1
|
Reeder BJ. Insights into the function of cytoglobin. Biochem Soc Trans 2023; 51:1907-1919. [PMID: 37721133 PMCID: PMC10657185 DOI: 10.1042/bst20230081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
Since its discovery in 2001, the function of cytoglobin has remained elusive. Through extensive in vitro and in vivo research, a range of potential physiological and pathological mechanisms has emerged for this multifunctional member of the hemoglobin family. Currently, over 200 research publications have examined different aspects of cytoglobin structure, redox chemistry and potential roles in cell signalling pathways. This research is wide ranging, but common themes have emerged throughout the research. This review examines the current structural, biochemical and in vivo knowledge of cytoglobin published over the past two decades. Radical scavenging, nitric oxide homeostasis, lipid binding and oxidation and the role of an intramolecular disulfide bond on the redox chemistry are examined, together with aspects and roles for Cygb in cancer progression and liver fibrosis.
Collapse
Affiliation(s)
- Brandon J Reeder
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, U.K
| |
Collapse
|
2
|
Pang H, Wang C, Ye J, Wang L, Zhou X, Ge X, Zhang J, Liu Q. Diallyl trisulfide plays an antifibrotic role by inhibiting the expression of Bcl‐2 in hepatic stellate cells. J Biochem Mol Toxicol 2022; 36:e23097. [PMID: 35532220 PMCID: PMC9539501 DOI: 10.1002/jbt.23097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 11/28/2021] [Accepted: 04/28/2022] [Indexed: 11/25/2022]
Abstract
Hepatic fibrosis is an important early stage in the evolution of liver cirrhosis, and specific medicine and therapeutic measures are unavailable to date. Hepatic stellate cells (HSCs) are the main cells involved in the formation of hepatic fibrosis, and induction of the apoptosis of HSCs is an important strategy for the treatment of hepatic fibrosis. Diallyl trisulfide (DATS) is a natural product and is the main active ingredient in garlic. However, the exact molecular mechanisms underlying HSC apoptosis induced by DATS are not well understood. This study aimed to analyze the efficiency and mechanism of DATS in hepatic fibrosis. Different concentrations (25, 50, 100, and 200 μM) of DATS were used to treat HSCs. Changes in cell morphology and formation of apoptotic bodies were observed under an inverted microscope and an electric microscope. Bcl‐2 signaling involving Bax, Caspase‐3, Caspase‐6, Caspase‐8, Caspase‐9, p53, Apaf‐1, and Cyto‐c in fibrosis were examined, which is a critical step in the evaluation of antihepatic fibrosis agents. We also evaluated the effect of DATS on the cellular morphology of HSCs and apoptosis‐related factors under different Bcl‐2 expression states. Our results suggest that DATS regulates hepatic fibrosis by blocking the Bcl‐2 signaling pathway and upregulating the Bax/Bcl‐2 ratio.
Collapse
Affiliation(s)
- Huai Pang
- Laboratory of Xinjiang Endemic and Ethnic Diseases Shihezi University School of Medicine Shihezi China
| | - Cuizhe Wang
- Laboratory of Xinjiang Endemic and Ethnic Diseases Shihezi University School of Medicine Shihezi China
| | - Jing Ye
- Department of Psychology People's Hospital of Xinjiang Uygur Autonomous Region Urumqi China
| | - Lulu Wang
- Center of Community Health Services, The First Affiliated Hospital, Medical College Shihezi University Shihezi China
| | - Xiaoming Zhou
- Department of Pathology Hainan University School of Medicine Haikou China
| | - Xiaomeng Ge
- CAS Key Laboratory of Genome Science and Information Beijing Institute of Genomics, Chinese Academy of Sciences Beijing China
| | - Jun Zhang
- Laboratory of Xinjiang Endemic and Ethnic Diseases Shihezi University School of Medicine Shihezi China
| | - Qinghua Liu
- Department of Oncology People's Hospital of Deyang City Deyang Sichuan Province China
| |
Collapse
|
3
|
