1
|
Yang T, Dong J, Zhao J, Zhang L, Zhou L, Yang W, Ma Y, Wang J, Fu H, Chen J, Li W, Hu H, Jiang X, Liu Z, Liu B, Zhang S. Genome-wide association mapping combined with gene-based haplotype analysis identify a novel gene for shoot length in rice (Oryza sativa L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:251. [PMID: 37985474 PMCID: PMC10661777 DOI: 10.1007/s00122-023-04497-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/27/2023] [Indexed: 11/22/2023]
Abstract
KEY MESSAGE Genome-wide association mapping revealed a novel QTL for shoot length across multiple environments. Its causal gene, LOC_Os01g68500, was identified firstly through gene-based haplotype analysis, gene expression and knockout transgenic verification. Strong seedling vigor is an important breeding target for rice varieties used in direct seeding. Shoot length (SL) is one of the important traits associated with seedling vigor characterized by rapid growth of seedling, which enhance seedling emergence. Therefore, mining genes for SL and conducting molecular breeding help to develop varieties for direct seeding. However, few QTLs for SL have been fine mapped or cloned so far. In this study, a genome-wide association study of SL was performed in a diverse rice collection consisting of 391 accessions in two years, using phenotypes generated by different cultivation methods according to the production practice, and a total of twenty-four QTLs for SL were identified. Among them, the novel QTL qSL-1f on chromosome 1 could be stably detected across all three cultivation methods in the whole population and indica subpopulation. Through gene-based haplotype analysis of the annotated genes within the putative region of qSL-1f, and validated by gene expression and knockout transgenic experiments, LOC_Os01g68500 (i.e., Os01g0913100 in RAP-DB) was identified as the causal gene for SL, which has a single-base variation (C-to-A transversion) in its CDS region, resulting in the significant difference in SL of rice. LOC_Os01g68500 encodes a DUF538 (Domain of unknown function) containing protein, and the function of DUF538 protein gene on rice seedling growth is firstly reported in this study. These results provide a new clue for exploring the molecular mechanism regulating SL, and promising gene source for the molecular breeding in rice.
Collapse
Affiliation(s)
- Tifeng Yang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jingfang Dong
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Junliang Zhao
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Longting Zhang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Lian Zhou
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Wu Yang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yamei Ma
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jian Wang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Hua Fu
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jiansong Chen
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Wenhui Li
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Haifei Hu
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xianya Jiang
- Yangjiang Institute of Agricultural Science, Yangjiang, 529500, China
| | - Ziqiang Liu
- College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Bin Liu
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shaohong Zhang
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
2
|
Li Y, Wang W, Zhang N, Cheng Y, Hussain S, Wang Y, Tian H, Hussain H, Lin R, Yuan Y, Wang C, Wang T, Wang S. Antagonistic Regulation of ABA Responses by Duplicated Tandemly Repeated DUF538 Protein Genes in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2023; 12:2989. [PMID: 37631202 PMCID: PMC10459309 DOI: 10.3390/plants12162989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
The plant hormone ABA (abscisic acid) regulates plant responses to abiotic stresses by regulating the expression of ABA response genes. However, the functions of a large portion of ABA response genes have remained unclear. We report in this study the identification of ASDs (ABA-inducible signal peptide-containing DUF538 proteins), a subgroup of DUF538 proteins with a signal peptide, as the regulators of plant responses to ABA in Arabidopsis. ASDs are encoded by four closely related DUF538 genes, with ASD1/ASD2 and ASD3/ASD4 being two pairs of duplicated tandemly repeated genes. The quantitative RT-PCR (qRT-PCR) results showed that the expression levels of ASDs increased significantly in response to ABA as well as NaCl and mannitol treatments, with the exception that the expression level of ASD2 remained largely unchanged in response to NaCl treatment. The results of Arabidopsis protoplast transient transfection assays showed that ASDs were localized on the plasma membrane and in the cytosol and nucleus. When recruited to the promoter of the reporter gene via a fused GD domain, ASDs were able to slightly repress the expression of the co-transfected reporter gene. Seed germination and cotyledon greening assays showed that ABA sensitivity was increased in the transgenic plants that were over-expressing ASD1 or ASD3 but decreased in the transgenic plants that were over-expressing ASD2 or ASD4. On the other hand, ABA sensitivity was increased in the CRISPR/Cas9 gene-edited asd2 single mutants but decreased in the asd3 single mutants. A transcriptome analysis showed that differentially expressed genes in the 35S:ASD2 transgenic plant seedlings were enriched in several different processes, including in plant growth and development, the secondary metabolism, and plant hormone signaling. In summary, our results show that ASDs are ABA response genes and that ASDs are involved in the regulation of plant responses to ABA in Arabidopsis; however, ASD1/ASD3 and ASD2/ASD4 have opposite functions.
