1
|
Li X, Jusko WJ. Utility of Minimal Physiologically Based Pharmacokinetic Models for Assessing Fractional Distribution, Oral Absorption, and Series-Compartment Models of Hepatic Clearance. Drug Metab Dispos 2023; 51:1403-1418. [PMID: 37460222 PMCID: PMC10506700 DOI: 10.1124/dmd.123.001403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/13/2023] [Indexed: 09/16/2023] Open
Abstract
Minimal physiologically based pharmacokinetic (mPBPK) models are physiologically relevant, require less information than full PBPK models, and offer flexibility in pharmacokinetics (PK). The well-stirred hepatic model (WSM) is commonly used in PBPK, whereas the more plausible dispersion model (DM) poses computational complexities. The series-compartment model (SCM) mimics the DM but is easier to operate. This work implements the SCM and mPBPK models for assessing fractional tissue distribution, oral absorption, and hepatic clearance using literature-reported blood and liver concentration-time data in rats for compounds mainly cleared by the liver. Further handled were various complexities, including nonlinear hepatic binding and metabolism, differing absorption kinetics, and sites of administration. The SCM containing one to five (n) liver subcompartments yields similar fittings and provides comparable estimates for hepatic extraction ratio (ER), prehepatic availability (Fg ), and first-order absorption rate constants (ka ). However, they produce decreased intrinsic clearances (CLint ) and liver-to-plasma partition coefficients (Kph ) with increasing n as expected. Model simulations demonstrated changes in intravenous and oral PK profiles with alterations in Kph and ka and with hepatic metabolic zonation. The permeability (PAMPA P) of the various compounds well explained the fitted fractional distribution (fd ) parameters. The SCM and mPBPK models offer advantages in distinguishing systemic, extrahepatic, and hepatic clearances. The SCM allows for incorporation of liver zonation and is useful in assessing changes in internal concentration gradients potentially masked by similar blood PK profiles. Improved assessment of intraorgan drug concentrations may offer insights into active moieties driving metabolism, biliary excretion, pharmacodynamics, and hepatic toxicity. SIGNIFICANCE STATEMENT: The minimal physiologically based pharmacokinetic model and the series-compartment model are useful in assessing oral absorption and hepatic clearance. They add flexibility in accounting for various drug- or system-specific complexities, including fractional distribution, nonlinear binding and saturable hepatic metabolism, and hepatic zonation. These models can offer improved insights into the intraorgan concentrations that reflect physiologically active moieties often driving disposition, pharmacodynamics, and toxicity.
Collapse
Affiliation(s)
- Xiaonan Li
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - William J Jusko
- Department of Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
2
|
Wei H, Lee A, Zhang Q, Felmlee MA. Effect of Sex and Cross-Sex Hormone Treatment on Renal Monocarboxylate-Transporter Expression in Rats. Pharmaceutics 2023; 15:2404. [PMID: 37896164 PMCID: PMC10610497 DOI: 10.3390/pharmaceutics15102404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Proton- and sodium-dependent monocarboxylate transporters (MCTs/SMCTs) are determinants of renal clearance through the renal reabsorption of monocarboxylate substrates. Prior studies with intact females and males, ovariectomized females and castrated males have revealed the hormonal regulation of renal monocarboxylate-transporter expression, prompting investigation into the regulatory role of individual hormones. The aim of the present study is to evaluate the effect of exogenous sex and cross-sex hormones on renal MCT1, MCT4, CD147 and SMCT1 mRNA and membrane-bound protein expression. Ovariectomized (OVX) females and castrated (CST) male Sprague Dawley rats received estrogen and/or progesterone, testosterone, or a corresponding placebo treatment for 21 days prior to kidney collection. The quantitative measurement of mRNA and membrane-protein levels were conducted using qPCR and Western blot. Quantitative analysis revealed the combination estrogen/progesterone treatment reduced membrane MCT1 and 4 expression and increased SMCT1 expression, while testosterone administration increased MCT1 membrane-protein expression. Correlation analysis indicated that plasma 17β-estradiol was negatively correlated with MCT1 and MCT4 membrane expression, while testosterone was positively correlated. In contrast, SMCT1 membrane expression was positively correlated with 17β-estradiol and progesterone concentrations. MCT1, MCT4, CD147 and SMCT1 renal expression are significantly altered in response to female and male sex hormones following sex and cross-sex hormone treatment in OVX and CST rats. Further studies are needed to understand the complex role of sex hormones, sex hormone receptors and the impact of puberty on MCT/SMCT regulation.
