1
|
Vij M, Dand N, Kumar L, Wadhwa P, Wani SUD, Mahdi WA, Alshehri S, Alam P, Shakeel F. Optimisation of a Greener-Approach for the Synthesis of Cyclodextrin-Based Nanosponges for the Solubility Enhancement of Domperidone, a BCS Class II Drug. Pharmaceuticals (Basel) 2023; 16:ph16040567. [PMID: 37111324 PMCID: PMC10144918 DOI: 10.3390/ph16040567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/27/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
BCS class II molecules suffer from low oral bioavailability because of their poor permeability and sub-optimal aqueous solubility. One of the approaches to enhance their bioavailability is using cyclodextrin-based nanosponges. This study aimed to optimise and evaluate the feasibility of a microwave-assisted approach to synthesise nanosponges and improve domperidone's solubility and drug delivery potential. In the production process, microwave power level, response speed, and stirring speed were optimised using the Box-Behnken approach. Ultimately, the batch with the smallest particle size and highest yield was chosen. The optimised method of synthesis of the nanosponges resulted in a product yield of 77.4% and a particle size of 195.68 ± 2.16 nm. The nanocarriers had a drug entrapment capacity of 84 ± 4.2% and a zeta potential of -9.17± 0.43 mV. The similarity and the difference factors demonstrated proof-of-concept, showing that the drug release from the loaded nanosponges is significantly greater than the plain drug. Additionally, spectral and thermal characterisations, such as FTIR, DSC, and XRD, confirmed the entrapment of the drug within the nanocarrier. SEM scans revealed the porous nature of the nanocarriers. Microwave-assisted synthesis could be used as a better and greener approach to synthesise these nanocarriers. It could then be utilised to load drugs and improve their solubility, as seen in the case of domperidone.
Collapse
Affiliation(s)
- Mohit Vij
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
- Government Pharmacy College, Kangra Nagrota Bagwan, Matyari 176047, India
| | - Neha Dand
- Department of Pharmaceutics, Bharati Vidyapeeth's College of Pharmacy, Navi Mumbai 400614, India
| | - Lalit Kumar
- Sri Sai College of Pharmacy, Amritsar 143149, India
| | - Pankaj Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
| | - Shahid Ud Din Wani
- Department of Pharmaceutical Sciences, School of Applied Science and Technology, University of Kashmir, Srinagar 190006, India
| | - Wael A Mahdi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Kadian V, Dalal P, Kumar S, Kapoor A, Rao R. Comparative evaluation of dithranol-loaded nanosponges fabricated by solvent evaporation technique and melt method. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2023. [DOI: 10.1186/s43094-023-00461-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Abstract
Background
Dithranol, a standard drug for psoriasis, has lured keen attention by virtue of its antioxidant, anti-proliferative and anti-inflammatory activities. However, its poor stability and solubility critically impair the formulation design, evaluation and administration. To improve these issues, dithranol was encased in β-cyclodextrin nanosponges using solvent evaporation technique. Previously, nanosponges containing dithranol were developed in our laboratory using melt technique. Herein, a comparison of nanosponges prepared by both techniques was also included.
Results
Different nanosponge batches were engineered using diphenyl carbonate as cross-linker with β-cyclodextrin as polymer employing solvent evaporation technique. Dithranol was loaded in nanosponges via lyophilization. Fourier transform infrared spectroscopy, differential scanning colorimeter and powdered X-ray diffraction studies confirmed successful encapsulation and complexation of this drug in β-cyclodextrin nanosponges. The effect of a variable amount of cross-linker on the solubility, encapsulation efficiency, zeta potential, particle size and polydispersity index was evaluated in fabricated nanocarriers. Further, β-cyclodextrin nanosponge batches were subjected to solubility studies, photostability examination and antioxidant activity analysis and compared with previously prepared dithranol-loaded nanosponges. From the present studies results, it was concluded that dithranol-loaded nanosponges using solvent evaporation technique not only improved solubility and photostability but also preserved the antioxidant efficacy of the chosen drug.
Conclusion
The overall results emphasized moral guidance concerning encapsulation, evaluation and characterization and accredited dithranol solubilization, photostability and antioxidant potential. However, solvent evaporation and melt method are easy and promising methods to fabricate nanosponges for dithranol. This comparative study demonstrated the parameters which were affected by chosen techniques. Further, from the results of present studies, it was concluded that the formulation scientists should select the preparation technique based on the objective of their research work and requirement of desired features.
