1
|
Cao H, Zeng Y, Yuan X, Wang JK, Tay CY. Waste-to-resource: Extraction and transformation of aquatic biomaterials for regenerative medicine. BIOMATERIALS ADVANCES 2024; 166:214023. [PMID: 39260186 DOI: 10.1016/j.bioadv.2024.214023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/16/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
The fisheries and aquaculture industry are known for generating substantial waste or by-products, often underutilized, or relegated to low-value purposes. However, this overlooked segment harbors a rich repository of valuable bioactive materials of which have a broad-spectrum of high-value applications. As the blue economy gains momentum and fisheries expand, sustainable exploitation of these aquatic resources is increasingly prioritized. In this review, we present a comprehensive overview of technology-enabled methods for extracting and transforming aquatic waste into valuable biomaterials and their recent advances in regenerative medicine applications, focusing on marine collagen, chitin/chitosan, calcium phosphate and bioactive-peptides. We discuss the inherent bioactive qualities of these "waste-to-resource" aquatic biomaterials and identify opportunities for their use in regenerative medicine to advance healthcare while achieving the Sustainable Development Goals.
Collapse
Affiliation(s)
- Huaqi Cao
- China-Singapore International Joint Research Institute (CSIJRI), China Singapore Guangzhou Knowledge City, Huangpu District, Guangzhou, PR China
| | - Yuanjin Zeng
- China-Singapore International Joint Research Institute (CSIJRI), China Singapore Guangzhou Knowledge City, Huangpu District, Guangzhou, PR China
| | - Xueyu Yuan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, PR China; School of Materials Science and Engineering, Nanyang Technological University, N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Jun Kit Wang
- School of Materials Science and Engineering, Nanyang Technological University, N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Chor Yong Tay
- China-Singapore International Joint Research Institute (CSIJRI), China Singapore Guangzhou Knowledge City, Huangpu District, Guangzhou, PR China; School of Materials Science and Engineering, Nanyang Technological University, N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore; Center for Sustainable Materials (SusMat), Nanyang Technological University, Singapore 637553, Singapore; Nanyang Environment & Water Research Institute, 1 CleanTech Loop, CleanTech One, Singapore 637141, Singapore.
| |
Collapse
|
2
|
Pereira D, Ilkaeva M, Vicente F, Vieira R, Sardo M, Lourenço MAO, Silvestre A, Marin-Montesinos I, Mafra L. Valorization of Crab Shells as Potential Sorbent Materials for CO 2 Capture. ACS OMEGA 2024; 9:17956-17965. [PMID: 38680344 PMCID: PMC11044163 DOI: 10.1021/acsomega.3c09423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 05/01/2024]
Abstract
This study delves into the potential advantage of utilizing crab shells as sustainable solid adsorbents for CO2 capture, offering an environmentally friendly alternative to conventional porous adsorbents, such as zeolites, silicas, metal-organic frameworks (MOFs), and porous carbons. The investigation focuses on crab shell waste, which exhibits inherent natural porosity and N-bearing groups, making them promising candidates for CO2 physisorption and chemisorption applications. Selective deproteinization and demineralization treatments were used to enhance textural properties while preserving the natural porous structure of the crab shells. The impact of deproteinization and demineralization treatments on CO2 adsorption and speciation at the atomic scale, via solid-state NMR, and correlated findings with textural properties and biomass composition were investigated. The best-performing sample exhibits a surface area of 36 m2/g and a CO2 adsorption capacity of 0.31 mmol/g at 1 bar and 298 K, representing gains of ∼3.5 and 2, respectively, compared to the pristine crab shell. These results underline the potential of fishing industry wastes as a cost-effective, renewable, and eco-friendly source to produce functional porous adsorbents.