Zhou Y, Chai X. Protective effect of bicyclol against pulmonary fibrosis via regulation of microRNA-455-3p in rats. J Cell Biochem 2019; 121:651-660. [PMID: 31407409 DOI: 10.1002/jcb.29310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF), a chronic, progressive and irreversible disease, needs long-term treatment. Bicyclol was found to play a great role in pulmonary fibrosis, and the present study is to explore how bicyclol affects IPF with the involvement of microRNA-455-3p (miR-455-3p) and Bax. Bleomycin (BLM) was used to induce the IPF model in Sprague-Dawley rats to detect the expression of miR-455-3p, Bax, and B-cell lymphoma factor 2 (Bcl-2). Moreover, to further investigate the mechanisms of bicyclol, the BLM-induced fibrotic cell model was used after the lung epithelial cells HPAEpiC received miR-455-3p knockout treatment. The rats were then treated with vehicle and bicyclol, respectively. The apoptosis of fibrotic cells and Bax/Bcl-2 were identified. Inhibition function of bicyclol was optimal at a dose of 150 mg/kg. Bicyclol inhibited cell apoptosis and reduced Bax/Bcl-2 expression in rats. miR-455-3p could potentially bind to Bax gene. Bicyclol reduced the levels of methylenedioxyamphetamine, superoxide dismutase, and glutathione in rat lung tissue, inhibited the apoptosis of rats with IPF and upregulated miR-455-3p expression. In vitro studies showed that bicyclol significantly promoted miR-455-3p expression in HPAEpiC fibrosis. Bicyclol inhibited fibrosis-induced apoptosis of HPAEpiC in alveolar epithelial cells through promoting miR-455-3p, which inhibited Bax expression in IPF. Bicyclol may suppress the apoptosis of alveolar epithelial cells by upregulating miR-455-3p. This study laid a theoretical foundation for further understanding of IPF and searching for new molecular therapeutic targets.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Pneumology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiujuan Chai
- Department of Pneumology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Ali FEM, Azouz AA, Bakr AG, Abo-Youssef AM, Hemeida RAM. Hepatoprotective effects of diosmin and/or sildenafil against cholestatic liver cirrhosis: The role of Keap-1/Nrf-2 and P38-MAPK/NF-κB/iNOS signaling pathway. Food Chem Toxicol 2018; 120:294-304. [PMID: 30026087 DOI: 10.1016/j.fct.2018.07.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/13/2018] [Accepted: 07/15/2018] [Indexed: 01/17/2023]
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Amany A Azouz
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Adel G Bakr
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Amira M Abo-Youssef
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Ramadan A M Hemeida
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| |
Collapse
|
5
|
Optimized Expression and Characterization of a Novel Fully Human Bispecific Single-Chain Diabody Targeting Vascular Endothelial Growth Factor165 and Programmed Death-1 in Pichia pastoris and Evaluation of Antitumor Activity In Vivo. Int J Mol Sci 2018; 19:ijms19102900. [PMID: 30257416 PMCID: PMC6213929 DOI: 10.3390/ijms19102900] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/17/2018] [Accepted: 09/24/2018] [Indexed: 02/07/2023] Open
Abstract
Bispecific antibodies, which can bind to two different epitopes on the same or different antigens simultaneously, have recently emerged as attractive candidates for study in various diseases. Our present study successfully constructs and expresses a fully human, bispecific, single-chain diabody (BsDb) that can bind to vascular endothelial growth factor 165 (VEGF165) and programmed death-1 (PD-1) in Pichia pastoris. Under the optimal expression conditions (methanol concentration, 1%; pH, 4.0; inoculum density, OD600 = 4, and the induction time, 96 h), the maximum production level of this BsDb is achieved at approximately 20 mg/L. The recombinant BsDb is purified in one step using nickel-nitrilotriacetic acid (Ni-NTA) column chromatography with a purity of more than 95%. Indirect enzyme-linked immune sorbent assay (ELISA) and sandwich ELISA analyses show that purified BsDb can bind specifically to VEGF165 and PD-1 simultaneously with affinities of 124.78 nM and 25.07 nM, respectively. Additionally, the BsDb not only effectively inhibits VEGF165-stimulated proliferation, migration, and tube formation in primary human umbilical vein endothelial cells (HUVECs), but also significantly improves proliferation and INF-γ production of activated T cells by blocking PD-1/PD-L1 co-stimulation. Furthermore, the BsDb displays potent antitumor activity in mice bearing HT29 xenograft tumors by inhibiting tumor angiogenesis and activating immune responses in the tumor microenvironment. Based on these results, we have prepared a potential bispecific antibody drug that can co-target both VEGF165 and PD-1 for the first time. This work provides a stable foundation for the development of new strategies by the combination of an angiogenesis inhibition and immune checkpoint blockade for cancer therapy.