Collapse
Affiliation(s)
- Yingying Li
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Wei Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (W.W.); (S.H.)
| | - Na Zhang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Yuxin Cheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Saddam Hussain
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (W.W.); (S.H.)
| | - Yating Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Hadia Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Rao Lin
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Yuan Yuan
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Chen Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
| | - Shucai Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun 130024, China; (Y.L.); (N.Z.); (Y.C.); (Y.W.); (H.T.); (H.H.); (R.L.); (Y.Y.); (C.W.); (T.W.)
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi 276000, China; (W.W.); (S.H.)
| |
Collapse
|
3
|
Lv P, Wan J, Zhang C, Hina A, Al Amin GM, Begum N, Zhao T. Unraveling the Diverse Roles of Neglected Genes Containing Domains of Unknown Function (DUFs): Progress and Perspective. Int J Mol Sci 2023; 24:ijms24044187. [PMID: 36835600 PMCID: PMC9966272 DOI: 10.3390/ijms24044187] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
Domain of unknown function (DUF) is a general term for many uncharacterized domains with two distinct features: relatively conservative amino acid sequence and unknown function of the domain. In the Pfam 35.0 database, 4795 (24%) gene families belong to the DUF type, yet, their functions remain to be explored. This review summarizes the characteristics of the DUF protein families and their functions in regulating plant growth and development, generating responses to biotic and abiotic stress, and other regulatory roles in plant life. Though very limited information is available about these proteins yet, by taking advantage of emerging omics and bioinformatic tools, functional studies of DUF proteins could be utilized in future molecular studies.
Collapse
Affiliation(s)
- Peiyun Lv
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinlu Wan
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunting Zhang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Aiman Hina
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - G M Al Amin
- Department of Botany, Jagannath University, Dhaka 1100, Bangladesh
| | - Naheeda Begum
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (N.B.); (T.Z.)
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (N.B.); (T.Z.)
| |
Collapse
|
4
|
Li L, Jin Z, Huang R, Zhou J, Song F, Yao L, Li P, Lu W, Xiao L, Quan M, Zhang D, Du Q. Leaf physiology variations are modulated by natural variations that underlie stomatal morphology in Populus. PLANT, CELL & ENVIRONMENT 2023; 46:150-170. [PMID: 36285358 DOI: 10.1111/pce.14471] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 06/16/2023]
Abstract
Stomata are essential for photosynthesis and abiotic stress tolerance. Here, we used multiomics approaches to dissect the genetic architecture and adaptive mechanisms that underlie stomatal morphology in Populus tomentosa juvenile natural population (303 accessions). We detected 46 candidate genes and 15 epistatic gene-pairs, associated with 5 stomatal morphologies and 18 leaf development and photosynthesis traits, through genome-wide association studies. Expression quantitative trait locus mapping revealed that stomata-associated gene loci were significantly associated with the expression of leaf-related genes; selective sweep analysis uncovered significant differentiation in the allele frequencies of genes that underlie stomatal variations. An allelic regulatory network operating under drought stress and adequate precipitation conditions, with three key regulators (DUF538, TRA2 and AbFH2) and eight interacting genes, was identified that might regulate leaf physiology via modulation of stomatal shape and density. Validation of candidate gene variations in drought-tolerant and F1 hybrid populations of P. tomentosa showed that the DUF538, TRA2 and AbFH2 loci cause functional stabilisation of spatiotemporal regulatory, whose favourable alleles can be faithfully transmitted to offspring. This study provides insights concerning leaf physiology and stress tolerance via the regulation of stomatal determination in perennial plants.