Collapse
Affiliation(s)
- Daniel Pereira
- CICECO—Instituto
de Materiais de Aveiro, Departamento de Química, Universidade de Aveiro, Campus Universitário
de Santiago, 3810-193 Aveiro, Portugal
| | - Marina Ilkaeva
- CICECO—Instituto
de Materiais de Aveiro, Departamento de Química, Universidade de Aveiro, Campus Universitário
de Santiago, 3810-193 Aveiro, Portugal
- Department
of Chemical and Environmental Engineering, University of Oviedo, Av. Julián Clavería 8, 33006 Oviedo, Spain
| | - Francisco Vicente
- CICECO—Instituto
de Materiais de Aveiro, Departamento de Química, Universidade de Aveiro, Campus Universitário
de Santiago, 3810-193 Aveiro, Portugal
| | - Ricardo Vieira
- CICECO—Instituto
de Materiais de Aveiro, Departamento de Química, Universidade de Aveiro, Campus Universitário
de Santiago, 3810-193 Aveiro, Portugal
| | - Mariana Sardo
- CICECO—Instituto
de Materiais de Aveiro, Departamento de Química, Universidade de Aveiro, Campus Universitário
de Santiago, 3810-193 Aveiro, Portugal
| | - Mirtha A. O. Lourenço
- CICECO—Instituto
de Materiais de Aveiro, Departamento de Química, Universidade de Aveiro, Campus Universitário
de Santiago, 3810-193 Aveiro, Portugal
| | - Armando Silvestre
- CICECO—Instituto
de Materiais de Aveiro, Departamento de Química, Universidade de Aveiro, Campus Universitário
de Santiago, 3810-193 Aveiro, Portugal
| | - Ildefonso Marin-Montesinos
- CICECO—Instituto
de Materiais de Aveiro, Departamento de Química, Universidade de Aveiro, Campus Universitário
de Santiago, 3810-193 Aveiro, Portugal
| | - Luís Mafra
- CICECO—Instituto
de Materiais de Aveiro, Departamento de Química, Universidade de Aveiro, Campus Universitário
de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Koirala P, Bhandari Y, Khadka A, Kumar SR, Nirmal NP. Nanochitosan from crustacean and mollusk byproduct: Extraction, characterization, and applications in the food industry. Int J Biol Macromol 2024; 262:130008. [PMID: 38331073 DOI: 10.1016/j.ijbiomac.2024.130008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/04/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Crustaceans and mollusks are widely consumed around the world due to their delicacy and nutritious value. During the processing, only 30-40 % of these shellfish are considered edible, while 70-60 % of portions are thrown away as waste or byproduct. These byproducts harbor valuable constituents, notably chitin. This chitin can be extracted from shellfish byproducts through chemical, microbial, enzymatic, and green technologies. However, chitin is insoluble in water and most of the organic solvents, hampering its wide application. Hence, chitin is de-acetylated into chitosan, which possesses various functional applications. Recently, nanotechnology has proven to improve the surface area and numerous functional properties of metals and molecules. Further, the nanotechnology principle can be extended to nanochitosan formation. Therefore, this review article centers on crustaceans and mollusks byproduct utilization for chitosan, its nano-formation, and their food industry applications. The extensive discussion has been focused on nanochitosan formation, characterization, and active site modification. Lastly, nanochitosan applications in various food industries, including biodegradable food packaging, fat replacer, bioactive compound carrier, and antimicrobial agent have been reported.
Collapse
Affiliation(s)
- Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Yash Bhandari
- Department of Nutrition and Dietetics, Central Campus of Technology, Tribhuvan University, Nepal
| | - Abhishek Khadka
- Rural Reconstruction Nepal, 288 Gairidhara Road 2, Kathmandu Metropolitan City, Bagmati, Nepal
| | - Simmi Ranjan Kumar
- Department of Biotechnology, Mahidol University, Bangkok 10400, Thailand
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
4
|
Lewandowska K, Sionkowska A, Kurzawa M. Physical Properties and Release Profiles of Chitosan Mixture Films Containing Salicin, Glycerin and Hyaluronic Acid. Molecules 2023; 28:7827. [PMID: 38067555 PMCID: PMC10708376 DOI: 10.3390/molecules28237827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Chitosan (CS) has gained considerable attention due to its distinctive properties and its broad spectrum of potential applications, spanning cosmetics, pharmaceuticals, and biomedical uses. In this study, we characterized thin films comprising chitosan mixtures containing salicin (SAL) and glycerin (GLY), both with and without hyaluronic acid (HA) as active ingredients. Characterization was achieved through release studies of SAL, infrared spectroscopy, microscopy techniques (AFM and SEM), and thermogravimetric analysis (TGA). CS/GLY/SAL and CS/GLY/SAL/HA mixture films were fabricated using the solvent evaporation technique. We probed interactions between the components in the chitosan mixtures via infrared analysis. The concentration of released salicin was monitored at various time intervals in a phosphate buffer (PBS) at pH 5.5 using HPLC. The linear regression analysis for the calibration graph showed a good linear relationship (R2 = 0.9996) in the working concentration range of 5-205 mg/dm3. Notably, the release of SAL reached its peak after 20 min. Furthermore, the introduction of HA caused changes in the films' morphology, but their roughness remained largely unchanged. The results obtained were compared, indicating that the release of SAL in the CS mixture films is sufficient for diverse applications, including wound-healing materials and cosmetic beauty masks.
