1
|
Zhang G, Wu Q, He L. Prenatal diagnosis and molecular cytogenetic analyses of a rare 17q12 microduplication family. Eur J Obstet Gynecol Reprod Biol 2025; 306:60-63. [PMID: 39793343 DOI: 10.1016/j.ejogrb.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
OBJECTIVE To report a rare 17q12 microduplication family. CASE REPORT A 29-year-old woman (gravida 1, para 0) underwent amniocentesis at 21 weeks' gestation because of double bubble sign and polyhydramnios of the fetus on prenatal ultrasound. Chromosomal microarray analysis (CMA) from this family revealed a 1.78-Mb microduplication on chromosome 17q12 of the fetal, spanning from position 34,460,444 to 36,243,365 (GRCh37). Trio whole-exome sequencing (WES) showed 17q12 microduplication in the fetal and the mother. After genetic counselling and being informed of the unfavourable prognosis, the parents decided to continue the pregnancy. CONCLUSION We provide a detailed description of the phenotype in a rare family with 17q12 microduplication. Combination of karyotype analysis, CMA, WES, prenatal ultrasound and genetic counseling is helpful for the prenatal diagnosis of chromosomal microdeletions/microduplications.
Collapse
Affiliation(s)
- Guoqiong Zhang
- Department of Reproductive Medicine, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, PR China
| | - Qian Wu
- Medical Genetics Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, Hubei, PR China
| | - Long He
- Department of Clinical Laboratory, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, PR China.
| |
Collapse
|
2
|
Han JY, Gwack J, Kim TY, Park J. A Korean Family Presenting with Renal Cysts and Maturity-Onset Diabetes of the Young Caused by a Novel In-Frame Deletion of HNF1B. Int J Mol Sci 2024; 25:9823. [PMID: 39337310 PMCID: PMC11432569 DOI: 10.3390/ijms25189823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Maturity-onset diabetes of the young (MODY; OMIM # 606391) comprises a cluster of inherited disorders within non-autoimmune diabetes mellitus (DM), typically emerging during adolescence or young adulthood. We report a novel in-frame deletion of HNF1B in a family with renal cysts and MODY, furthering our understanding of HNF1B-related phenotypes. We conducted sequential genetic testing to investigate the glucose intolerance, renal cysts, hepatic cysts, and agenesis of the dorsal pancreas observed in the proband. A comprehensive clinical exome sequencing approach using a Celemics G-Mendeliome Clinical Exome Sequencing Panel was employed. Considering the clinical manifestations observed in the proband, gene panel sequencing identified a heterozygous HNF1B variant, c.36_38delCCT/p.(Leu13del) (reference transcript ID: NM_000458.4), as the most likely cause of MODY in the proband. The patient's clinical presentation was consistent with MODY caused by the HNF1B variant, showing signs of glucose intolerance, renal cysts, hepatic cysts, and agenesis of the dorsal pancreas. Sanger sequencing confirmed the same HNF1B variant and established the paternally inherited autosomal dominant status of the heterozygous variant in the patient, as well as in his father and sister. The presence of early-onset diabetes, renal cysts, a family history of the condition, and nephropathy appearing before or after the diagnosis of diabetes mellitus (DM) suggests a diagnosis of HNF1B-MODY5. Early diagnosis is crucial for preventing complications of DM, enabling family screening, providing pre-conceptional genetic counseling, and monitoring kidney function decline.