Collapse
Affiliation(s)
| | | | | | - Melanie A. Felmlee
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy, University of the Pacific, Stockton, CA 95211, USA (Q.Z.)
| |
Collapse
|
3
|
Balla A, Jeong YS, Kim HJ, Lee YJ, Chung SJ, Chae YJ, Maeng HJ. Effects of 1α,25-Dihydroxyvitamin D 3 on the Pharmacokinetics of Procainamide and Its Metabolite N-Acetylprocainamide, Organic Cation Transporter Substrates, in Rats with PBPK Modeling Approach. Pharmaceutics 2021; 13:pharmaceutics13081133. [PMID: 34452094 PMCID: PMC8402143 DOI: 10.3390/pharmaceutics13081133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, possible changes in the expression of rat organic cationic transporters (rOCTs) and rat multidrug and toxin extrusion proteins (rMATEs) following treatment with 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) were investigated. Rats received intraperitoneal administrations of 1,25(OH)2D3 for four consecutive days, and the tissues of interest were collected. The mRNA expression of rOCT1 in the kidneys was significantly increased in 1,25(OH)2D3-treated rats compared with the control rats, while the mRNA expressions of rOCT2 and rMATE1 in the kidneys, rOCT1 and N-acetyltransferase-II (NAT-II) in the liver, and rOCT3 in the heart were significantly decreased. Changes in the protein expression of hepatic rOCT1 and renal rOCT2 and rMATE1 were confirmed by western blot analysis. We further evaluated the pharmacokinetics of procainamide (PA) hydrochloride and its major metabolite N-acetyl procainamide (NAPA) in the presence of 1,25(OH)2D3. When PA hydrochloride was administered intravenously at a dose 10 mg/kg to 1,25(OH)2D3-treated rats, a significant decrease in renal and/or non-renal clearance of PA and NAPA was observed. A physiological model for the pharmacokinetics of PA and NAPA in rats was useful for linking changes in the transcriptional and translational expressions of rOCTs and rMATE1 transporters to the altered pharmacokinetics of the drugs.
Collapse
Affiliation(s)
- Anusha Balla
- College of Pharmacy, Gachon University, Incheon 21936, Korea;
| | - Yoo-Seong Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (Y.-S.J.); (S.-J.C.)
| | - Hyo-Jung Kim
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (H.-J.K.); (Y.-J.L.)
| | - Yun-Jong Lee
- Department of Pharmacology, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (H.-J.K.); (Y.-J.L.)
| | - Suk-Jae Chung
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (Y.-S.J.); (S.-J.C.)
| | - Yoon-Jee Chae
- College of Pharmacy, Woosuk University, Wanju-gun 55338, Korea
- Correspondence: (Y.-J.C.); (H.-J.M.); Tel.: +82-63-290-1424 (Y.-J.C.); +82-32-820-4935 (H.-J.M.)
| | - Han-Joo Maeng
- College of Pharmacy, Gachon University, Incheon 21936, Korea;
- Correspondence: (Y.-J.C.); (H.-J.M.); Tel.: +82-63-290-1424 (Y.-J.C.); +82-32-820-4935 (H.-J.M.)
| |
Collapse
|
4
|
Lin PY, Chen SM, Hsieh CL, Lin CY, Huang YS, Hamase K, Lee JA. Determination of temporal changes in serum and urinary lactate and 3-hydroxybutyrate enantiomers in mice with nephrotoxic serum nephritis by multi-dimensional HPLC. J Pharm Biomed Anal 2020; 188:113367. [DOI: 10.1016/j.jpba.2020.113367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 10/24/2022]
|
5
|
Physiologically-Based Pharmacokinetic Modeling for Drug-Drug Interactions of Procainamide and N-Acetylprocainamide with Cimetidine, an Inhibitor of rOCT2 and rMATE1, in Rats. Pharmaceutics 2019; 11:pharmaceutics11030108. [PMID: 30845766 PMCID: PMC6470842 DOI: 10.3390/pharmaceutics11030108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 01/11/2023] Open
Abstract
Previous observations demonstrated that cimetidine decreased the clearance of procainamide (PA) and/or N-acetylprocainamide (NAPA; the primary metabolite of PA) resulting in the increased systemic exposure and the decrease of urinary excretion. Despite an abundance of in vitro and in vivo data regarding pharmacokinetic interactions between PA/NAPA and cimetidine, however, a mechanistic approach to elucidate these interactions has not been reported yet. The primary objective of this study was to construct a physiological model that describes pharmacokinetic interactions between PA/NAPA and cimetidine, an inhibitor of rat organic cation transporter 2 (rOCT2) and rat multidrug and toxin extrusion proteins (rMATE1), by performing extensive in vivo and in vitro pharmacokinetic studies for PA and NAPA performed in the absence or presence of cimetidine in rats. When a single intravenous injection of PA HCl (10 mg/kg) was administered to rats, co-administration of cimetidine (100 mg/kg) significantly increased systemic exposure and decreased the systemic (CL) and renal (CLR) clearance of PA, and reduced its tissue distribution. Similarly, cimetidine significantly decreased the CLR of NAPA formed by the metabolism of PA and increased the AUC of NAPA. Considering that these drugs could share similar renal secretory pathways (e.g., via rOCT2 and rMATE1), a physiologically-based pharmacokinetic (PBPK) model incorporating semi-mechanistic kidney compartments was devised to predict drug-drug interactions (DDIs). Using our proposed PBPK model, DDIs between PA/NAPA and cimetidine were successfully predicted for the plasma concentrations and urinary excretion profiles of PA and NAPA observed in rats. Moreover, sensitivity analyses of the pharmacokinetics of PA and NAPA showed the inhibitory effects of cimetidine via rMATE1 were probably important for the renal elimination of PA and NAPA in rats. The proposed PBPK model may be useful for understanding the mechanisms of interactions between PA/NAPA and cimetidine in vivo.