Collapse
|
6
|
Ali FE, Bakr AG, Abo-youssef AM, Azouz AA, Hemeida RA. Targeting Keap-1/Nrf-2 pathway and cytoglobin as a potential protective mechanism of diosmin and pentoxifylline against cholestatic liver cirrhosis. Life Sci 2018; 207:50-60. [PMID: 29852187 DOI: 10.1016/j.lfs.2018.05.048] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/23/2018] [Accepted: 05/26/2018] [Indexed: 02/07/2023]
|
7
|
Li L, Li H, Zhang Z, Zheng J, Shi Y, Liu J, Cao Y, Yuan X, Chu Y. Recombinant truncated TGF‑β receptor II attenuates carbon tetrachloride‑induced epithelial‑mesenchymal transition and liver fibrosis in rats. Mol Med Rep 2017; 17:315-321. [PMID: 29115426 DOI: 10.3892/mmr.2017.7845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 08/03/2017] [Indexed: 11/06/2022] Open
Abstract
Liver fibrosis is a pathological process of chronic liver diseases. In particular, epithelial‑mesenchymal transition (EMT) is a major source of myofibroblast structure in liver fibrosis. The present study investigated the effects of recombinant truncated transforming growth factor‑ß receptor II (rtTGFβRII) on EMT and liver fibrosis in a carbon tetrachloride (CCl4)‑induced rat model. A total of 24 rats were randomly separated into three groups: Normal control (NC), model (CCl4) and treatment (CCl4 + rtTGFβRII) groups. Histological methods, including hematoxylin and eosin, Masson's trichrome and Sirius red staining were conducted. The activities of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured using an automatic biochemical analyzer. The mRNA expression levels of fibroblast specific protein‑1 (FSP‑1), α‑smooth muscle actin (α‑SMA), fibronectin, collagen I, vimentin and E‑cadherin were detected using reverse transcription‑quantitative polymerase chain reaction analysis. The protein levels of fibronectin, collagen I, E‑cadherin, Smad2/3 and phosphorylated (p)‑Smad2/3 were detected using western blot analysis. The expression of α‑SMA, fibronectin, vimentin and E‑cadherin in the liver tissue was detected using immunofluorescence staining. The results demonstrated that in vivo, rtTGFβRII significantly reduced the degree of liver injury, serum ALT and AST activities and liver fibrosis. These factors were associated with reduced expression of FSP‑1, α‑SMA, fibronectin, collagen I, vimentin and p‑Smad2/3, and increased expression of E‑cadherin. The results of the present study suggest that rtTGFβRII may inhibit EMT processes in CCl4‑induced liver fibrosis in rats and alter the expression of epithelial and myofibroblast markers. Therefore, rtTGFβRII may be considered a possible treatment for preventing liver fibrosis via EMT processes.