Collapse
Affiliation(s)
- Ji Yoon Han
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| | - Jin Gwack
- Department of Preventive Medicine, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea;
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
| | - Tae Yun Kim
- Department of Thoracic and Cardiovascular Surgery, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
| | - Joonhong Park
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Department of Laboratory Medicine, Jeonbuk National University Medical School and Hospital, Jeonju 54907, Republic of Korea
| |
Collapse
|
3
|
Hokazono S, Imagawa E, Hirano D, Ikegami T, Oishi K, Konuma T. 1H, 13C and 15N backbone resonance assignments of hepatocyte nuclear factor-1-beta (HNF1β) POU S and POU HD. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:59-63. [PMID: 38451454 DOI: 10.1007/s12104-024-10168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Hepatocyte nuclear factor 1β (HNF1β) is a transcription factor that plays a key role in the development and function of the liver, pancreas, and kidney. HNF1β plays a key role in early vertebrate development and the morphogenesis of these organs. In humans, heterozygous mutations in the HNF1B gene can result in organ dysplasia, making it the most common cause of developmental renal diseases, including renal cysts, renal malformations, and familial hypoplastic glomerular cystic kidney disease. Pathogenic variants in the HNF1B gene are known to cause various diseases, including maturity-onset diabetes of the young and developmental renal diseases. This study presents the backbone resonance assignments of HNF1β POUS and POUHD domains, which are highly conserved domains required for the recognition of double-stranded DNA. Our data will be useful for NMR studies to verify the altered structures and functions of mutant HNF1B proteins that can induce developmental renal diseases, including renal cysts, renal malformations, and familial hypoplastic glomerular cystic kidney disease. This study will provide the structural basis for future studies to elucidate the molecular mechanisms underlying how mutations in HNF1β cause diseases.
Collapse
Affiliation(s)
- Sayaka Hokazono
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Eri Imagawa
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Daishi Hirano
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Takahisa Ikegami
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Kimihiko Oishi
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Tsuyoshi Konuma
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, Japan.
| |
Collapse
|
4
|
Kaci A, Solheim MH, Silgjerd T, Hjaltadottir J, Hornnes LH, Molnes J, Madsen A, Sjøholt G, Bellanné-Chantelot C, Caswell R, Sagen JV, Njølstad PR, Aukrust I, Bjørkhaug L. Functional characterization of HNF4A gene variants identify promoter and cell line specific transactivation effects. Hum Mol Genet 2024; 33:894-904. [PMID: 38433330 PMCID: PMC11070132 DOI: 10.1093/hmg/ddae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/26/2024] [Accepted: 02/11/2024] [Indexed: 03/05/2024] Open
Abstract
Hepatocyte nuclear factor-4 alpha (HNF-4A) regulates genes with roles in glucose metabolism and β-cell development. Although pathogenic HNF4A variants are commonly associated with maturity-onset diabetes of the young (MODY1; HNF4A-MODY), rare phenotypes also include hyperinsulinemic hypoglycemia, renal Fanconi syndrome and liver disease. While the association of rare functionally damaging HNF1A variants with HNF1A-MODY and type 2 diabetes is well established owing to robust functional assays, the impact of HNF4A variants on HNF-4A transactivation in tissues including the liver and kidney is less known, due to lack of similar assays. Our aim was to investigate the functional effects of seven HNF4A variants, located in the HNF-4A DNA binding domain and associated with different clinical phenotypes, by various functional assays and cell lines (transactivation, DNA binding, protein expression, nuclear localization) and in silico protein structure analyses. Variants R85W, S87N and R89W demonstrated reduced DNA binding to the consensus HNF-4A binding elements in the HNF1A promoter (35, 13 and 9%, respectively) and the G6PC promoter (R85W ~10%). While reduced transactivation on the G6PC promoter in HepG2 cells was shown for S87N (33%), R89W (65%) and R136W (35%), increased transactivation by R85W and R85Q was confirmed using several combinations of target promoters and cell lines. R89W showed reduced nuclear levels. In silico analyses supported variant induced structural impact. Our study indicates that cell line specific functional investigations are important to better understand HNF4A-MODY genotype-phenotype correlations, as our data supports ACMG/AMP interpretations of loss-of-function variants and propose assay-specific HNF4A control variants for future functional investigations.