Collapse
|
6
|
Matsuzaki T, Scotcher D, Darwich AS, Galetin A, Rostami-Hodjegan A. Towards Further Verification of Physiologically-Based Kidney Models: Predictability of the Effects of Urine-Flow and Urine-pH on Renal Clearance. J Pharmacol Exp Ther 2018; 368:157-168. [DOI: 10.1124/jpet.118.251413] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/05/2018] [Indexed: 01/05/2023] Open
|
7
|
Follman KE, Dave RA, Morris ME. Effects of renal impairment on transporter-mediated renal reabsorption of drugs and renal drug-drug interactions: A simulation-based study. Biopharm Drug Dispos 2018; 39:218-231. [PMID: 29635775 DOI: 10.1002/bdd.2128] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 02/13/2018] [Accepted: 03/12/2018] [Indexed: 02/05/2023]
Abstract
Renal impairment (RI) significantly impacts the clearance of drugs through changes in the glomerular filtration rate, protein binding and alterations in the expression of renal drug transport proteins and hepatic metabolizing enzymes. The objectives of this study were to evaluate quantitatively the effects of renal impairment on the pharmacokinetics of drugs undergoing renal transporter-mediated reabsorption. A previously published semi-mechanistic kidney model incorporating physiologically relevant fluid reabsorption and transporter-mediated active renal reabsorption (PMID: 26341876) was utilized in this study. The probe drug/transporter pair utilized was γ-hydroxybutyric acid (GHB) and monocarboxylate transporter 1 (SCL16A1, MCT1). γ-Hydroxybutyric acid concentrations in the blood and amount excreted into urine were simulated using ADAPT 5 for the i.v. dose range of 200-1500 mg/kg in rats and the impact of renal impairment on CLR and AUC was evaluated. A 90% decrease in GFR resulted in a > 100-fold decrease in GHB CLR . When expression of reabsorptive transporters was decreased and fu was increased, CLR approached GFR. The effect of renal impairment on CLR was reduced when the expression of drug metabolizing enzymes (DME) was increased as a result of increased metabolic clearance; the converse held true when the DME expression was decreased. In conclusion, this study quantitatively demonstrated that the effects of renal insufficiency on the clearance of drugs is modulated by transporter expression, contribution of renal clearance to overall clearance, expression of drug metabolizing enzymes, fraction unbound and drug-drug interactions with inhibitors of renal transporters that may be increased in the presence of renal impairment.