Graphical abstract
Collapse
|
3
|
Ashar F, Hani U, Osmani RAM, Kazim SM, Selvamuthukumar S. Preparation and Optimization of Ibrutinib-Loaded Nanoliposomes Using Response Surface Methodology. Polymers (Basel) 2022; 14:polym14183886. [PMID: 36146030 PMCID: PMC9504964 DOI: 10.3390/polym14183886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
The main aim of this study was to optimize the formulation and process variables for the preparation of ibrutinib nanoliposomes and to evaluate the stability of nanoliposomes. The influence of four formulations and process parameters, namely, the phosphatidylcholine-to-cholesterol ratio (A), conc. of ibrutinib (B), sonication time (C), and stirring time (D) on the drug encapsulation efficiency (Y1) and particle size (Y2) of ibrutinib nanoliposomes were investigated by using response surface methodology. Reverse-phase evaporation was used to prepare ibrutinib nanoliposomes. Twenty-nine trial experiments were performed as per the design and the response parameters were noted. Multiple linear regression analysis was used to assess each response parameter. The effect of each factor on the response parameters was depicted using perturbation, response surface, and contour plots. A numerical optimization technique was used to estimate the optimum process parameters to obtain the desired responses. Ibrutinib nanoliposomes prepared under optimal conditions were evaluated for stability at a different temperature, pH, and sonication time. It is evident from the results that the phosphatidylcholine-to-cholesterol ratio (A) was the major factor influencing the encapsulation efficiency. All the factors were found to have noteworthy influences on particle size. A statistical evaluation provided the information about the individual and interactive effects of independent factors on the response parameters in order to obtain optimum experimental conditions that lead to preparing nanoliposomes with improved characteristics. The optimum level of the independent variables was phosphatidylcholine:cholesterol (6.76:1), ibrutinib concentration (2 mg/mL), sonication time (15.13 min), and stirring time (45 min). At optimal conditions, Y1 and Y2 were found to be 90.76 ± 1.56% and 208.24 ± 3.16 nm, respectively. The ibrutinib nanoliposomes were found to be stable both in simulated gastric and intestinal fluids at 37 °C for 6 h. At elevated conditions of temperature and pH, the prepared nanoliposomes were found to be unstable. Sonication for shorter periods resulted in decreased particle size, whereas longer periods can be helpful for ultrasound-assisted drug delivery. The closeness between the obtained results and predicted results indicates the reliability of the optimization technique for the preparation of ibrutinib nanoliposomes.
Collapse
Affiliation(s)
- Fareeaa Ashar
- Department of Pharmacy, Annamalai University, Annamalai Nagar 608002, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Riyaz Ali M. Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, SS Nagara, Mysuru 570015, India
| | | | - S. Selvamuthukumar
- Department of Pharmacy, Annamalai University, Annamalai Nagar 608002, India
- Correspondence:
| |
Collapse
|
4
|
Liu Z, Ye L, Xi J, Wang J, Feng ZG. Cyclodextrin polymers: Structure, synthesis, and use as drug carriers. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101408] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
5
|
Moin A, Roohi NKF, Rizvi SMD, Ashraf SA, Siddiqui AJ, Patel M, Ahmed SM, Gowda DV, Adnan M. Design and formulation of polymeric nanosponge tablets with enhanced solubility for combination therapy. RSC Adv 2020; 10:34869-34884. [PMID: 35514416 PMCID: PMC9056836 DOI: 10.1039/d0ra06611g] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/06/2020] [Indexed: 11/21/2022] Open
Abstract
Three drugs namely caffeine, paracetamol, and aceclofenac are commonly used for treating various acute and chronic pain related ailments. These 3 drugs have varied solubility profiles, and formulating them into a single tablet did not have the desired dissolution profile for drug absorption. The objective of the present research was to tailor the drug release profile by altering drug solubility. This was achieved by loading the drug into nanosponges. Here, three-dimensional colloidal nanosponges were prepared using β-cyclodextrin with dimethyl carbonate as a cross-linker using the hot-melt compression method. The prepared nanosponges were characterized by FTIR, 1H NMR spectroscopy, DSC, XRPD studies and SEM. The FTIR and DSC results obtained indicated polymer-drug compatibility. The 1H NMR spectroscopy results obtained indicated the drug entrapment within nanosponges with the formation of the inclusion complex. XRPD studies showed that the loaded drug had changed crystalline properties altering drug