Collapse
Affiliation(s)
- Alba Kaci
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Haukelandsbakken 1, Bergen 5020, Norway
- Center for Laboratory Medicine, Østfold Hospital Trust, Kalnesveien 300, Grålum 1714, Norway
| | - Marie Holm Solheim
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Haukelandsbakken 1, Bergen 5020, Norway
| | - Trine Silgjerd
- Department of Safety, Chemistry, and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Inndalsveien 28, Bergen 5020, Norway
| | - Jorunn Hjaltadottir
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Haukelandsbakken 1, Bergen 5020, Norway
- Department of Safety, Chemistry, and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Inndalsveien 28, Bergen 5020, Norway
| | - Lorentze Hope Hornnes
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Jonas Lies veg 87, Bergen 5021, Norway
| | - Janne Molnes
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Haukelandsbakken 1, Bergen 5020, Norway
- Department of Medical Genetics, Haukeland University Hospital, Jonas Lies veg 87, Bergen 5021, Norway
| | - Andre Madsen
- Department of Clinical Science, University of Bergen, Jonas Lies veg 87, Bergen 5020, Norway
| | - Gry Sjøholt
- Department of Safety, Chemistry, and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Inndalsveien 28, Bergen 5020, Norway
| | - Christine Bellanné-Chantelot
- Départment of Medical Genetics, Sorbonne University, AP-HP, Hôpital Pitié-Salpêtriére, 21 rue de l'école de médecine, 75006 Paris, France
| | - Richard Caswell
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Foundation Trust, Barrack Rd, Exeter EX2 5DW, United Kingdom
| | - Jørn V Sagen
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Haukelandsbakken 1, Bergen 5020, Norway
- Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Jonas Lies veg 87, Bergen 5021, Norway
| | - Pål R Njølstad
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Haukelandsbakken 1, Bergen 5020, Norway
- Children and Youth Clinic, Haukeland University Hospital, Haukelandsbakken 1, Bergen 5021, Norway
| | - Ingvild Aukrust
- Mohn Center for Diabetes Precision Medicine, Department of Clinical Science, University of Bergen, Haukelandsbakken 1, Bergen 5020, Norway
- Department of Medical Genetics, Haukeland University Hospital, Jonas Lies veg 87, Bergen 5021, Norway
| | - Lise Bjørkhaug
- Department of Safety, Chemistry, and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Inndalsveien 28, Bergen 5020, Norway
| |
Collapse
|
5
|
Radi SH, Vemuri K, Martinez-Lomeli J, Sladek FM. HNF4α isoforms: the fraternal twin master regulators of liver function. Front Endocrinol (Lausanne) 2023; 14:1226173. [PMID: 37600688 PMCID: PMC10438950 DOI: 10.3389/fendo.2023.1226173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
In the more than 30 years since the purification and cloning of Hepatocyte Nuclear Factor 4 (HNF4α), considerable insight into its role in liver function has been gleaned from its target genes and mouse experiments. HNF4α plays a key role in lipid and glucose metabolism and intersects with not just diabetes and circadian rhythms but also with liver cancer, although much remains to be elucidated about those interactions. Similarly, while we are beginning to elucidate the role of the isoforms expressed from its two promoters, we know little about the alternatively spliced variants in other portions of the protein and their impact on the 1000-plus HNF4α target genes. This review will address how HNF4α came to be called the master regulator of liver-specific gene expression with a focus on its role in basic metabolism, the contributions of the various isoforms and the intriguing intersection with the circadian clock.
Collapse
Affiliation(s)
- Sarah H. Radi
- Department of Biochemistry, University of California, Riverside, Riverside, CA, United States
| | - Kiranmayi Vemuri
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Jose Martinez-Lomeli
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| | - Frances M. Sladek
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
6
|
Samadli S, Zhou Q, Zheng B, Gu W, Zhang A. From glucose sensing to exocytosis: takes from maturity onset diabetes of the young. Front Endocrinol (Lausanne) 2023; 14:1188301. [PMID: 37255971 PMCID: PMC10226665 DOI: 10.3389/fendo.2023.1188301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
Monogenic diabetes gave us simplified models of complex molecular processes occurring within β-cells, which allowed to explore the roles of numerous proteins from single protein perspective. Constellation of characteristic phenotypic features and wide application of genetic sequencing techniques to clinical practice, made the major form of monogenic diabetes - the Maturity Onset Diabetes of the Young to be distinguishable from type 1, type 2 as well as neonatal diabetes mellitus and understanding underlying molecular events for each type of MODY contributed to the advancements of antidiabetic therapy and stem cell research tremendously. The functional analysis of MODY-causing proteins in diabetes development, not only provided better care for patients suffering from diabetes, but also enriched our comprehension regarding the universal cellular processes including transcriptional and translational regulation, behavior of ion channels and transporters, cargo trafficking, exocytosis. In this review, we will overview structure and function of MODY-causing proteins, alterations in a particular protein arising from the deleterious mutations to the corresponding gene and their consequences, and translation of this knowledge into new treatment strategies.