Collapse
Affiliation(s)
- Lianzheng Li
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Zhuoying Jin
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Rui Huang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Jiaxuan Zhou
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Fangyuan Song
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Liangchen Yao
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Peng Li
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Wenjie Lu
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Liang Xiao
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Mingyang Quan
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Deqiang Zhang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Qingzhang Du
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| |
Collapse
|
5
|
Tian X, Niu X, Chang Z, Zhang X, Wang R, Yang Q, Li G. DUF1005 Family Identification, Evolution Analysis in Plants, and Primary Root Elongation Regulation of CiDUF1005 From Caragana intermedia. Front Genet 2022; 13:807293. [PMID: 35422842 PMCID: PMC9001952 DOI: 10.3389/fgene.2022.807293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Proteins with a domain of unknown function (DUF) represent a number of gene families that encode functionally uncharacterized proteins in eukaryotes. In particular, members of the DUF1005 family in plants have a 411-amino-acid conserved domain, and this family has not been described previously. In this study, a total of 302 high-confidence DUF1005 family members were identified from 58 plant species, and none were found in the four algae that were selected. Thus, this result showed that DUF1005s might belong to a kind of plant-specific gene family, and this family has not been evolutionarily expanded. Phylogenetic analysis showed that the DUF1005 family genes could be classified into four subgroups in 58 plant species. The earliest group to emerge was Group I, including a total of 100 gene sequences, and this group was present in almost all selected species spanning from mosses to seed plants. Group II and Group III, with 69 and 74 members, respectively, belong to angiosperms. Finally, with 59 members, Group IV was the last batch of genes to emerge, and this group is unique to dicotyledons. Expression pattern analysis of the CiDUF1005, a member of the DUF1005 family from Caragana intermedia, showed that CiDUF1005 genes were differentially regulated under various treatments. Compared to the wild type, transgenic lines with heterologous CiDUF1005 expression in Arabidopsis thaliana had longer primary roots and more lateral roots. These results expanded our knowledge of the evolution of the DUF1005 family in plants and will contribute to elucidating biological functions of the DUF1005 family in the future.
Collapse
Affiliation(s)
- Xiaona Tian
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaocui Niu
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Ziru Chang
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiujuan Zhang
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Ruigang Wang
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Qi Yang
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China
| | - Guojing Li
- Inner Mongolia Key Laboratory of Plant Stress Physiology and Molecular Biology, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Grassland Resources, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
6
|
Yu CY, Sharma O, Nguyen PHT, Hartono CD, Kanehara K. A pair of DUF538 domain-containing proteins modulates plant growth and trichome development through the transcriptional regulation of GLABRA1 in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:992-1004. [PMID: 34496091 DOI: 10.1111/tpj.15487] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
SMALLER TRICHOMES WITH VARIABLE BRANCHES (SVB) is an emerging plant growth regulator in trichome development, endoplasmic reticulum stress response, and phosphoinositide signaling, and belongs to the land plant-specific DUF538 domain-containing protein family. Despite its multifaceted roles, the functions of this protein family are poorly understood in plant growth and development. Here, we report that SVB-like (SVBL), the closest homolog of SVB, modulates plant growth and trichome development with SVB in Arabidopsis thaliana. Although none of the single mutants showed an obvious growth defect, the double mutants of svb svbl exhibited dwarfed plant growth. In trichome development, the defects in svb mutant were greatly enhanced by the additional mutation in SVBL, despite the single knockout of SVBL showing the mild defects. The double mutation reduced the transcript level of one of the central hub genes for trichome development, GLABRA1 (GL1), which in turn affects the other downstream genes, GLABRA2 (GL2), TRANSPARENT TESTA GLABRA2 (TTG2), TRIPTYCHON (TRY), CAPRICE (CPC), and ENHANCER OF TRY AND CPC1 (ETC1). In situ translational reporter assays showed that SVB and SVBL share highly similar localization patterns both at tissue and subcellular levels. The present study suggests that SVB and SVBL play a pivotal role in plant growth and trichome development by affecting a specific subset of known trichome developmental regulators, highlighting the importance of the DUF538 protein family in higher plants.