Collapse
Affiliation(s)
- Kristin E Follman
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Rutwij A Dave
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Marilyn E Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, State University of New York, Buffalo, New York, USA
| |
Collapse
|
8
|
Vogel KR, Ainslie GR, McConnell A, Roullet JB, Gibson KM. Toxicologic/transport properties of NCS-382, a γ-hydroxybutyrate (GHB) receptor ligand, in neuronal and epithelial cells: Therapeutic implications for SSADH deficiency, a GABA metabolic disorder. Toxicol In Vitro 2017; 46:203-212. [PMID: 29031482 DOI: 10.1016/j.tiv.2017.10.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/24/2017] [Accepted: 10/10/2017] [Indexed: 12/16/2022]
Abstract
We report the in vitro assessment of pharmacotoxicity for the high-affinity GHB receptor ligand, NCS-382, using neuronal stem cells derived from mice with a targeted deletion of the aldehyde dehydrogenase 5a1 gene (succinic semialdehyde dehydrogenase(SSADH)-deficient mice). These animals represent a phenocopy of the human disorder of GABA metabolism, SSADH deficiency, that metabolically features accumulation of both GABA and the GABA-analog γ-hydroxybutyric acid in conjunction with a nonspecific neurological phenotype. We demonstrate for the first time using MDCK cells that NCS-382 is actively transported and capable of inhibiting GHB transport. Following these in vitro assays with in vivo studies in aldh5a1-/- mice, we found the ratio of brain/liver GHB to be unaffected by chronic NCS-382 administration (300mg/kg; 7 consecutive days). Employing a variety of cellular parameters (reactive oxygen and superoxide species, ATP production and decay, mitochondrial and lysosomal number, cellular viability and necrosis), we demonstrate that up to 1mM NCS-382 shows minimal evidence of pharmacotoxicity. As well, studies at the molecular level indicate that the effects of NCS-382 at 0.5mM are minimally toxic as evaluated using gene expression assay. The cumulative data provides increasing confidence that NCS-382 could eventually be considered in the therapeutic armament for heritable SSADH deficiency.
Collapse
Affiliation(s)
- K R Vogel
- Department of Neuroscience, Wisconsin Institute of Medical Research (WIMR), Madison, WI, United States
| | - G R Ainslie
- Department of Pharmacotherapy, College of Pharmacy, Washington State University, Spokane, WA, United States
| | | | - J-B Roullet
- Department of Pharmacotherapy, College of Pharmacy, Washington State University, Spokane, WA, United States
| | - K M Gibson
- Department of Pharmacotherapy, College of Pharmacy, Washington State University, Spokane, WA, United States.
| |
Collapse
|
9
|
Pharmacokinetic–Pharmacodynamic Analysis of Cisplatin with Hydration and Mannitol Diuresis: The Contribution of Urine Cisplatin Concentration to Nephrotoxicity. Eur J Drug Metab Pharmacokinet 2017; 43:193-203. [DOI: 10.1007/s13318-017-0436-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Dave RA, Follman KE, Morris ME. γ-Hydroxybutyric Acid (GHB) Pharmacokinetics and Pharmacodynamics: Semi-Mechanistic and Physiologically Relevant PK/PD Model. AAPS JOURNAL 2017; 19:1449-1460. [PMID: 28653244 DOI: 10.1208/s12248-017-0111-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/05/2017] [Indexed: 12/30/2022]
Abstract
An overdose of γ-hydroxybutyric acid (GHB), a drug of abuse, results in fatality caused by severe respiratory depression. In this study, a semi-mechanistic pharmacokinetic/pharmacodynamic (PK/PD) model was developed to characterize monocarboxylate transporter 1 (MCT1)-mediated transport of GHB, as well as effects of GHB on respiration frequency, for IV doses of 200, 600, and 1500 mg/kg in rats. The proposed PK/PD model for GHB consists of nonlinear metabolism of GHB in the liver, MCT1-mediated renal reabsorption with physiologically relevant concurrent fluid reabsorption, MCT1-mediated uptake into the brain, and direct effects of binding of GHB to GABAB receptors on the PD parameter, respiration frequency. Michaelis-Menten affinity constants for metabolism, renal reabsorption, and uptake into and efflux from the brain were fixed to the observed in vitro values. The IC 50 value for the effect of GHB on respiration frequency was fixed to a reported value for binding of GHB to GABAB receptors. All physiological parameters were fixed to the reported values for a 300-g rat. The model successfully captured the GHB PK/PD data and was further validated using the data for a 600-mg/kg dose of GHB after IV bolus administration. Unbound GHB brain ECF/blood partition coefficient (Kp u,u ) values obtained from the model agreed well with values calculated using experimental ECF concentrations obtained with brain microdialysis, demonstrating the physiological relevance of this model. Sensitivity analysis indicated that the PK/PD model was stable. In conclusion, we developed a semi-mechanistic and physiologically relevant PK/PD model of GHB using in vitro drug-transporter kinetics and in vivo PK/PD data in rats.