Collapse
Affiliation(s)
- Sama Samadli
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
- Department of Pediatric Diseases II, Azerbaijan Medical University, Baku, Azerbaijan
| | - Qiaoli Zhou
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Gu
- Department of Endocrinology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Nanjing Key Laboratory of Pediatrics, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
7
|
Yılmaz Uzman C, Erbaş İM, Giray Bozkaya Ö, Paketçi A, Çağlayan AO, Abacı A, Kulalı MA, Böber E, Kekilli A, Çinleti T, Erçal MD, Demir K. Hemoglobin A 1C can differentiate subjects with GCK mutations among patients suspected to have MODY. J Pediatr Endocrinol Metab 2022; 35:1528-1536. [PMID: 36197956 DOI: 10.1515/jpem-2022-0381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES The aim of this study is to determine the clinical and molecular characteristics enabling differential diagnosis in a group of Turkish children clinically diagnosed with MODY and identify the cut-off value of HbA1c, which can distinguish patients with GCK variants from young-onset type 1 and type 2 diabetes. METHODS The study included 49 patients from 48 unrelated families who were admitted between 2018 and 2020 with a clinical diagnosis of MODY. Clinical and laboratory characteristics of the patients at the time of the diagnosis were obtained from hospital records. Variant analysis of ten MODY genes was performed using targeted next-generation sequencing (NGS) panel and the variants were classified according to American Collage of Medical Genetics and Genomics (ACMG) Standards and Guidelines recommendations. RESULTS A total of 14 (28%) pathogenic/likely pathogenic variants were detected among 49 patients. 11 variants in GCK and 3 variants in HNF1A genes were found. We identified four novel variants in GCK gene. Using ROC analysis, we found that best cut-off value of HbA1c at the time of diagnosis for predicting the subjects with a GCK variant among patients suspected to have MODY was 6.95% (sensitivity 90%, specificity 86%, AUC 0.89 [95% CI: 0.783-1]). Most of the cases without GCK variant (33/38 [86%]) had an HbA1c value above this cutoff value. We found that among participants suspected of having MODY, family history, HbA1c at the time of diagnosis, and not using insulin therapy were the most differentiating variables of patients with GCK variants. CONCLUSIONS Family history, HbA1c at the time of diagnosis, and not receiving insulin therapy were found to be the most distinguishing variables of patients with GCK variants among subjects suspected to have MODY.
Collapse
Affiliation(s)
- Ceren Yılmaz Uzman
- Department of Pediatric Genetics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - İbrahim Mert Erbaş
- Department of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Özlem Giray Bozkaya
- Department of Pediatric Genetics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Ahu Paketçi
- Department of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Ahmet Okay Çağlayan
- Department of Medical Genetics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Ayhan Abacı
- Department of Medical Genetics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Melike Ataseven Kulalı
- Department of Pediatric Genetics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Ece Böber
- Department of Pediatric Genetics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Arda Kekilli
- Department of Medical Genetics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Tayfun Çinleti
- Department of Pediatric Genetics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Murat Derya Erçal
- Department of Pediatric Genetics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey.,Department of Medical Genetics, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Korcan Demir
- Department of Pediatric Endocrinology, Faculty of Medicine, Dokuz Eylül University, İzmir, Turkey
| |
Collapse
|
8
|
Kato H, Tateishi K, Iwadate D, Yamamoto K, Fujiwara H, Nakatsuka T, Kudo Y, Hayakawa Y, Ijichi H, Otsuka M, Kishikawa T, Takahashi R, Miyabayashi K, Nakai Y, Hirata Y, Toyoda A, Morishita S, Fujishiro M. HNF1B-driven three-dimensional chromatin structure for molecular classification in pancreatic cancers. Cancer Sci 2022; 114:1672-1685. [PMID: 36511816 PMCID: PMC10067390 DOI: 10.1111/cas.15690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/09/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
The molecular subtypes of pancreatic cancer (PC), either classical/progenitor-like or basal/squamous-like, are currently a major topic of research because of their direct association with clinical outcomes. Some transcription factors (TFs) have been reported to be associated with these subtypes. However, the mechanisms by which these molecular signatures of PCs are established remain unknown. Epigenetic regulatory processes, supported by dynamic changes in the chromatin structure, are essential for transcriptional profiles. Previously, we reported the importance of open chromatin profiles in the biological features and transcriptional status of PCs. Here, we aimed to analyze the relationships between three-dimensional (3D) genome structures and the molecular subtypes of human PCs using Hi-C analysis. We observed a correlation of the specific elements of 3D genome modules, including compartments, topologically associating domains, and enhancer-promoter loops, with the expression of related genes. We focused on HNF1B, a TF that is implicated in the progenitor subtype. Forced expression of HNF1B in squamous-type PC organoids induced the upregulation and downregulation of genes associated with progenitor and squamous subtypes, respectively. Long-range genomic interactions induced by HNF1B were accompanied by compartment modulation and H3K27ac redistribution. We also found that these HNF1B-induced changes in subtype-related gene expression required an intrinsically disordered region, suggesting a possible involvement of phase separation in compartment modulation. Thus, mapping of 3D structural changes induced by TFs, such as HNF1B, may become a useful resource for further understanding the molecular features of PCs.