solubility. SEM photographs revealed the porous and spongy texture on the surface of the nanosponge. Box–Behnken experimental design was adopted for the optimization of nanosponge synthesis. Among the synthesized nanosponges containing paracetamol, aceclofenac and caffeine, batch F3–P31, F3–A31 and F3–C31 were considered optimized. Their particle size was 185, 181 and 199 nm with an entrapment efficiency of 81.53, 84.96, and 89.28% respectively. These optimized nanosponges were directly compressed into tablets and were studied for both pre and post-compression properties including in vitro drug release. The prepared tablet showed desired drug dissolution properties compared to the pure drug. The above outcomes indicated the applicability of nanosponges in modulating the drug release with varied solubility for combination therapy. Polymeric nanosponges as potential carriers for successful combination therapy of poorly soluble drugs (paracetamol, aceclofenac, caffeine).![]()
Collapse
Affiliation(s)
- Afrasim Moin
- Department of Pharmaceutics, College of Pharmacy, University of Hail PO Box 2440 Hail Saudi Arabia
| | - N K Famna Roohi
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research S S Nagar Mysuru 570015 Karnataka India
| | - Syed Mohd Danish Rizvi
- Department of Pharmaceutics, College of Pharmacy, University of Hail PO Box 2440 Hail Saudi Arabia
| | - Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Hail PO Box 2440 Hail Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail PO Box 2440 Hail Saudi Arabia
| | - Mitesh Patel
- Bapalal Vaidya Botanical Research Centre, Department of Biosciences, Veer Narmad South Gujarat University Surat Gujarat India
| | - S M Ahmed
- Juggat Pharma Anchepalya, Kumbalgodu Post, Mysore Road Bengaluru 560074 Karnataka India
| | - D V Gowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research S S Nagar Mysuru 570015 Karnataka India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail PO Box 2440 Hail Saudi Arabia
| |
Collapse
|
6
|
History of Cyclodextrin Nanosponges. Polymers (Basel) 2020; 12:polym12051122. [PMID: 32423091 PMCID: PMC7285114 DOI: 10.3390/polym12051122] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/17/2022] Open
Abstract
Nowadays, research in the field of nanotechnology and nanomedicine has become increasingly predominant, focusing on the manipulation and development of materials on a nanometer scale. Polysaccharides have often been used as they are safe, non-toxic, hydrophilic, biodegradable and are low cost. Among them, starch derivatives and, in particular, cyclodextrin-based nanosponges (CD NSs) have recently emerged due to the outstanding properties attributable to their peculiar structure. In fact, alongside the common polysaccharide features, such as the presence of tunable functional groups and their ability to interact with biological tissues, thus giving rise to bioadhesion, which is particularly useful in drug delivery, what makes CD NSs unique is their three-dimensional network made up of crosslinked cyclodextrin units. The name “nanosponge” appeared for the first time in the 1990s due to their nanoporous, sponge-like structure and responded to the need to overcome the limitations of native cyclodextrins (CDs), particularly their water solubility and inability to encapsulate charged and large molecules efficiently. Since CD NSs were introduced, efforts have been made over the years to understand their mechanism of action and their capability to host molecules with low or high molecular weight, charged, hydrophobic or hydrophilic by changing the type of cyclodextrin, crosslinker and degree of crosslinking used. They enabled great advances to be made in various fields such as agroscience, pharmaceutical, biomedical and biotechnological sectors, and NS research is far from reaching its conclusion. This review gives an overview of CD NS research, focusing on the origin and key points of the historical development in the last 50 years, progressing from relatively simple crosslinked networks in the 1960s to today’s multifunctional polymers. The approach adopted in writing the present study consisted in exploring the historical evolution of NSs in order to understand their role today, and imagine their future.
Collapse
|
7
|
Synthesis optimization and characterization of high molecular weight polymeric nanoparticles as EOR agent for harsh condition reservoirs. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-2017-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Sabbagh HAK, Abudayeh Z, Abudoleh SM, Alkrad JA, Hussein MZ, Hussein-Al-Ali SH. Application of multiple regression analysis in optimization of metronidazole-chitosan nanoparticles. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1854-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|