Collapse
Affiliation(s)
- Luxin Li
- Heilongjiang Key Laboratory of Anti‑Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Hongzhi Li
- Heilongjiang Key Laboratory of Anti‑Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Anti‑Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Junya Zheng
- Heilongjiang Key Laboratory of Anti‑Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yongping Shi
- Heilongjiang Key Laboratory of Anti‑Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Jieting Liu
- Heilongjiang Key Laboratory of Anti‑Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yanan Cao
- Heilongjiang Key Laboratory of Anti‑Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Xiaohuan Yuan
- Heilongjiang Key Laboratory of Anti‑Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Yanhui Chu
- Heilongjiang Key Laboratory of Anti‑Fibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| |
Collapse
|
8
|
Sato-Matsubara M, Matsubara T, Daikoku A, Okina Y, Longato L, Rombouts K, Thuy LTT, Adachi J, Tomonaga T, Ikeda K, Yoshizato K, Pinzani M, Kawada N. Fibroblast growth factor 2 (FGF2) regulates cytoglobin expression and activation of human hepatic stellate cells via JNK signaling. J Biol Chem 2017; 292:18961-18972. [PMID: 28916723 PMCID: PMC5706471 DOI: 10.1074/jbc.m117.793794] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/11/2017] [Indexed: 12/19/2022] Open
Abstract
Cytoglobin (CYGB) belongs to the mammalian globin family and is exclusively expressed in hepatic stellate cells (HSCs) in the liver. In addition to its gas-binding ability, CYGB is relevant to hepatic inflammation, fibrosis, and cancer because of its anti-oxidative properties; however, the regulation of CYGB gene expression remains unknown. Here, we sought to identify factors that induce CYGB expression in HSCs and to clarify the molecular mechanism involved. We used the human HSC cell line HHSteC and primary human HSCs isolated from intact human liver tissues. In HHSteC cells, treatment with a culture supplement solution that included fibroblast growth factor 2 (FGF2) increased CYGB expression with concomitant and time-dependent α-smooth muscle actin (αSMA) down-regulation. We found that FGF2 is a key factor in inducing the alteration in both CYGB and αSMA expression in HHSteCs and primary HSCs and that FGF2 triggered the rapid phosphorylation of both c-Jun N-terminal kinase (JNK) and c-JUN. Both the JNK inhibitor PS600125 and transfection of c-JUN-targeting siRNA abrogated FGF2-mediated CYGB induction, and conversely, c-JUN overexpression induced CYGB and reduced αSMA expression. Chromatin immunoprecipitation analyses revealed that upon FGF2 stimulation, phospho-c-JUN bound to its consensus motif (5'-TGA(C/G)TCA), located -218 to -222 bases from the transcription initiation site in the CYGB promoter. Of note, in bile duct-ligated mice, FGF2 administration ameliorated liver fibrosis and significantly reduced HSC activation. In conclusion, FGF2 triggers CYGB gene expression and deactivation of myofibroblastic human HSCs, indicating that FGF2 has therapeutic potential for managing liver fibrosis.
Collapse
Affiliation(s)
| | - Tsutomu Matsubara
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | | | | | - Lisa Longato
- the Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free, London NW3 2PF, United Kingdom, and
| | - Krista Rombouts
- the Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free, London NW3 2PF, United Kingdom, and
| | | | - Jun Adachi
- the Laboratory of Proteome Research, Proteome Research Center, National Institute of Biomedical Innovation, Osaka 567-0085, Japan
| | - Takeshi Tomonaga
- the Laboratory of Proteome Research, Proteome Research Center, National Institute of Biomedical Innovation, Osaka 567-0085, Japan
| | - Kazuo Ikeda
- Department of Anatomy and Regenerative Biology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan
| | | | - Massimo Pinzani
- the Regenerative Medicine and Fibrosis Group, Institute for Liver and Digestive Health, University College London, Royal Free, London NW3 2PF, United Kingdom, and
| | | |
Collapse
|
9
|
Reeder BJ. Redox and Peroxidase Activities of the Hemoglobin Superfamily: Relevance to Health and Disease. Antioxid Redox Signal 2017; 26:763-776. [PMID: 27637274 DOI: 10.1089/ars.2016.6803] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
SIGNIFICANCE Erythrocyte hemoglobin (Hb) and myocyte myoglobin, although primarily oxygen-carrying proteins, have the capacity to do redox chemistry. Such redox activity in the wider family of globins now appears to have important associations with the mechanisms of cell stress response. In turn, an understanding of such mechanisms in vivo may have a potential in the understanding of cancer therapy resistance and neurodegenerative disorders such as Alzheimer's. Recent Advances: There has been an enhanced understanding of the redox chemistry of the globin superfamily in recent years, leading to advances in development of Hb-based blood substitutes and in hypotheses relating to specific disease mechanisms. Neuroglobin (Ngb) and cytoglobin (Cygb) have been linked to cell protection mechanisms against hypoxia and oxidative stress, with implications in the onset and progression of neurodegenerative diseases for Ngb and cancer for Cygb. CRITICAL ISSUES Despite advances in the understanding of redox chemistry of globins, the physiological roles of many of these proteins still remain ambiguous at best. Confusion over potential physiological roles may relate to multifunctional roles for globins, which may be modulated by surface-exposed cysteine pairs in some globins. Such roles may be critical in deciphering the relationships of these globins in human diseases. FUTURE DIRECTIONS Further studies are required to connect the considerable knowledge on the mechanisms of globin redox chemistry in vitro with the physiological and pathological roles of globins in vivo. In doing so, new therapies for neurodegenerative disorders and cancer therapy resistance may be targeted. Antioxid. Redox Signal. 26, 763-776.