Collapse
Affiliation(s)
- Katarzyna Lewandowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 Street, 87-100 Torun, Poland;
| | - Alina Sionkowska
- Department of Biomaterials and Cosmetic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 Street, 87-100 Torun, Poland;
| | - Marzanna Kurzawa
- Department of Analytical Chemistry and Applied Spectroscopy, Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarin 7 Street, 87-100 Torun, Poland;
| |
Collapse
|
5
|
Abd El-Magied MO. High-efficiency recovery of cerium ions from monazite leach liquor by polyamines and polycarboxylates chitosan sorbents prepared from marine industrial wastes. Int J Biol Macromol 2023; 243:125243. [PMID: 37295692 DOI: 10.1016/j.ijbiomac.2023.125243] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Rare earth elements have received a lot of attention in recent years due to their increasing demand in high-tech industries. Cerium is of current interest and is commonly used in different industries and medical applications. Cerium's uses are expanding due to its superior chemical characteristics over other metals. In this study, different functionalized chitosan macromolecule sorbents were developed from shrimp waste for cerium recovery from a leached monazite liquor. The process involves demineralization, deproteinization, deacetylation, and chemical modification steps. A new class of two-multi-dentate nitrogen and nitrogen‑oxygen donor ligand-based macromolecule biosorbents was synthesized and characterized for cerium biosorption. The crosslinked chitosan/epichlorohydrin, chitosan/polyamines, and chitosan/polycarboxylate biosorbents have been produced from marine industrial waste (shrimp waste) using a chemical modification approach. The produced biosorbents were used to recover cerium ions from aqueous mediums. The affinity of the adsorbents towards cerium was tested in batch systems under different experimental conditions. The biosorbents showed high affinities for cerium ions. The percentage of cerium ions removed (%) from its aqueous system by polyamines and polycarboxylate chitosan sorbents is 85.73 and 90.92 %, respectively. The results indicated that the biosorbents have a high biosorption capacity for cerium ions from aqueous and leach liquor streams.
Collapse
|
6
|
Chitosan-based multifunctional coating combined with sulfur quantum dots to prevent Listeria contamination of enoki mushrooms. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2022.101014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Ozkan A. Screening diatom strains belonging to Cyclotella genera for chitin nanofiber production under photobioreactor conditions: Chitin productivity and characterization of physicochemical properties. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
8
|
Chitin and chitin-based biomaterials: A review of advances in processing and food applications. Carbohydr Polym 2023; 299:120142. [PMID: 36876773 DOI: 10.1016/j.carbpol.2022.120142] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022]
Abstract
Chitin is the most abundant natural amino polysaccharide, showing various practical applications owing to its functional properties. However, there are barriers in the development due to the difficulty of chitin extraction and purification, regarding its high crystallinity and low solubility. In recent years, some novel technologies such as microbial fermentation, ionic liquid, electrochemical extraction have emerged for the green extraction of chitin from new sources. Furthermore, nanotechnology, dissolution systems and chemical modification were applied to develop a variety of chitin-based biomaterials. Remarkably, chitin was used in delivering active ingredients and developing functional foods for weight loss, lipid reduction, gastrointestinal health, and anti-aging. Moreover, the application of chitin-based materials was expanded into medicine, energy and the environment. This review outlined the emerging extraction methods and processing routes of different chitin sources and advances in applying chitin-based materials. We aimed to provide some direction for the multi-disciplinary production and application of chitin.