Collapse
Affiliation(s)
- Chao-Yuan Yu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Oshin Sharma
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, 402, Taiwan
| | - Phong H T Nguyen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Chynthia D Hartono
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Kazue Kanehara
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei, 11529, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, 402, Taiwan
| |
Collapse
|
7
|
Görgüç A, Gençdağ E, Yılmaz FM. Bioactive peptides derived from plant origin by-products: Biological activities and techno-functional utilizations in food developments - A review. Food Res Int 2020; 136:109504. [PMID: 32846583 DOI: 10.1016/j.foodres.2020.109504] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/03/2020] [Accepted: 06/26/2020] [Indexed: 12/16/2022]
Abstract
Agro-industrial by-products containing considerable amounts of protein (10-50%) such as soybean meal, rice bran and coconut pulp are promising bioactive peptide sources with annual disposal rate of 800 million tons in the world. More recently, plant by-products rich in protein content have been studied under various prisms that include recovery techniques, peptide production methods, determination of technological benefits and functional properties, and their applications in foods. The researches in bioactive peptides provide evidence over the techno-functional properties and the health benefits are highly dependent upon their amino acid sequences, molecular weights, conformations and surface properties. Research findings compared bioactive properties of the obtained peptides with respect to their amino acid sequences and also reported that hydrophobic/hydrophilic properties have direct effect on both functional and health effects. In addition, the resultant properties of the peptides could be affected by the conducted extraction method (alkaline, enzymatic, ultrasound assisted, microwave assisted, etc.), extraction solvent, precipitation and purification techniques and even by the final drying process (spray, freeze, vacuum, etc.) which may alter molecular weights, conformations and surface properties. Latest studies have investigated solubility, emulsifying, foaming, water/oil holding capacity and surface properties and also antioxidant, antimicrobial, anticarcinogenic, hypocholesterolemic, antihypertensive, immunomodulatory and opioid activities of bioactive peptides obtained from plant by-products. Moreover, the application of the bioactive peptides into different food formulations has been a recent trend of functional food development. These bioactive peptides' bitter taste and toxicity are possible challenges in some cases that need to be resolved before their wider utilization.
Collapse
Affiliation(s)
- Ahmet Görgüç
- Aydın Adnan Menderes University, Engineering Faculty, Food Engineering Department, 09010 Efeler, Aydın, Turkey
| | - Esra Gençdağ
- Aydın Adnan Menderes University, Engineering Faculty, Food Engineering Department, 09010 Efeler, Aydın, Turkey
| | - Fatih Mehmet Yılmaz
- Aydın Adnan Menderes University, Engineering Faculty, Food Engineering Department, 09010 Efeler, Aydın, Turkey.
| |
Collapse
|
8
|
Zhou X, Zhu X, Shao W, Song J, Jiang W, He Y, Yin J, Ma D, Qiao Y. Genome-Wide Mining of Wheat DUF966 Gene Family Provides New Insights Into Salt Stress Responses. FRONTIERS IN PLANT SCIENCE 2020; 11:569838. [PMID: 32983219 PMCID: PMC7483657 DOI: 10.3389/fpls.2020.569838] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/14/2020] [Indexed: 05/24/2023]
Abstract
Domain of unknown function (DUF) proteins constitute a great deal of families of functionally uncharacterized proteins in eukaryotes. The DUF966 gene family is found in monocotyledons, dicotyledons, mosses, and other species. However, little is known about the functions of DUF966 genes in wheat (Triticum aestivum L.). In this study, we identified and characterized the TaDUF966 gene family members in wheat by in silico analysis. A total of 28 TaDUF966 proteins were identified in wheat. Phylogenetic analysis divided these proteins into two groups (Groups I and II). Proteins in each group showed a highly conserved DUF966 domain and conserved motif distribution, implying their functional conservation. Analysis of gene expression profiling data showed that some TaDUF966 genes were induced by salt stress. We further confirmed the role of TaDUF966-9B in salt stress using virus induced gene silencing (VIGS) assay. Compared with the empty vector control, the TaDUF966-9B knockdown plants exhibited severe leaf curling at 10 days post-inoculation with BSMV under salt stress, suggesting that TaDUF966 genes play a vital role in salt stress tolerance in wheat. Taken together, these results expand our knowledge of the evolution of the DUF966 gene family in wheat and promote the potential application of these genes in wheat genetic improvement.
