Bei P, Liu H, Zhang Y, Gao Y, Cai Z, Chen Y. Preparation and characterization of polyimide membranes modified by a task-specific ionic liquid based on Schiff base for CO
2/N
2 separation.
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021;
28:738-753. [PMID:
32827118 DOI:
10.1007/s11356-020-10533-5]
[Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
In order to increase CO2/N2 selectivity of polyimide (PI) dense membranes, task-specific ionic liquid (TSIL), 1-aminoethyl-3-buthylimidazolium hexafluorophosphate ([NH2ebim][PF6]), has been grafted to polymer chains as large side groups by forming the structure of Schiff base for the first time. The modified membranes were characterized by Fourier transform infrared spectroscopy (FT-IR), elemental analysis, thermogravimetric analysis (TGA), X-ray diffraction (XRD), dynamic thermomechanical analysis (DMA), and stress-strain testing. The results showed that TSIL had been successfully linked to PI chains by forming "C=N." The modified membranes had more free volume, which was favorable to the improvement of CO2 permeability. The reduction of spin degree of freedom means the rigidity increment of polymer chains, which indicated that the selectivity of CO2/N2 can be enhanced. As a result, CO2 permeability of the modified membrane (TSIL-0.8 wt%) was increased from 5.28 to 10.2 Barrer, and CO2/N2 selectivity was increased from 21.9 to 92.8 at 30 °C and 0.1 MPa. Meanwhile, the effects of different feed pressures (0.1-0.6 MPa) and different operating temperatures (30-60 °C) on CO2/N2 transport properties were also investigated, and it was found that the separation performances of the modified membranes had already exceeded Robeson's upper bound.
Collapse