April 2018-January 2019, August-May 2022, and April-December 2023 for training, validation, and test datasets of 9559, 1498, and 7399 patients, respectively). Radiologists reviewed the clinical indication and diagnosis sections of the radiological report (used as input data) and classified them into groups 0 (no bone metastasis), 1 (progressive bone metastasis), and 2 (stable or decreased bone metastasis). The data for group 0 was under-sampled in training and test datasets due to group imbalance. The best-performing model from the validation set was subsequently tested using the testing dataset. Two additional radiologists (readers 1 and 2) were involved in classifying radiological reports within the test dataset for testing purposes. The fine-tuned LLM, reader 1, and reader 2 demonstrated an accuracy of 0.979, 0.996, and 0.993, sensitivity for groups 0/1/2 of 0.988/0.947/0.943, 1.000/1.000/0.966, and 1.000/0.982/0.954, and time required for classification (s) of 105, 2312, and 3094 in under-sampled test dataset (n = 711), respectively. Fine-tuned LLM extracted patients with bone metastasis, demonstrating satisfactory performance that was comparable to or slightly lower than manual annotation by radiologists in a noticeably shorter time.
Collapse
Affiliation(s)
- Noriko Kanemaru
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Koichiro Yasaka
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| | - Nana Fujita
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Jun Kanzawa
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| |
Collapse
|
4
|
Liu LR, Huang MY, Huang ST, Kung LC, Lee CH, Yao WT, Tsai MF, Hsu CH, Chu YC, Hung FH, Chiu HW. An Arrhythmia classification approach via deep learning using single-lead ECG without QRS wave detection. Heliyon 2024; 10:e27200. [PMID: 38486759 PMCID: PMC10937691 DOI: 10.1016/j.heliyon.2024.e27200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/18/2024] [Accepted: 02/26/2024] [Indexed: 03/17/2024] Open
Abstract
Arrhythmia, a frequently encountered and life-threatening cardiac disorder, can manifest as a transient or isolated event. Traditional automatic arrhythmia detection methods have predominantly relied on QRS-wave signal detection. Contemporary research has focused on the utilization of wearable devices for continuous monitoring of heart rates and rhythms through single-lead electrocardiogram (ECG), which holds the potential to promptly detect arrhythmias. However, in this study, we employed a convolutional neural network (CNN) to classify distinct arrhythmias without QRS wave detection step. The ECG data utilized in this study were sourced from the publicly accessible PhysioNet databases. Taking into account the impact of the duration of ECG signal on accuracy, this study trained one-dimensional CNN models with 5-s and 10-s segments, respectively, and compared their results. In the results, the CNN model exhibited the capability to differentiate between Normal Sinus Rhythm (NSR) and various arrhythmias, including Atrial Fibrillation (AFIB), Atrial Flutter (AFL), Wolff-Parkinson-White syndrome (WPW), Ventricular Fibrillation (VF), Ventricular Tachycardia (VT), Ventricular Flutter (VFL), Mobitz II AV Block (MII), and Sinus Bradycardia (SB). Both 10-s and 5-s ECG segments exhibited comparable results, with an average classification accuracy of 97.31%. It reveals the feasibility of utilizing even shorter 5-s recordings for detecting arrhythmias in everyday scenarios. Detecting arrhythmias with a single lead aligns well with the practicality of wearable devices for daily use, and shorter detection times also align with their clinical utility in emergency situations.