Collapse
|
9
|
Lewandowska K, Szulc M. Rheological and Film-Forming Properties of Chitosan Composites. Int J Mol Sci 2022; 23:ijms23158763. [PMID: 35955893 PMCID: PMC9369327 DOI: 10.3390/ijms23158763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Chitosan (Chit) and its composite films are widely used in biomedical, cosmetic, and packaging applications. In addition, their properties can be improved and modified using various techniques. In this study, the effect of the type of clay in Chit composites on the structure, morphology, and physical properties of Chit solution and films was tested. The liquid flow properties of Chit solution with and without clay were carried out using the steady shear test. Chit films containing clay were obtained using the solution-casting method. The morphology, structure, and physical properties of the films were characterized by scanning electron microscopy, atomic force microscopy, infrared spectroscopy, swelling behavior, and tensile tests. The results reveal that for the Chit solution with clay (C1) containing 35 wt.% dimethyl dialkyl (C14-C18) amine, the apparent viscosity is the highest, whereas Chit solutions with other clays show reduced apparent viscosity. Rheological parameters of Chit composites were determined by the power law and Cross models, indicating shear-thinning behavior. Analytical data were compared, and show that the addition of clay is favorable to the formation of intermolecular interactions between Chit and clay, which improves in the properties of the studied composites.
Collapse
|
10
|
Nouj N, Hafid N, El Alem N, Buciscanu II, Maier SS, Samoila P, Soreanu G, Cretescu I, Stan CD. Valorization of β-Chitin Extraction Byproduct from Cuttlefish Bone and Its Application in Food Wastewater Treatment. MATERIALS 2022; 15:ma15082803. [PMID: 35454495 PMCID: PMC9025758 DOI: 10.3390/ma15082803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 12/02/2022]
Abstract
The nontoxicity, worldwide availability and low production cost of cuttlefish bone products qualify them an excellent biocoagulant to treat food industry wastewater. In this study, cuttlefish bone liquid waste from the deproteinization step was used as a biocoagulant to treat food industry wastewater. This work concerns a waste that has never before been investigated. The objectives of this work were: the recovery of waste resulting from cuttlefish bone deproteinization, the replacementof chemical coagulants with natural ones to preserve the environment, and the enhancement ofthe value of fishery byproducts. A quantitative characterization of the industrial effluents of a Moroccan food processing plant was performed. The physicochemical properties of the raw cuttlefish bone powder and the deproteinization liquid extract were determined using specific analysis techniques: SEM/EDX, FTIR, XRD and 1H-NMR. The protein content of the deproteinization liquid was determined by OPA fluorescent assay. The zeta potential of the liquid extract was also determined. The obtained analytical results showed that the deproteinization liquid waste contained an adequate amount of soluble chitin fractions that could be used in food wastewater treatment. The effects of the coagulant dose and pH on the food industrial effluents were studied to confirm the effectiveness of the deproteinization liquid extract. Under optimal conditions, the coagulant showed satisfactory results. Process optimization was performed using the Box–Behnken design and response surface methodology. Thus, the optimal removal efficiencies predicted using this model for turbidity (99.68%), BOD5 (97.76%), and COD (82.92%) were obtained at a dosage of 8 mL biocoagulant in 0.5 L of food processing wastewater at an alkaline pH of 11.
Collapse
Affiliation(s)
- Nisrine Nouj
- Material and Environmental Laboratory, Department of Chemistry, Faculty of Sciences, IBN ZOHR University, Agadir 80000, Morocco; (N.H.); (N.E.A.)
- Correspondence: (N.N.); (I.C.)
| | - Naima Hafid
- Material and Environmental Laboratory, Department of Chemistry, Faculty of Sciences, IBN ZOHR University, Agadir 80000, Morocco; (N.H.); (N.E.A.)
| | - Noureddine El Alem
- Material and Environmental Laboratory, Department of Chemistry, Faculty of Sciences, IBN ZOHR University, Agadir 80000, Morocco; (N.H.); (N.E.A.)
| | - Ingrid Ioana Buciscanu
- Department of Chemical Engineering in Textiles and Leather, Faculty of Industrial Design and Business Management, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania; (I.I.B.); (S.S.M.)
| | - Stelian Sergiu Maier
- Department of Chemical Engineering in Textiles and Leather, Faculty of Industrial Design and Business Management, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania; (I.I.B.); (S.S.M.)
| | - Petrisor Samoila
- Laboratory of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, 41A Aleea Grigore Ghica Vodӑ, 700487 Iasi, Romania;
| | - Gabriela Soreanu
- Department of Environmental Engineering and Management, Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania;
| | - Igor Cretescu
- Department of Environmental Engineering and Management, Faculty of Chemical Engineering and Environmental Protection, “Gheorghe Asachi” Technical University of Iasi, 700050 Iasi, Romania;
- Correspondence: (N.N.); (I.C.)
| | - Catalina Daniela Stan
- Department of Drug Industry and Pharmaceutical Biotechnology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University St., 700115 Iasi, Romania;
| |
Collapse
|