Collapse
Affiliation(s)
- Hiroyuki Kato
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keisuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Gastroenterology, Department of Internal Medicine, St Marianna University School of Medicine, Kawasaki, Japan
| | - Dosuke Iwadate
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keisuke Yamamoto
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Fujiwara
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Gastroenterology, The Institute of Medical Science, Asahi Life Foundation, Tokyo, Japan
| | - Takuma Nakatsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yotaro Kudo
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hideaki Ijichi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takahiro Kishikawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ryota Takahashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koji Miyabayashi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yousuke Nakai
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of Endoscopy and Endoscopic Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Yoshihiro Hirata
- Division of Advanced Genome Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Shizuoka, Japan
| | - Shinichi Morishita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Yang J, Bai X, Liu G, Li X. A transcriptional regulatory network of HNF4α and HNF1α involved in human diseases and drug metabolism. Drug Metab Rev 2022; 54:361-385. [PMID: 35892182 DOI: 10.1080/03602532.2022.2103146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
HNF4α and HNF1α are core transcription factors involved in the development and progression of a variety of human diseases and drug metabolism. They play critical roles in maintaining the normal growth and function of multiple organs, mainly the liver, and in the metabolism of endogenous and exogenous substances. The twelve isoforms of HNF4α may exhibit different physiological functions, and HNF4α and HNF1α show varying or even opposing effects in different types of diseases, particularly cancer. Additionally, the regulation of CYP450, phase II drug-metabolizing enzymes, and drug transporters is affected by several factors. This article aims to review the role of HNF4α and HNF1α in human diseases and drug metabolism, including their structures and physiological functions, affected diseases, regulated drug metabolism genes, influencing factors, and related mechanisms. We also propose a transcriptional regulatory network of HNF4α and HNF1α that regulates the expression of target genes related to disease and drug metabolism.
Collapse
Affiliation(s)
- Jianxin Yang
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Xue Bai
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Guiqin Liu
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China
| | - Xiangyang Li
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, China.,State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| |
Collapse
|
10
|
Cujba AM, Alvarez-Fallas ME, Pedraza-Arevalo S, Laddach A, Shepherd MH, Hattersley AT, Watt FM, Sancho R. An HNF1α truncation associated with maturity-onset diabetes of the young impairs pancreatic progenitor differentiation by antagonizing HNF1β function. Cell Rep 2022; 38:110425. [PMID: 35235779 PMCID: PMC8905088 DOI: 10.1016/j.celrep.2022.110425] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/23/2021] [Accepted: 02/02/2022] [Indexed: 01/16/2023] Open
Abstract
The HNF1αp291fsinsC truncation is the most common mutation associated with maturity-onset diabetes of the young 3 (MODY3). Although shown to impair HNF1α signaling, the mechanism by which HNF1αp291fsinsC causes MODY3 is not fully understood. Here we use MODY3 patient and CRISPR/Cas9-engineered human induced pluripotent stem cells (hiPSCs) grown as 3D organoids to investigate how HNF1αp291fsinsC affects hiPSC differentiation during pancreatic development. HNF1αp291fsinsC hiPSCs shows reduced pancreatic progenitor and β cell differentiation. Mechanistically, HNF1αp291fsinsC interacts with HNF1β and inhibits its function, and disrupting this interaction partially rescues HNF1β-dependent transcription. HNF1β overexpression in the HNF1αp291fsinsC patient organoid line increases PDX1+ progenitors, while HNF1β overexpression in the HNF1αp291fsinsC patient iPSC line partially rescues β cell differentiation. Our study highlights the capability of pancreas progenitor-derived organoids to model disease in vitro. Additionally, it uncovers an HNF1β-mediated mechanism linked to HNF1α truncation that affects progenitor differentiation and could explain the clinical heterogeneity observed in MODY3 patients. MODY3 patient and CRISPR/Cas9 HNF1αp291fsinsC mutated iPSC lines are generated Mutant iPSCs show deficient pancreatic progenitor and β cell differentiation Mutant truncated HNF1α protein binds wild-type HNF1β protein to hinder its function HNF1β overexpression in MODY3 iPSC line partially rescues β cell differentiation