Collapse
Affiliation(s)
- Liong-Rung Liu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Department of Emergency Medicine, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Ming-Yuan Huang
- Department of Emergency Medicine, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Shu-Tien Huang
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Department of Emergency Medicine, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Lu-Chih Kung
- Department of Emergency Medicine, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Chao-hsiung Lee
- Department of Emergency Medicine, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Wen-Teng Yao
- Division of Plastic Surgery, Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Ming-Feng Tsai
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Division of Plastic Surgery, Department of Surgery, Mackay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Cheng-Hung Hsu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yu-Chang Chu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Fei-Hung Hung
- Health Data Analytics and Statistics Center, Office of Data Science, Taipei Medical University, Taipei, Taiwan
| | - Hung-Wen Chiu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- Bioinformatics Data Science Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
5
|
Elmarakeby HA, Trukhanov PS, Arroyo VM, Riaz IB, Schrag D, Van Allen EM, Kehl KL. Empirical evaluation of language modeling to ascertain cancer outcomes from clinical text reports. BMC Bioinformatics 2023; 24:328. [PMID: 37658330 PMCID: PMC10474750 DOI: 10.1186/s12859-023-05439-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/07/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Longitudinal data on key cancer outcomes for clinical research, such as response to treatment and disease progression, are not captured in standard cancer registry reporting. Manual extraction of such outcomes from unstructured electronic health records is a slow, resource-intensive process. Natural language processing (NLP) methods can accelerate outcome annotation, but they require substantial labeled data. Transfer learning based on language modeling, particularly using the Transformer architecture, has achieved improvements in NLP performance. However, there has been no systematic evaluation of NLP model training strategies on the extraction of cancer outcomes from unstructured text. RESULTS We evaluated the performance of nine NLP models at the two tasks of identifying cancer response and cancer progression within imaging reports at a single academic center among patients with non-small cell lung cancer. We trained the classification models under different conditions, including training sample size, classification architecture, and language model pre-training. The training involved a labeled dataset of 14,218 imaging reports for 1112 patients with lung cancer. A subset of models was based on a pre-trained language model, DFCI-ImagingBERT, created by further pre-training a BERT-based model using an unlabeled dataset of 662,579 reports from 27,483 patients with cancer from our center. A classifier based on our DFCI-ImagingBERT, trained on more than 200 patients, achieved the best results in most experiments; however, these results were marginally better than simpler "bag of words" or convolutional neural network models. CONCLUSION When developing AI models to extract outcomes from imaging reports for clinical cancer research, if computational resources are plentiful but labeled training data are limited, large language models can be used for zero- or few-shot learning to achieve reasonable performance. When computational resources are more limited but labeled training data are readily available, even simple machine learning architectures can achieve good performance for such tasks.
Collapse
Affiliation(s)
- Haitham A Elmarakeby
- Dana-Farber Cancer Institute, Boston, MA, USA.
- Al-Azhar University, Cairo, Egypt.
- Harvard Medical School, Boston, MA, USA.
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | | | | | - Irbaz Bin Riaz
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Mayo Clinic, Rochester, MN, USA
| | - Deborah Schrag
- Memorial-Sloan Kettering Cancer Center, New York, NY, USA
| | - Eliezer M Van Allen
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kenneth L Kehl
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Abbasi N, Lacson R, Kapoor N, Licaros A, Guenette JP, Burk KS, Hammer M, Desai S, Eappen S, Saini S, Khorasani R. Development and External Validation of an Artificial Intelligence Model for Identifying Radiology Reports Containing Recommendations for Additional Imaging. AJR Am J Roentgenol 2023; 221:377-385. [PMID: 37073901 DOI: 10.2214/ajr.23.29120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