Collapse
Affiliation(s)
- Brandon J Reeder
- School of Biological Sciences, University of Essex , Essex, United Kingdom
| |
Collapse
|
10
|
Reuss S, Wystub S, Disque-Kaiser U, Hankeln T, Burmester T. Distribution of Cytoglobin in the Mouse Brain. Front Neuroanat 2016; 10:47. [PMID: 27199679 PMCID: PMC4847482 DOI: 10.3389/fnana.2016.00047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 04/11/2016] [Indexed: 01/07/2023] Open
Abstract
Cytoglobin (Cygb) is a vertebrate globin with so far poorly defined function. It is expressed in the fibroblast cell-lineage but has also been found in neurons. Here we provide, using immunohistochemistry, a detailed study on the distribution of Cygb in the mouse brain. While Cygb is a cytoplasmic protein in active cells of the supportive tissue, in neurons it is located in the cytoplasm and the nucleus. We found the expression of Cygb in all brain regions, although only a fraction of the neurons was Cygb-positive. Signals were of different intensity ranging from faint to very intense. Telencephalic neurons in all laminae of the cerebral cortex (CCo), in the olfactory bulb (in particular periglomerular cells), in the hippocampal formation (strongly stained pyramidal cells with long processes), basal ganglia (scattered multipolar neurons in the dorsal striatum, dorsal and ventral pallidum (VP)), and in the amygdala (neurons with unlabeled processes) were labeled by the antibody. In the diencephalon, we observed Cygb-positive neurons of moderate intensity in various nuclei of the dorsal thalamus, in the hypothalamus, metathalamus (geniculate nuclei), epithalamus with strong labeling of habenular nucleus neurons and no labeling of pineal cells, and in the ventral thalamus. Tegmental neurons stood out by strongly stained somata with long processes in, e.g., the laterodorsal nucleus. In the tectum, faintly labeled neurons and fibers were detected in the superior colliculus (SC). The cerebellum exhibited unlabeled Purkinje-neurons but signs of strong afferent cortical innervation. Neurons in the gray matter of the spinal cord showed moderate immunofluorescence. Peripheral ganglia were not labeled by the antibody. The Meynert-fascicle and the olfactory and optic nerves/tracts were the only Cygb-immunoreactive (Cygb-IR) fiber systems. Notably, we found a remarkable level of colocalization of Cygb and neuronal nitric oxide (NO)-synthase in neurons, which supports a functional association.
Collapse
Affiliation(s)
- Stefan Reuss
- Department of Nuclear Medicine, University Medical Center, Johannes Gutenberg-University Mainz, Germany
| | - Sylvia Wystub
- Institute of Molecular Genetics, Johannes Gutenberg-University Mainz, Germany
| | - Ursula Disque-Kaiser
- Department of Anatomy and Cell Biology, University Medical Center, Johannes Gutenberg-University Mainz, Germany
| | - Thomas Hankeln
- Institute of Molecular Genetics, Johannes Gutenberg-University Mainz, Germany
| | - Thorsten Burmester
- Institute of Zoology and Zoological Museum, University of Hamburg Hamburg, Germany
| |
Collapse
|
11
|
Essential oil of Curcuma aromatica induces apoptosis in human non-small-cell lung carcinoma cells. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
12
|
The Effect of rhCygb on CCl4-Induced Hepatic Fibrogenesis in Rat. Sci Rep 2016; 6:23508. [PMID: 27006085 PMCID: PMC4804332 DOI: 10.1038/srep23508] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/08/2016] [Indexed: 12/22/2022] Open
Abstract
This study aims to investigate whether the use of recombinant human cytoglobin (rhCygb) impact on hepatic fibrogenesis caused by CCl4. SD (n = 150) rats were randomly divided into three groups of normal, CCl4 model and rhCygb groups. After model establishment, rats in rhCygb groups were administered daily with rhCygb (2 mg/kg, s.c.). Histological lesions were staged according to metavir. Serum parameters including ALT, AST, HA, LN, Col III and Col IV were determined. The liver proteins were separated by 2-DE and identified. As a result, the stage of hepatic damage and liver fibrosis in rhCygb groups were significantly milder than that in CCl4 model groups. Meanwhile, rhCygb dramatically reversed serum levels of ALT and AST, and also markedly decreased the liver fibrosis markers levels of LN, HA, Col III and Col IV. In 2-DE, 33 proteins among three groups with the same changing tendency in normal and rhCygb treated groups compared with CCl4 model group were identified. GO analysis showed that several identified proteins involved in oxidative stress pathway. The study provides new insights and data for administration of rhCygb reversing CCl4-induced liver fibrosis suggesting that rhCygb might be used in the treatment of liver fibrosis.