Collapse
Affiliation(s)
- Xiaoyi Zhou
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Xiaoguo Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Wenna Shao
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jinghan Song
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
| | - Wenqiang Jiang
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
| | - Yiqin He
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
| | - Junliang Yin
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
| | - Dongfang Ma
- Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education/College of Agriculture, Yangtze University, Jingzhou, China
| | - Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| |
Collapse
|
9
|
Gholizadeh A. Pectin methylesterase activity of plant DUF538 protein superfamily. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:829-839. [PMID: 32255943 PMCID: PMC7113335 DOI: 10.1007/s12298-020-00763-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 12/21/2019] [Accepted: 01/14/2020] [Indexed: 06/11/2023]
Abstract
DUF538 (domain of unknown function 538) proteins are known as a group of putative hypothetical proteins in a wide range of plant species. They have been identified from some plants challenged with various environmental stresses. However, a little is known about their functional properties. They have been newly predicted to have binding capacity and esterase-type hydrolytic activity towards bacterial lipopolysaccharides and chlorophyll molecules as carboxylic compounds in plants. In the present study, the binding ability and the methylesterase activity of DUF538 proteins towards pectin molecules were also predicted. Their similarities to pectin methylesterases and their binding ability to pectin molecule were predicted using bioinformatic tools as well as the experimental method. A probable cooperation was speculated between DUF538 and pectin methylesterase protein families in cell wall associated defense responses in plants.
Collapse
Affiliation(s)
- Ashraf Gholizadeh
- Research Institute for Fundamental Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
10
|
Li L, Du Y, He C, Dietrich CR, Li J, Ma X, Wang R, Liu Q, Liu S, Wang G, Schnable PS, Zheng J. Maize glossy6 is involved in cuticular wax deposition and drought tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3089-3099. [PMID: 30919902 PMCID: PMC6598097 DOI: 10.1093/jxb/erz131] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/04/2019] [Indexed: 05/20/2023]
Abstract
Cuticular waxes, long-chain hydrocarbon compounds, form the outermost layer of plant surfaces in most terrestrial plants. The presence of cuticular waxes protects plants from water loss and other environmental stresses. Cloning and characterization of genes involved in the regulation, biosynthesis, and extracellular transport of cuticular waxes onto the surface of epidermal cells have revealed the molecular basis of cuticular wax accumulation. However, intracellular trafficking of synthesized waxes to the plasma membrane for cellular secretion is poorly understood. Here, we characterized a maize glossy (gl6) mutant that exhibited decreased epicuticular wax load, increased cuticle permeability, and reduced seedling drought tolerance relative to wild-type. We combined an RNA-sequencing-based mapping approach (BSR-Seq) and chromosome walking to identify the gl6 candidate gene, which was confirmed via the analysis of multiple independent mutant alleles. The gl6 gene represents a novel maize glossy gene containing a conserved, but uncharacterized, DUF538 domain. This study suggests that the GL6 protein may be involved in the intracellular trafficking of cuticular waxes, opening the door to elucidating the poorly understood process by which cuticular wax is transported from its site of biosynthesis to the plasma membrane.
