1
|
Hellmann L, Módenes AN, Schmitz APDO, Espinoza-Quiñones FR, Trigueros DEG, Sauer Pokrywiecki T, Klem Bohrer J, Oglio ICD, Tones ARM. Effect of elemental composition assigned to antrotopic pollution on the quality of the water and sediment of the Marrecas river (PR, Brazil) as highlighted by multivariate statistical analyses. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:139-153. [PMID: 35156550 DOI: 10.1080/10934529.2022.2039551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 12/22/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
In recent years, several environmental pollutants have been monitored in surface waters and sediments. However, few studies apply multivariate statistics to identify the main components and correlate them temporally and spatially. In this sense, the present study sought to monitor the quality of water and sediments in the Rio Marrecas/Brazil, through the analysis of physicochemical parameters and trace elements, as well as to identifying sources of contamination, using multivariate statistics. For this purpose, sampling was carried out in nine locations for a period of 12 months. The Total Reflection X-ray Fluorescence (TXRF) technique was used to quantify the 15 elements identified in water and sediment samples. Through multivariate statistical analyses, the most significant elements, their correlations and possible pollutant sources were defined, and the pollution index (HPI) and assessment index (HEI) of heavy metals were applied. The parameters pH and BOD5 do not comply with Brazilian legislation. Based on PCA and Spearman correlation, there was strong evidence of contamination of the water naturally, composed of the elements Ti, V, Mn, Fe, and of anthropogenic origin composed of the elements Ca, Ni, Cu, Zn. These findings provide insights to determine the impacts of heavy metals on human health and the environment.
Collapse
Affiliation(s)
- Liliane Hellmann
- Postgraduate Program of Chemical Engineering, Universidade Estadual do Oeste do Paraná, Toledo, Paraná, Brazil
| | - Aparecido Nivaldo Módenes
- Postgraduate Program of Chemical Engineering, Universidade Estadual do Oeste do Paraná, Toledo, Paraná, Brazil
| | - Ana Paula de Oliveira Schmitz
- Graduation Department of Engineering, Universidade Tecnológica Federal do Paraná - UTFPR, Francisco Beltrão, Paraná, Brazil
| | | | | | - Ticiane Sauer Pokrywiecki
- Graduation Department of Engineering, Universidade Tecnológica Federal do Paraná - UTFPR, Francisco Beltrão, Paraná, Brazil
| | - Jaqueline Klem Bohrer
- Postgraduate Program of Environmental Engineering, Universidade Tecnológica Federal do Paraná - UTFPR, Francisco Beltrão, Paraná, Brazil
| | | | - Aline Raquel Müller Tones
- Federal University of Fronteira Sul, Water and Ecotoxicology Laboratory, Rua Jacob Reinaldo Haupenthal, Cerro Largo, Rio Grande do Sul, Brazil
| |
Collapse
|
2
|
Malkov AV, Kozhevnikov AY, Kosyakov DS, Kosheleva AE. Determination of Ni, Co, and Cu in seawater by total external reflection X-ray fluorescence spectrometry. JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1134/s1061934817060107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Ribeiro RDOR, Mársico ET, de Jesus EFO, da Silva Carneiro C, Júnior CAC, de Almeida E, Filho VFDN. Determination of trace elements in honey from different regions in Rio de Janeiro State (Brazil) by total reflection X-ray fluorescence. J Food Sci 2015; 79:T738-42. [PMID: 24712495 DOI: 10.1111/1750-3841.12363] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 09/22/2013] [Indexed: 01/13/2023]
Abstract
Trace and minor elements in Brazilian honey were analyzed by total reflection X-ray fluorescence spectroscopy. Up to 12 elements (K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Se, Br, and Sr) were detected in 160 samples of honey from 4 regions of Rio de Janeiro State (Barra Mansa, Teresópolis, northern and southern Nova Friburgo). The results showed the samples from Teresópolis had higher rates of essential and nonessential elements than samples from the other regions, except for Ni. K and Ca were the most abundant elements in all samples, in the range of 116.5 to 987.0 μg g(-1) . Ni, Cu, Zn, Se, and Sr were identified in small concentrations (0.01 to 12.08 μg g(-1) ) in all samples, indicating a low level of contamination in all the regions.
Collapse
|
4
|
Bilo F, Borgese L, Cazzago D, Zacco A, Bontempi E, Guarneri R, Bernardello M, Attuati S, Lazo P, Depero LE. TXRF analysis of soils and sediments to assess environmental contamination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:13208-13214. [PMID: 24122164 DOI: 10.1007/s11356-013-2203-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/27/2013] [Indexed: 06/02/2023]
Abstract
Total reflection x-ray fluorescence spectroscopy (TXRF) is proposed for the elemental chemical analysis of crustal environmental samples, such as sediments and soils. A comparative study of TXRF with respect to flame atomic absorption spectroscopy and inductively coupled plasma optical emission spectroscopy was performed. Microwave acid digestion and suspension preparation methods are evaluated. A good agreement was found among the results obtained with different spectroscopic techniques and sample preparation methods for Cr, Mn, Fe, Ni, Cu, and Zn. We demonstrated that TXRF is suitable for the assessment of environmental contamination phenomena, even if the errors for Pb, As, V, and Ba are ingent.
Collapse
|
5
|
Affiliation(s)
- Kouichi Tsuji
- Department of Applied Chemistry & Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Kazuhiko Nakano
- Department of Applied Chemistry & Bioengineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Yoshio Takahashi
- Department of Earth and Planetary Systems Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan
| | - Kouichi Hayashi
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Chul-Un Ro
- Department of Chemistry, Inha University, 253 Yonghyun-dong, Nam-gu, Incheon, 402-751, Korea
| |
Collapse
|
6
|
Zawisza B, Sitko R. Determination of lithium in mineral water samples by X-ray fluorescence spectrometry. APPLIED SPECTROSCOPY 2011; 65:1218-1221. [PMID: 21986084 DOI: 10.1366/11-06306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A method is shown for the determination of trace amounts of lithium by X-ray fluorescence spectrometry (XRF) in natural mineral waters with various therapeutic effects originating in Poland. The method is an expansion of X-ray fluorescence spectrometry applications to the determination of a very light element. The direct determination of lithium by XRF is practically impossible due to the extremely low fluorescence yield and long-wavelength characteristic radiation of such a light element. The lithium is determined via iron after precipitation with stoichiometric potassium lithium periodatoferrate(III) complex. The solution obtained after dissolving the complex was pipetted onto Mylar foil for XRF analysis. As little as 1 μg Li may be determined with this method. Accurate lithium determinations can be obtained using simple calibration samples requiring only pipetting Fe solution in the range 8.0-28.0 μg onto the Mylar foil. The prepared samples are thin, which allows the errors resulting from self-absorption or matrix effects to be neglected. Our studies give essential information about the quality of the analyzed waters.
Collapse
Affiliation(s)
- Beata Zawisza
- Institute of Chemistry, University of Silesia, ul. Szkolna 9, 40-006 Katowice, Poland.
| | | |
Collapse
|