Collapse
|
13
|
Kawada N. Cytoglobin as a Marker of Hepatic Stellate Cell-derived Myofibroblasts. Front Physiol 2015; 6:329. [PMID: 26617531 PMCID: PMC4643130 DOI: 10.3389/fphys.2015.00329] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/30/2015] [Indexed: 12/13/2022] Open
Abstract
Myofibroblasts play important roles in inflammation, fibrosis and tumorigenesis in chronically inflamed liver. Liver myofibroblasts originate from hepatic stellate cells, portal fibroblasts or mesothelial cells, and they are localized in and around fibrotic septum and portal tracts. Liver myofibroblasts are the source of extracellular matrix materials, including type I collagen and multiple fibrogenic growth factors, such as transforming growth factor-β and vascular endothelial growth factor. Although a detailed characterization of the function of individual myofibroblasts has not been conducted, owing to the lack of appropriate cell markers, recent lineage-tracing technology has revealed the limited contribution of myofibroblasts that are derived from portal fibroblasts to various types of liver fibrosis, as compared with the contribution of hepatic stellate cells. In addition, cytoglobin, which is the fourth globin in mammals and function as a local gas sensor, provides a new perspective on the involvement of stellate cells in fibrosis and carcinogenesis, possibly through its anti-oxidative properties and is a promising new marker that discriminates between myofibroblasts derived from stellate cells and those from portal fibroblasts.
Collapse
Affiliation(s)
- Norifumi Kawada
- Department of Hepatology, Graduate School of Medicine, Osaka City University Osaka, Japan
| |
Collapse
|
14
|
Cytoglobin as a Biomarker in Cancer: Potential Perspective for Diagnosis and Management. BIOMED RESEARCH INTERNATIONAL 2015; 2015:824514. [PMID: 26339645 PMCID: PMC4538418 DOI: 10.1155/2015/824514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 05/02/2015] [Indexed: 12/30/2022]
Abstract
The search for biomarkers to detect the earliest glimpse of cancer has been one of the primary objectives of cancer research initiatives. These endeavours, in spite of constant clinical challenges, are now more focused as early cancer detection provides increased opportunities for different interventions and therapies, with higher potential for improving patient survival and quality of life. With the progress of the omics technologies, proteomics and metabolomics are currently being used for identification of biomarkers. In this line, cytoglobin (Cygb), a ubiquitously found protein, has been actively reviewed for its functional role. Cytoglobin is dynamically responsive to a number of insults, namely, fibrosis, oxidative stress, and hypoxia. Recently, it has been reported that Cygb is downregulated in a number of malignancies and that an induced overexpression reduces the proliferative characteristics of cancer cells. Thus, the upregulation of cytoglobin can be indicative of a tumour suppressor ability. Nevertheless, without a comprehensive outlook of the molecular and functional role of the globin, it will be most unlikely to consider cytoglobin as a biomarker for early detection of cancer or as a therapeutic option. This review provides an overview of the proposed role of cytoglobin and explores its potential functional role as a biomarker for cancer and other diseases.