Collapse
Affiliation(s)
- Rutwij A Dave
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, 14214, USA.,Preclinical and Translational Pharmacokinetics and Pharmacodynamics (PTPK), Genentech Inc., South San Francisco, California, USA
| | - Kristin E Follman
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, 14214, USA
| | - Marilyn E Morris
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, 14214, USA.
| |
Collapse
|
11
|
Scotcher D, Jones C, Rostami-Hodjegan A, Galetin A. Novel minimal physiologically-based model for the prediction of passive tubular reabsorption and renal excretion clearance. Eur J Pharm Sci 2016; 94:59-71. [PMID: 27033147 PMCID: PMC5074076 DOI: 10.1016/j.ejps.2016.03.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/02/2016] [Accepted: 03/22/2016] [Indexed: 01/08/2023]
Abstract
PURPOSE Develop a minimal mechanistic model based on in vitro-in vivo extrapolation (IVIVE) principles to predict extent of passive tubular reabsorption. Assess the ability of the model developed to predict extent of passive tubular reabsorption (Freab) and renal excretion clearance (CLR) from in vitro permeability data and tubular physiological parameters. METHODS Model system parameters were informed by physiological data collated following extensive literature analysis. A database of clinical CLR was collated for 157 drugs. A subset of 45 drugs was selected for model validation; for those, Caco-2 permeability (Papp) data were measured under pH6.5-7.4 gradient conditions and used to predict Freab and subsequently CLR. An empirical calibration approach was proposed to account for the effect of inter-assay/laboratory variation in Papp on the IVIVE of Freab. RESULTS The 5-compartmental model accounted for regional differences in tubular surface area and flow rates and successfully predicted the extent of tubular reabsorption of 45 drugs for which filtration and reabsorption were contributing to renal excretion. Subsequently, predicted CLR was within 3-fold of the observed values for 87% of drugs in this dataset, with an overall gmfe of 1.96. Consideration of the empirical calibration method improved overall prediction of CLR (gmfe=1.73 for 34 drugs in the internal validation dataset), in particular for basic drugs and drugs with low extent of tubular reabsorption. CONCLUSIONS The novel 5-compartment model represents an important addition to the IVIVE toolbox for physiologically-based prediction of renal tubular reabsorption and CLR. Physiological basis of the model proposed allows its application in future mechanistic kidney models in preclinical species and human.
Collapse
Affiliation(s)
- Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, University of Manchester, Manchester, United Kingdom
| | | | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, University of Manchester, Manchester, United Kingdom; Simcyp Limited (a Certara Company), Sheffield, United Kingdom
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
12
|
Scotcher D, Jones C, Posada M, Galetin A, Rostami-Hodjegan A. Key to Opening Kidney for In Vitro-In Vivo Extrapolation Entrance in Health and Disease: Part II: Mechanistic Models and In Vitro-In Vivo Extrapolation. AAPS JOURNAL 2016; 18:1082-1094. [PMID: 27506526 DOI: 10.1208/s12248-016-9959-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 07/11/2016] [Indexed: 12/11/2022]
Abstract
It is envisaged that application of mechanistic models will improve prediction of changes in renal disposition due to drug-drug interactions, genetic polymorphism in enzymes and transporters and/or renal impairment. However, developing and validating mechanistic kidney models is challenging due to the number of processes that may occur (filtration, secretion, reabsorption and metabolism) in this complex organ. Prediction of human renal drug disposition from preclinical species may be hampered by species differences in the expression and activity of drug metabolising enzymes and transporters. A proposed solution is bottom-up prediction of pharmacokinetic parameters based on in vitro-in vivo extrapolation (IVIVE), mediated by recent advances in in vitro experimental techniques and application of relevant scaling factors. This review is a follow-up to the Part I of the report from the 2015 AAPS Annual Meeting and Exhibition (Orlando, FL; 25th-29th October 2015) which focuses on IVIVE and mechanistic prediction of renal drug disposition. It describes the various mechanistic kidney models that may be used to investigate renal drug disposition. Particular attention is given to efforts that have attempted to incorporate elements of IVIVE. In addition, the use of mechanistic models in prediction of renal drug-drug interactions and potential for application in determining suitable adjustment of dose in kidney disease are discussed. The need for suitable clinical pharmacokinetics data for the purposes of delineating mechanistic aspects of kidney models in various scenarios is highlighted.
Collapse
Affiliation(s)
- Daniel Scotcher
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | - Christopher Jones
- DMPK, Oncology iMed, AstraZeneca R&D Alderley Park, Macclesfield, Cheshire, UK
| | - Maria Posada
- Drug Disposition, Lilly Research Laboratories, Indianapolis, Indiana, 46203, USA
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, Manchester Pharmacy School, University of Manchester, Stopford Building, Oxford Road, Manchester, M13 9PT, UK. .,Simcyp Limited (a Certara Company), Blades Enterprise Centre, Sheffield, UK.
| |
Collapse
|
13
|
Perspectives on the history and scientific contributions of Gerhard Levy. J Pharmacokinet Pharmacodyn 2015; 42:429-46. [DOI: 10.1007/s10928-015-9442-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 09/03/2015] [Indexed: 02/07/2023]
|