Collapse
Affiliation(s)
- Ana-Maria Cujba
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | | | | | | | | | | | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK
| | - Rocio Sancho
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, UK; Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
11
|
Ge S, Yang M, Gong W, Chen W, Dong J, Liao L. Case Report: A case of HNF1B mutation patient with first presentation of diabetic ketosis. Front Endocrinol (Lausanne) 2022; 13:917819. [PMID: 35992134 PMCID: PMC9388818 DOI: 10.3389/fendo.2022.917819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Maturity-onset diabetes of the young 5 (MODY5), a rare diabetes syndrome of young adults, is associated with variants in hepatocyte nuclear factor 1B (HNF1B) gene. CASE PRESENTATION We reported a case of MODY5, which presented with diabetic ketosis, multiple renal cysts, and hypokalemia. In this case, the HNF1B score was estimated as 13 and a heterozygous variant of HNF1B in exon 4 (c.826C>T, p.Arg276*) was identified through Sanger sequencing. CONCLUSIONS Multiple renal cysts and youth-onset diabetes are common manifestations in patients with HNF1B mutations, and insufficient insulin secretion may be a potential cause of diabetic ketosis in MODY5.
Collapse
Affiliation(s)
- Shenghui Ge
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji-nan, China
| | - Mengge Yang
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji-nan, China
- Cheeloo College of Medicine, Shandong University, Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational medicine, Shandong Institute of Nephrology, Ji-nan, China
| | - Wenfeng Gong
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji-nan, China
| | - Wenzhe Chen
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji-nan, China
| | - Jianjun Dong
- Division of Endocrinology, Department of Internal Medicine, Qilu Hospital of Shandong University, Ji-nan, China
- *Correspondence: Lin Liao, ; Jianjun Dong,
| | - Lin Liao
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Ji-nan, China
- Cheeloo College of Medicine, Shandong University, Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational medicine, Shandong Institute of Nephrology, Ji-nan, China
- *Correspondence: Lin Liao, ; Jianjun Dong,
| |
Collapse
|
12
|
Maturity Onset Diabetes of the Young-New Approaches for Disease Modelling. Int J Mol Sci 2021; 22:ijms22147553. [PMID: 34299172 PMCID: PMC8303136 DOI: 10.3390/ijms22147553] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/04/2021] [Accepted: 07/09/2021] [Indexed: 02/08/2023] Open
Abstract
Maturity-onset diabetes of the young (MODY) is a genetically heterogeneous group of monogenic endocrine disorders that is characterised by autosomal dominant inheritance and pancreatic β-cell dysfunction. These patients are commonly misdiagnosed with type 1 or type 2 diabetes, as the clinical symptoms largely overlap. Even though several biomarkers have been tested none of which could be used as single clinical discriminator. The correct diagnosis for individuals with MODY is of utmost importance, as the applied treatment depends on the gene mutation or is subtype-specific. Moreover, in patients with HNF1A-MODY, additional clinical monitoring can be included due to the high incidence of vascular complications observed in these patients. Finally, stratification of MODY patients will enable better and newer treatment options for MODY patients, once the disease pathology for each patient group is better understood. In the current review the clinical characteristics and the known disease-related abnormalities of the most common MODY subtypes are discussed, together with the up-to-date applied diagnostic criteria and treatment options. Additionally, the usage of pluripotent stem cells together with CRISPR/Cas9 gene editing for disease modelling with the possibility to reveal new pathophysiological mechanisms in MODY is discussed.
Collapse
|