Collapse
|
15
|
Ascenzi P, Gustincich S, Marino M. Mammalian nerve globins in search of functions. IUBMB Life 2014; 66:268-76. [DOI: 10.1002/iub.1267] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/02/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Paolo Ascenzi
- Interdepartmental Laboratory of Electron Microscopy; University Roma Tre; Roma Italy
| | | | - Maria Marino
- Department of Science; University Roma Tre; Roma Italy
| |
Collapse
|
16
|
Cui W, Wang M, Maegawa H, Teranishi Y, Kawada N. Inhibition of the activation of hepatic stellate cells by arundic acid via the induction of cytoglobin. Biochem Biophys Res Commun 2012; 425:642-8. [PMID: 22850540 DOI: 10.1016/j.bbrc.2012.07.126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 07/23/2012] [Indexed: 12/15/2022]
Abstract
BACKGROUND The activation of hepatic stellate cells plays a central role in the development of liver fibrosis during chronic liver trauma. The aim of the present study was to identify a compound that inhibits the activation process of stellate cells. METHODS Rat primary cultured stellate cells and a human stellate cell line (LX-2) were used. The effects of arundic acid on the expression of α-smooth muscle actin, collagen 1α1, and cytoglobin were evaluated. RESULTS Arundic acid (300 μM) inhibited the activation of primary rat stellate cells, as determined by morphological transformation and α-smooth muscle actin expression, after both prophylactic and therapeutic treatment. The level of α-smooth muscle actin mRNA showed a dose-dependent decrease in response to arundic acid, and 50 μM arundic acid exhibited the maximum inhibition of collagen 1α1 mRNA expression. In contrast, arundic acid triggered an unexpected increase in mRNA and protein levels of cytoglobin, the fourth globin in mammals expressed exclusively in hepatic stellate cells. The effect of arundic acid on the level of α-smooth muscle actin mRNA was abrogated in HSCs treated with cytoglobin siRNA. Arundic acid decreased the expression of collagen 1α1 mRNA in LX-2 cells. CONCLUSION Arundic acid affects the activation process of hepatic stellate cells via the unexpected induction of cytoglobin.
Collapse
Affiliation(s)
- Wenhao Cui
- Department of Hepatology and Liver Research Center, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | | | | | | | | |
Collapse
|
17
|
McRonald FE, Risk JM, Hodges NJ. Protection from intracellular oxidative stress by cytoglobin in normal and cancerous oesophageal cells. PLoS One 2012; 7:e30587. [PMID: 22359545 PMCID: PMC3281032 DOI: 10.1371/journal.pone.0030587] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 12/22/2011] [Indexed: 01/09/2023] Open
Abstract
Cytoglobin is an intracellular globin of unknown function that is expressed mostly in cells of a myofibroblast lineage. Possible functions of cytoglobin include buffering of intracellular oxygen and detoxification of reactive oxygen species. Previous work in our laboratory has demonstrated that cytoglobin affords protection from oxidant-induced DNA damage when over expressed in vitro, but the importance of this in more physiologically relevant models of disease is unknown. Cytoglobin is a candidate for the tylosis with oesophageal cancer gene, and its expression is strongly down-regulated in non-cancerous oesophageal biopsies from patients with TOC compared with normal biopsies. Therefore, oesophageal cells provide an ideal experimental model to test our hypothesis that downregulation of cytoglobin expression sensitises cells to the damaging effects of reactive oxygen species, particularly oxidative DNA damage, and that this could potentially contribute to the TOC phenotype. In the current study, we tested this hypothesis by manipulating cytoglobin expression in both normal and oesophageal cancer cell lines, which have normal physiological and no expression of cytoglobin respectively. Our results show that, in agreement with previous findings, over expression of cytoglobin in cancer cell lines afforded protection from chemically-induced oxidative stress but this was only observed at non-physiological concentrations of cytoglobin. In addition, down regulation of cytoglobin in normal oesophageal cells had no effect on their sensitivity to oxidative stress as assessed by a number of end points. We therefore conclude that normal physiological concentrations of cytoglobin do not offer cytoprotection from reactive oxygen species, at least in the current experimental model.
Collapse
Affiliation(s)
- Fiona E. McRonald
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, United Kingdom
- School of Dentistry, The University of Liverpool, Liverpool, United Kingdom
| | - Janet M. Risk
- School of Dentistry, The University of Liverpool, Liverpool, United Kingdom
| | - Nikolas J. Hodges
- School of Biosciences, The University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|