Collapse
Affiliation(s)
- Li Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Department of Agronomy, Iowa State University, Ames, IA, USA
- Seed Science and Technology Research Center, Beijing Innovation Research Center on the Whole Process of Crop Seeds, China Agricultural University, Beijing, P. R. China
| | - Yicong Du
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Cheng He
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Charles R Dietrich
- Department of Agronomy, Iowa State University, Ames, IA, USA
- Present address: Monsanto, Chesterfield, MO 63005-63017, USA
| | - Jiankun Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Xiaoli Ma
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, P. R. China
- Present address: Center for Plant Molecular Biology, University of Tübingen, Tübingen 72076, Germany
| | - Rui Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Qiang Liu
- Department of Agronomy, Iowa State University, Ames, IA, USA
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, P. R. China
| | - Sanzhen Liu
- Department of Agronomy, Iowa State University, Ames, IA, USA
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
| | - Patrick S Schnable
- Department of Agronomy, Iowa State University, Ames, IA, USA
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, P. R. China
- Correspondence: or
| | - Jun Zheng
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, P. R. China
- Correspondence: or
| |
Collapse
|
11
|
Gholizadeh A. DUF538 protein superfamily is predicted to be chlorophyll hydrolyzing enzymes in plants. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2016; 22:77-85. [PMID: 27186021 PMCID: PMC4840154 DOI: 10.1007/s12298-015-0331-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/28/2015] [Accepted: 11/30/2015] [Indexed: 05/29/2023]
Abstract
The possible hydrolytic activity towards chlorophyll molecules was predicted for DUF538 protein superfamily in plants. It was examined by using computational as well as experimental tools including in vitro chlorophyll degradation, antioxidant compounds production and in vivo real-time gene expression tests. Comparison of the computational data with the experimental results indicated that DUF538 proteins might be chlorophyll hydrolyzing enzyme (most probably carboxyesterase) which degrade chlorophyll molecules (66 % per 12 hrs) to produce new compounds (1.8 fold per 12 hrs) with antioxidant properties. The relevance of DUF538 gene expression level with the chlorophyll contents (2.8 fold increase per chlorophyll content of 50 %) of the drought-stressed leaves showed that chlorophyll degradation by DUF538 is most probably induced in response to stress stimuli. Despite membranous chlorophyll catabolic pathways, DUF538-dependent reactions is predicted to be occurred in the cytosol of the under stressed plants. We addressed as to whether chlorophyll breakdown to antioxidant compounds by DUF538 is a defense mechanism of plants against stress stimuli, in vivo? This question is going to be investigated in our next research project.
Collapse
Affiliation(s)
- Ashraf Gholizadeh
- Research Institute for Fundamental Sciences (RIFS), University of Tabriz, Tabriz, Iran
| |
Collapse
|
12
|
Francin-Allami M, Merah K, Albenne C, Rogniaux H, Pavlovic M, Lollier V, Sibout R, Guillon F, Jamet E, Larré C. Cell wall proteomic of Brachypodium distachyon grains: A focus on cell wall remodeling proteins. Proteomics 2015; 15:2296-306. [PMID: 25787258 DOI: 10.1002/pmic.201400485] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/23/2015] [Accepted: 03/13/2015] [Indexed: 01/12/2023]
Abstract
Cell walls play key roles during plant development. Following their deposition into the cell wall, polysaccharides are continually remodeled according to the growth stage and stress environment to accommodate cell growth and differentiation. To date, little is known concerning the enzymes involved in cell wall remodeling, especially in gramineous and particularly in the grain during development. Here, we investigated the cell wall proteome of the grain of Brachypodium distachyon. This plant is a suitable model for temperate cereal crops. Among the 601 proteins identified, 299 were predicted to be secreted. These proteins were distributed into eight functional classes; the class of proteins that act on carbohydrates was the most highly represented. Among these proteins, numerous glycoside hydrolases were found. Expansins and peroxidases, which are assumed to be involved in cell wall polysaccharide remodeling, were also identified. Approximately half of the proteins identified in this study were newly discovered in grain and were not identified in the previous proteome analysis conducted using the culms and leaves of B. distachyon. Therefore, the data obtained from all organs of B. distachyon infer a global cell wall proteome consisting of 460 proteins. At present, this is the most extensive cell wall proteome of a monocot species.
Collapse
Affiliation(s)
| | - Kahina Merah
- INRA, Biopolymères Interactions Assemblages, Nantes, France.,Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Castanet-Tolosan, France.,CNRS, Castanet-Tolosan, France
| | - Cécile Albenne
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Castanet-Tolosan, France.,CNRS, Castanet-Tolosan, France
| | | | | | | | - Richard Sibout
- INRA, Institut Jean-Pierre Bourgin (IJPB), Saclay Plant Science, Versailles, France
| | | | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Castanet-Tolosan, France.,CNRS, Castanet-Tolosan, France
| | - Colette Larré
- INRA, Biopolymères Interactions Assemblages, Nantes, France
| |
Collapse
|