BACKGROUND. Reported rates of recommendations for additional imaging (RAIs) in radiology reports are low. Bidirectional encoder representations from transformers (BERT), a deep learning model pretrained to understand language context and ambiguity, has potential for identifying RAIs and thereby assisting large-scale quality improvement efforts. OBJECTIVE. The purpose of this study was to develop and externally validate an artificial intelligence (AI)-based model for identifying radiology reports containing RAIs. METHODS. This retrospective study was performed at a multisite health center. A total of 6300 radiology reports generated at one site from January 1, 2015, to June 30, 2021, were randomly selected and split by 4:1 ratio to create training (n = 5040) and test (n = 1260) sets. A total of 1260 reports generated at the center's other sites (including academic and community hospitals) from April 1 to April 30, 2022, were randomly selected as an external validation group. Referring practitioners and radiologists of varying sub-specialties manually reviewed report impressions for presence of RAIs. A BERT-based technique for identifying RAIs was developed by use of the training set. Performance of the BERT-based model and a previously developed traditional machine learning (TML) model was assessed in the test set. Finally, performance was assessed in the external validation set. The code for the BERT-based RAI model is publicly available. RESULTS. Among a total of 7419 unique patients (4133 women, 3286 men; mean age, 58.8 years), 10.0% of 7560 reports contained RAI. In the test set, the BERT-based model had 94.4% precision, 98.5% recall, and an F1 score of 96.4%. In the test set, the TML model had 69.0% precision, 65.4% recall, and an F1 score of 67.2%. In the test set, accuracy was greater for the BERT-based than for the TML model (99.2% vs 93.1%, p < .001). In the external validation set, the BERT-based model had 99.2% precision, 91.6% recall, an F1 score of 95.2%, and 99.0% accuracy. CONCLUSION. The BERT-based AI model accurately identified reports with RAIs, outperforming the TML model. High performance in the external validation set suggests the potential for other health systems to adapt the model without requiring institution-specific training. CLINICAL IMPACT. The model could potentially be used for real-time EHR monitoring for RAIs and other improvement initiatives to help ensure timely performance of clinically necessary recommended follow-up.
Collapse
Affiliation(s)
- Nooshin Abbasi
- Department of Radiology, Center for Evidence-Based Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Ronilda Lacson
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115
| | - Neena Kapoor
- Department of Radiology, Center for Evidence-Based Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115
| | - Andro Licaros
- Department of Radiology, Center for Evidence-Based Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Jeffrey P Guenette
- Department of Radiology, Center for Evidence-Based Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115
| | - Kristine Specht Burk
- Department of Radiology, Center for Evidence-Based Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115
| | - Mark Hammer
- Department of Radiology, Center for Evidence-Based Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115
| | - Sonali Desai
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Sunil Eappen
- Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Sanjay Saini
- Department of Radiology, Center for Evidence-Based Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Ramin Khorasani
- Department of Radiology, Center for Evidence-Based Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, 75 Francis St, Boston, MA 02115
| |
Collapse
|
7
|
Soria C, Arroyo Y, Torres AM, Redondo MÁ, Basar C, Mateo J. Method for Classifying Schizophrenia Patients Based on Machine Learning. J Clin Med 2023; 12:4375. [PMID: 37445410 DOI: 10.3390/jcm12134375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Schizophrenia is a chronic and severe mental disorder that affects individuals in various ways, particularly in their ability to perceive, process, and respond to stimuli. This condition has a significant impact on a considerable number of individuals. Consequently, the study, analysis, and characterization of this pathology are of paramount importance. Electroencephalography (EEG) is frequently utilized in the diagnostic assessment of various brain disorders due to its non-intrusiveness, excellent resolution and ease of placement. However, the manual analysis of electroencephalogram (EEG) recordings can be a complex and time-consuming task for healthcare professionals. Therefore, the automated analysis of EEG recordings can help alleviate the burden on doctors and provide valuable insights to support clinical diagnosis. Many studies are working along these lines. In this research paper, the authors propose a machine learning (ML) method based on the eXtreme Gradient Boosting (XGB) algorithm for analyzing EEG signals. The study compares the performance of the proposed XGB-based approach with four other supervised ML systems. According to the results, the proposed XGB-based method demonstrates superior performance, with an AUC value of 0.94 and an accuracy value of 0.94, surpassing the other compared methods. The implemented system exhibits high accuracy and robustness in accurately classifying schizophrenia patients based on EEG recordings. This method holds the potential to be implemented as a valuable complementary tool for clinical use in hospitals, supporting clinicians in their clinical diagnosis of schizophrenia.
Collapse
Affiliation(s)
- Carmen Soria
- Institute of Technology, University of Castilla-La Mancha, 16071 Cuenca, Spain
- Clinical Neurophysiology Service, Virgen de la Luz Hospital, 16002 Cuenca, Spain
| | - Yoel Arroyo
- Faculty of Social Sciences and Information Technology, University of Castilla-La Mancha, 45600 Talavera de la Reina, Spain
| | - Ana María Torres
- Institute of Technology, University of Castilla-La Mancha, 16071 Cuenca, Spain
| | - Miguel Ángel Redondo
- School of Informatics, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Christoph Basar
- Faculty of Human and Health Sciences, University of Bremen, 28359 Bremen, Germany
| | - Jorge Mateo
- Institute of Technology, University of Castilla-La Mancha, 16071 Cuenca, Spain
| |
Collapse
|
8
|
The natural language processing of radiology requests and reports of chest imaging: Comparing five transformer models’ multilabel classification and a proof-of-concept study. Health Informatics J 2022; 28:14604582221131198. [DOI: 10.1177/14604582221131198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Radiology requests and reports contain valuable information about diagnostic findings and indications, and transformer-based language models are promising for more accurate text classification. Methods In a retrospective study, 2256 radiologist-annotated radiology requests (8 classes) and reports (10 classes) were divided into training and testing datasets (90% and 10%, respectively) and used to train 32 models. Performance metrics were compared by model type (LSTM, Bertje, RobBERT, BERT-clinical, BERT-multilingual, BERT-base), text length, data prevalence, and training strategy. The best models were used to predict the remaining 40,873 cases’ categories of the datasets of requests and reports. Results The RobBERT model performed the best after 4000 training iterations, resulting in AUC values ranging from 0.808 [95% CI (0.757–0.859)] to 0.976 [95% CI (0.956–0.996)] for the requests and 0.746 [95% CI (0.689–0.802)] to 1.0 [95% CI (1.0–1.0)] for the reports. The AUC for the classification of normal reports was 0.95 [95% CI (0.922–0.979)]. The predicted data demonstrated variability of both diagnostic yield for various request classes and request patterns related to COVID-19 hospital admission data. Conclusion Transformer-based natural language processing is feasible for the multilabel classification of chest imaging request and report items. Diagnostic yield varies with the information in the requests.
Collapse
|
9
|
Azour L, Ko JP, Toussie D, Gomez GV, Moore WH. Current imaging of PE and emerging techniques: is there a role for artificial intelligence? Clin Imaging 2022; 88:24-32. [DOI: 10.1016/j.clinimag.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/23/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022]
|
10
|
SAR Image Fusion Classification Based on the Decision-Level Combination of Multi-Band Information. REMOTE SENSING 2022. [DOI: 10.3390/rs14092243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Synthetic aperture radar (SAR) is an active coherent microwave remote sensing system. SAR systems working in different bands have different imaging results for the same area, resulting in different advantages and limitations for SAR image classification. Therefore, to synthesize the classification information of SAR images into different bands, an SAR image fusion classification method based on the decision-level combination of multi-band information is proposed in this paper. Within the proposed method, the idea of Dempster–Shafer evidence theory is introduced to model the uncertainty of the classification result of each pixel and used to combine the classification results of multiple band SAR images. The convolutional neural network is used to classify single-band SAR images. Calculate the belief entropy of each pixel to measure the uncertainty of single-band classification, and generate the basic probability assignment function. The idea of the term frequency-inverse document frequency in natural language processing is combined with the conflict coefficient to obtain the weight of different bands. Meanwhile, the neighborhood classification of each pixel in different band sensors is considered to obtain the total weight of each band sensor, generate weighted average BPA, and obtain the final ground object classification result after fusion. The validity of the proposed method is verified in two groups of multi-band SAR image classification experiments, and the proposed method has effectively improved the accuracy compared to the modified average approach.
Collapse
|
11
|
El informe radiológico. Estructura, estilo y contenido. RADIOLOGIA 2022. [DOI: 10.1016/j.rx.2022.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|